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Summary. We formulate an abstract functional-analytic framework for the 
study of Gibbs measures on infinite product spaces. Working in this frame- 
work, we present a detailed analysis of the weak-coupling regime. Specifi- 
cally, we derive general theorems on existence of the Gibbs measure, 
analyticity in its component  Gibbs factors, and exponential decay of cor- 
relations and truncated expectations in the spread of distant families of 
random variables. In translation-invariant situations we obtain a central 
limit theorem. Our main tool is a series expansion in truncated expectations, 
which we analyze with L p methods. 

Section l :  Introduction 

On infinite product spaces ]~] Xi, we study a class of non-product probabili ty 
iE.~9 o 

measures. These measures are the Gibbs measures, which arise in the classical 
statistical mechanics of crystals. A Gibbs measure # differs from a product 

measure dv = ~[ dv i by an infinite product of coupling factors g~(x), the Gibbs 

factors, according to the heuristic formula 

1 
du =~.  EO g~(x ) �9 dr. (1.1) 

Here the function g~(x) depends only on the variables labelled by the finite 
subset E c Y ,  and Z is a normalization factor. We impose the geometric 
restriction 

sup[{E" E'c~E +O&g~,gE, ~ 1}l < oo (1.2) 
E 
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in order to make the product in (1.1) locally well-defined in 5f. (The absolute 
value I I in (1.2) denotes set cardinality.) 

The weak coupling hypothesis is that the Gibbs factors are all close to one in 
a suitable norm: 

Ihg~- 111 < 6 VE. (1.3) 

However, in typical applications we also find that 

Ig~(x) - 11 > e(x) > 0 (1.4) 

for an infinite number of E's, causing the full infinite product 1-[ gE(x) in (1.1) 
Ecog v 

to diverge. To obviate this problem and give a rigorous meaning to the heuristic 
formula (1.1), we construct/~ as a limit of measures defined on increasingly large 
finite product spaces, where (1.1) has a direct meaning. The weak coupling 
hypothesis (1.3) in tandem with the geometric condition (1.2) will enable us to 
perform this limiting procedure and analyze the result. 

In the weak coupling region, one anticipates that the Gibbs measure will be 
well-behaved and amenable to detailed analysis. This has been established in 
many examples [13]. However, the results obtained for these examples generally 
depend on further properties of the model in question, such as compactness of 
the X i [5], or restrictions on the form of the coupling factors g~. In this paper 
we set up and investigate a unifying functional-analytic framework for the study 
of Gibbs measures which reflects the basic mathematical structure of the 
problem while suppressing details irrelevant in the weak-coupling regime. With 
L p analysis as our basic technique, we derive a number of theorems in this 
abstract framework which confirm the expected behaviour of the measure. 

We describe our results in greater detail. In Sect. 2 we collect some relevant 
terminology, and formulate the framework in which we study Gibbs measures. 
This framework admits physical models having arbitrary many-body interac- 
tions, not necessarily translation-invariant but essentially finite-range, with spin 
variables in an arbitrary probability space Xi. It also includes models on 
unphysical lattices such as Cayley trees. Section 3 is the technical heart of the 
paper. In it we obtain uniform estimates for the approximate measures on finite 

N 

product spaces I ]  X~, which are used in the limiting procedure to construct the 
c~=l 

Gibbs measure. The estimates concern truncated expectations (i.e. cumulants, or 
semi-invariants), and express the exponential decay of correlations between 
factor spaces X~, Xj with widely separated indices i, j. The method we use to 
derive these bounds is a series expansion. While similar in spirit to other 
expansions in statistical mechanics, our method makes use of novel estimates on 
truncated expectations with respect to product measures in order to demon- 
strate convergence (Lemma 3.1; this lemma also makes unexpected contact with 
graph-coloring and finite-geometry problems). In Sect.4 we use the uniform 
weak-coupling bounds of Sect. 3 to prove that the approximate measures on 
finite product spaces converge to a limiting Gibbs measure on the infinite- 
product space l-[ X~ having strong regularity properties. Specifically, we show 
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that the limit is approached uniformly over the small-coupling region, that it is 
analytic in the Gibbs factors when they are regarded as elements of suitable 
Banach spaces, that correlations and truncated expectations decay exponentially 
in the separation of distant variables, and that the central limit theorem holds. 

Some of the problems we study in this paper have been simultaneously 
attacked by other workers ]-6, 10, 17], who obtain results of somewhat the same 
nature as ours. 

Section 2: Terminology 

In this section we review some useful terminology from graph theory and 
analysis. We then define lattice models, the functional-analytic structures in 
which we study Gibbs measures. 

In graph theory we largely follow the definitions of [1], some of which we 
recall now. Let ~ be a set, not necessarily finite. A hypergraph (Y on 5~ is a 
family of finite nonempty subsets of 5r Although ff may have repeated 
elements, by an abuse of notation we shall use set-theoretic terminology in 
connection with ft. The members i ~  are vertices; the members E~ff, edges. An 
alternate notation for the set of vertices ~ of (q is Vff. A subhypergraph A of N is 
a subset A c ft. If 5~i ~ ~ ,  the restriction N ~Y~ is 

(2.1) 

The degree d'~(A) of any subset A c Y is 

d~(A)=I{E~: E n A  4=0}1. (2.2) 

(We use the notation J I for set cardinality.) However, if E is an edge E~(r it is 
convenient to modify (2.2) slightly: 

d~(E)=d'~(E)- 1 =[{F6ff:  Fc~E,I=O& F,I= E}I. (2.3) 

We drop both the prime and the subscript when the intended degree is clear 
from context, and we write d'~(i) for d~({i}), i~5r The overall degree d~ of N is 

d~ = sup d~(E). (2.4) 
EE,~ 

A path 7 in N is a finite sequence of edges El, E 2 ... .  such that Vj, 

Ejc3Ej + 1 @ O. 

decomposes into path components in the usual way: two edges lie in the same 
component if and only if there is a path beginning at one and ending at the 
other. A connected hypergraph is one with a single path component. The spread 
p~({Aj}) of a family of finite subsets Aj ~ •, j~J is the smallest number of edges 
Eke(g, k~K, such that the hypergraph with edges {Aj:j~J}w{Ek:k~K } is 
connected: 

p~(A1, A 2 .... ) =p,({Aj}) =inf{[Al: Au{Aj:j~J} is connected}. (2.5) 
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The spread is a metric on pairs of vertices, though not on pairs of edges. The line 
graph (or representative graph) L(N) is the true graph which has as vertices the 
edges of ~q and which joins two vertices e,fsVL(f#) by an edge if and only if 
when e,f  are regarded as edges E, F~f# they overlap: Ec~F#~. 

We shall occasionally omit the prefix "hyper" when it is clear that the graph 
in question is a hypergraph. 

We next summarize three notions from analysis: truncated expectations, 
analytic complex-valued functions on a Banach space, and L p spaces with vector 
weights p. 

Let {Xi}~l ..... ~ be a family of n random variables on some probability space, 
and denote the expectation integral of this space by ~. One may define the 
truncated expectation u(xl, ...,x,) of the family {x~} 1<__~. by means of a formal 
generating function as 

" 

(2.6) 

Truncated expectations are also called cumulants, semi-invariants, connected 
expectations, and Ursell functions. Notice that if {xi}l<_i<_, and {Yj}I<=j='<m are 
two families of random variables which are independent of each other, then 

u(x ~,... x,, yt . . . . .  y,,) = 0 (2.7) 

because the expectation in (2.6) factors. One may also define the truncated 
expectation recursively: 

e ( X 1 X 2 ' "  X n ) = 2  I ]  U({Xi" i~P}).  (2.8) 
PE~ 

Here ~3 is an arbitrary partition of {1,..., n}, and Pe~3 is a typical block in ~3. 
Observe that if we isolate the blocks P~s~3 with I~P 1 and resum over the 
remaining blocks, we find 

e(XlXz...x.)= ~ u({xi: i~Pa})e(H xj). (2.9) 
iEP1 c {1 ..... n} JCP1 

This expansion plays a key role in the analysis of Sect. 3. Finally, one may give 
an explicit formula for u(xl ..... x,): 

u(x~ ... .  , x , ) = ~ ( -  1) I~1- 1(1~]_ 1)! H e ( H  xi), (2.10) 
PE~ i~P 

where again ~ is a partition of {1,...,n}. As we shall discuss in Sect. 3, (2.10) 
actually follows from (2.8) by a M6bius inversion. 

We next turn to consideration of analytic functions on Banach spaces. Let Y 
be a Banach space over C, and let U ~ Y be open. Essentially, a map f:  U ~ C is 
analytic if it has a convergent Taylor expansion about every point in U. 
Formally, f is analytic at xo~U if and only if there are continuous multilinear 

forms q~,: I~I Y-+ C such that the series 
1 
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~ , ( X - X o , X - X o , . . . )  
n=O 

converges uniformly to f in some ball Br(xo)={x~Y: IlX-Xolf<=r} of positive 
radius r. A function is analytic over U if it is analytic at every point xo~U. 
Reference [9] and further works cited therein set forth the elementary properties 
of analytic functions on Banach spaces. 

We conclude our discussion of terminology with some comments on /Y 
spaces, over product measures, that have vector weights p (briefly, vector L p 
spaces). Let (Xi, ~3i, v~)~ be a family of probability spaces indexed by the finite 
set E, IEl=n, and let the vector weight p be a member of y [ [ 5 , ~ ] .  If 

icE 

f:  I-[ X~ ~ C is measurable with respect to the product a-algebra I ]  ~3~, set 
E E 

[IflPp=[ S -.. [ S [ ~ (f)Pi~dvi,] p~" 1/P~dvi~ ~]p~,-~/p~n-~... dv,,]~/pi, (2.51) 
Xi: Xi.  1 Xi~ 

where the ordering Ph, P~,-" ,  P~. of the n components of p is chosen such that 

Pil <=Pi2 <= "'" <=Pi,~" (2.12) 

It is easy to see that ]p lie is a norm, and we take Iyc([ Ix i , l ]v l )  to be the 
E E 

(equivalence classes of measurable) functions f:  ]-[Xi--*C with Hf[Ip<oo. An 
E 

ordering of the components of p which differs from (2.12) also gives rise to a 
norm, which in general is (possibly strictly) less than fJ J]p. The following 
proposition, which we state without proof, summarizes some elementary proper- 
ties of vector L p spaces. 

Proposition 2.1. Let (Xi, ~31, vi)i~ e be a family of  probability spaces indexed by the 
finite set E. Let p,p', q, r e H [ 1 , ~  ]. Then: 

isE 

(a) I f  all components Pi are equal to a common value po~[1, oo], 

LP(I~ Xi) = lY~ [ Xi). (2.13) 
E E 

where L p~ is defined in the usual manner. 

(b) I f  fcLP(l- [ Xi) is a product 
E 

f =fAfA', A c E & A ' = E - A  

where fA (resp. fA') depends only on those variables indexed by A (resp. A'), then 

J [ f l lp  = ItfAI]pa JlfA, IIv~v. (2.14) 

Here PA (resp. PA') is the restriction of p to A (resp. A'). 

(c) I f  f~t~(  H x,), g~([-I x,), then f . g~E(H x~) where 1/1) + 1/q = 1/r (com- 
E E ice 

ponentwise). Further, 
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1 1 1 
IIf.gl[~<Llfllp.llgLIq - + - =  . (2.15) 

p q r 

(d) Define p* by lip + l /p*= 1 (componentwise). Then 

1 1 
LP*(Hx')=LP(I-[x')*'E E ~ + ~ - - 1 .  (2.16) 

(e) If p < p' (componentwise), then 

LP(rI X,)= IY' (r ] X,). (2.17) 
E E 

We remark that (e) is the only part of Proposition 2.1 dependent on the fact 
that the measures v z are normalized, and that the containment in (2.16) may in 
general be strict even if all components of p are finite. 

We close this section' by defining a lattice model and its Gibbs measure. A 
lattice model 93l consists of: 

(1) a denumerable set • ;  
(2) a family of probability spaces (Xi, ~3i, v~)~ze indexed by 2,<e; 
(3) a hypergraph f# on ~ of finite degree d e < oe; and, 
(4) a family of weights {PE}E~, PEEl-[ [1, oe], indexed by fq which is conform- 

able for integration. ~E 
(Conformability for integration means that 

(pe, i)-i <1 Vi (2.18) 
{Eef~:iEE} 

where PE, z is the ith component of PE.) We make the additional technical 
assumption that every vertex i ~  is covered by at least two edges of N. This 
assumption simplifies the statement of several estimates that would otherwise 
require a bound on the edge size [El, E~fr Since the Gibbs measure of a lattice 
model factors over the path components of its hypergraph we may also suppose 
that fr is connected with no loss of generality. 

The Gibbs factors in a lattice model 9J~ are a family of complex functions 
gE@L~(~Ixi,Uvi), E~f~. If Aaf#  is a finite subhypergraph then since the 

E E 

weights {PE}E~ are conformable for integration we have I I  gE~Ll(l~ X~, 1-I vl), 
with E~a a ~ 

II I1 gEHa < ~I IIgEIIp~ (2.19) 
E~A E~A 

by Proposition 2.1c. 
In the lattice models of primary physical interest, the set ~ is Z N for some N 

and the remaining structure of the model - probability spaces, hypergraph, 
integration weights, and Gibbs factors - is invariant under translation in Z N. 
Moreover, the Gibbs factors are nonnegative. Translation invariance means 
explicitly that: all probability spaces are the same 
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((Xi, 981, vi) =(X, 98, v) V ieZN); EEN if and only ifE + i~(r V ieZ N, EeN, where E + i 
is the translate of E by i; p~=PE+iVieZ N, E~Cff; and 

gE+i(X<+i,Xe2+i,...)=gE(xel,Xe2,...) g ieZ ~, EeN (2.20) 

where e~, e2, ... are the elements of E. In a translation-invariant model we may 
select a (minimal) representative set of edges which generates all other edges by 
translation. We call such a set fundamental. Notice that a translation-invariant 
hypergraph N of finite degree is necessarily finite-range: 

sup diam(E) < oo (2.21) 

where diam(E)=-sup]i-j]~. However, (2.21) need not hold without the in- 
variance, i,j~E 

The Gibbs measure # of an arbitrary lattice model 9J~ is the measure on 
(I-I x~, FI 98~) given heuristically by the formula 

i ~ .  ~ i ~  c~ 

d#=Z 1 [1 gedv (2.22a) 
EEN" 

where 

Z - * =  ; [ [  gedv (2.22b) 
IIXi E e N  
55" 

and 

dv = I~ dvi" (2.22c) 
ieZP 

As discussed in Sect. 1, (2.22) normally is not rigorously meaningful, commonly 
as a result of translation invariance. We use a limiting process to circumvent this 
problem. Partially order the finite subhypergraphs A c N  by containment, and 
adjoin a largest element 00 to this partially ordered set. By (2.19), the partition 
function 

Z(A)-  S [I gEdv (2.23) 
I I X i  E~A 

of the subgraph A is finite. Furthermore, if Z(A)~ 0 the Gibbs measure 

dllA = Z(A) -1 [1 gE" dv (2.24) 
E e A  

for the subgraph A is well-defined. We attempt to give rigorous meaning to the 
heuristic formula (2.22) by defining the full Gibbs measure d/~ as the limit 

d/~ = lira d/~ A (2.25) 
A ~ o o  

provided it exists. 
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Convergence in (2.25) is a modified weak convergence that we now describe. 
Let A c 5 r  be a finite subset IAl<o% and let rAe~I [1, oo ] be a weight for A 

i E A  

conformable for integration with the weights {p~} already assigned to ~q. (Of 
course, the weight rA=oO is always conformable.) When Z(A)~=O and 
fAeg~(I~ X~, ~[ v~), denote by ~(fA)a the expectation of fA with respect to #A, 

i ~ A  i ~ A  

and by ~(fA)o the expectation with respect to #~ = v. Thus we have 

e(L. I1 g )o 
@(fA)A = j'fA d# A E~A = Z ( A ) _ l S f a . [ i g . a v .  

e ( [ I  g )0 
E e A  

(2.26) 

Our primary objectives in this paper are to show that the limiting expectations 

e(fa)oo = lim e(fA) A (2.27) 
A ~ o o  

exist for all possible fa, and, this established, to study the properties of the limit. 
One may recover a measure from the expectations by C*-algebraic techniques, 
or in some cases, by more direct representation theorem arguments. 

Physically, the Gibbs measures derive from consideration of a crystal in a 
heat bath. The set s labels the atoms of the crystal. The probability space 
(Xi, ~3~, v~) represents some physical quantity associated with the atom at i whose 
statistical behavior is under analysis, most commonly the (classical) spin. The 
Gibbs factor gE is exp(-flHe),  where 3 is an inverse temperature parameter and 
H~ is the pure IEl-body energy of the atoms in E c ~ .  Loosely speaking, if B 
c I-[ X~ then #(B) is the probability that the configuration xep[  X~ of the crystal 

iESe 

will lie in B when the crystal is in thermal equilibrium with a heat bath at 
inverse temperature ft. 

Section 3: Uniform Decay Estimates 

In this section we use a series expansion to derive uniform bounds for decay of 
correlations in weakly coupled lattice models. We first describe the expansion, 
and indicate the ideas employed to control it. 

Let 92R be a lattice model, with vertices 2' ,  probability spaces (X~, ~3 i, vi)z~ ~, 
hypergraph N on 2,o, integration weights {p~}e~, and Gibbs factors o eLVE b E  

E~N. (See Sect. 2 for definitions.) Let A c ~g* o, ]A] < 0% and choose a weight r A on A 
conformable for integration with the weights {PE}. Let A be a finite subhy- 
pergraph of N with A ~ VA. By (2.9), the expectation ~( ' )o (with respect to the 
product measure/7 vl) of fA" 1-I gE has the expansion 

E ~ A  

e(/A.[Ig )o = • 1-I gF)o. (3.1t 
A F ~ A  F ~ A - F  
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Although the sum in (3.1) is over all subhypergraphs F c A ,  by (2.7) only those 
graphs F such that Fu{A} is connected make a nonvanishing contribution. (By 
F~{A},  we mean the graph obtained from F by adding the edge A.) We 
separate out the F = r  term and divide through formally by the normalization 
factor Z(A) -  ~(I] gE)o to obtain 

A 

e(G)A- e(G)o = 2 u(f~, {g~}~ )0  Z(A-r) ~ z(A) (3.2) 

F#O, Fu{A} connected. 

Equation (3.2) for the Gibbs expectation ~(fA)A =~Z(A)-I~fA H g~ dv is our 
A 

basic expansion for a simple expectation. We next loosely sketch the ideas used 
to control it, and later make the modifications appropriate for truncated 
expectations. 

Convergence in (3.2) is derived from the factors u(fA, {g~}E~r)o. They would 
vanish identically if the random variables fA, {gE}e~r could be partitioned into 
mutually independent families. Although the connectedness of Fu{A} prevents 
such a partition, the condition d;e < oo ensures that a significant subset of these 
random variables does indeed split into independent families. Lemma3.1 ex- 
ploits this idea to show that lu(fA, {gE}E~r)0l is bounded above by e -K~lrl where 
K 1 becomes arbitrarily large as the Gibbs factors gE approach 1. Lemma3.2 
next given a bound e l;~rrl on the number of subgraphs F such that Fro{A} is 
connected which have a fixed value of JFI. The remaining factor Z(A-F)/Z(A) is 
controlled inductively in Lemma 3.3 with an upper bound e ~3lrl. (K3>0 
becomes small as the Gibbs factors tend to 1.) Combining these three estimates, 
we find 

te(f~)A-- e(G)ol----< const e -(KI-K2-K3)Irl (3.3) 
IrJ=i 

with the right-hand side of (3.3) tending to zero as the Gibbs factors approach 
one. This is the prototype of our key bound. 

We may apply the same argument to derive uniform decay estimates for 
truncated Gibbs expectations U(fAl,fA2,...,fA,)a after using the method of 
duplicate variables to write a truncated expectation as an ordinary expectation 
on a larger space. We briefly review this combinatoric device, which is set forth 
in detail in [14, 15]. 

Let {Xi: i = i , . . ,  n} be a family of random variables on some probability 
space, and letX~, ~E{1 . . . . .  n} be n independent and identically distributed copies 
of the original family {X~}. Let co be a primitive n th root of unity, and define 

)(i = ~ c~ �9 (3.4) 
6 = i  

One may show [14, 15] that 

u(Xl,..., x,) =~ ~(2122... 2,). (3.5) 
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In our present framework, (3.5) relates the truncated Gibbs expectation of a 
family of n random variables in a lattice model 9X to the ordinary Gibbs 
expectation of a product in an enlarged lattice 9)l" obtained from 9)1 by replacing 

each probability space (Xi, ~i, v3 with its n-fold product f l  (X~, v 3. We find 

e(L, ...Lo. 1~ G~)o 
E~A 

u({fA,})A= e ( f A ,  . . . fAn)A--  n e ( ~ I  GE)O 

EeA 

(3.6) 

Here G~ is the product G E = | l  g) of the n copies in !8~n of our original Gibbs 
ct=l 

factor ge in 9X and of course fA, is defined by (3.4). 
We apply expansion (3.2) to the quotient in (3.6). It follows from the methods 

of [-14, 15] that 

n 

u(1-IL,{G~}~r)0 =u(L, ,L2,  .... L , ,  {G~}~r)o. (3.7) 
1 

Consequently, nonzero contributions in (3.2) (as applied here) come from only 
those graphs F c  A such that the graph Fu{Ai,  i=  1,... n} obtained by adding to 
F the n edges Ai is connected. Note that this is a more stringent requirement 

t a. mer  ess whic  is a,1 one co ,d without  
{ ~1 J i 

(3.7). With these preparations, we find that the truncated Gibbs expectation 
u(fal, '",fa,)A has the expansion 

z(A-r)" 
u({G,})A-u({G))o= Z u(L, .... , G . , { ~ } ~ r ) 0 .  z(A)~ , 

F=A 

F+O, Fw{Ai: i= l , . . .n}  connected. (3.8) 

(Here Z ( A - F )  and Z(F) are taken in the original model 9)l.) Exponential decay 
follows from the bound (3.3) after noting that the first term appearing in the 
bounding series has IF1 =p~({Ai}), the spread in ~ of the family {Ai}. 

We now implement the program just described. 

Lemma 3.1. Let 9~ be a finite lattice model with hypergraph g9 having edges 
E l ,  E2,  . . . ,  E m and integration weights PE,. 

For any m functions F i l l  p~`, the truncated expectation with respect to the 
product measure obeys the estimate 

lu(Ft,...,Fm)ol < 3 ~Zd(e0 ImI LIF~llp~, (3.9a) 
~=~ 

where 

d(Ei)=l{j ~: i: Eic~E j~:O}]. 
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Remark. If m>2 and c1,c2, . . .c  m are constants, then by (2.7) u({Fi-Q})o 
=u({F/})0. Thus (3.9a) may be replaced by 

[u(F1 . . . .  Fro)o] < 3~ '~ d(e0inf I~I IIF~- c~l[~. (3.9b) 
{cl} i= 1 

Proof The truncated expectation is a sum with coefficients of products of 
ordinary expectations. However, if the functions appearing in one of the 
ordinary expectations can be grouped into independent families, then this 
expectation factors, and the term containing it may be partially cancelled with a 
subsequent term in the sum. We derive the bound (3.9) by estimating these 
cancellations with the help of the combinatoric method of MSbius functions 
[2, 12]. 

We introduce some notation. Let El" be the set of all partitions of {1,..., m}, 
partially ordered by refinement: ~3 < s if and only if every set Q e ~  is contained 
by some set P e ~ .  For ~3, ~ e l [  ~ set 

%= [I e([I <)o 
Pe~3 i~P 

ua= ]7] u({Fj: jeQ})o. (3.10) 
QeJa 

Note in particular that when !~ is the maximal partition l={{1, . . . ,m}} ,  u 1 
=u(Fi, ...,F~)o. It follows from (2.8) that 

e ~ =  ~ u= v ~ H  m, (3.11) 

so that by M6bius inversion, 

ua= ~ e~ .&(9l ,~)  VKe[I  m. (3.12) 
9t_<1~ 

As a special case of (3.12), we have 

u(F~ .. . .  ,Fm)0-Ul= ~ e~.#1(9t, 1). (3.13) 
~<1 

Here of course #1 is the M6bius function of the partially ordered set k[ m. 
To perform the cancellations in equations (3.12), we eliminate some re- 

dundancy in their antecedent equations (3.11). By (2.7), u~:#0 only if the 
subgraphs SSQ={EI: i~Q} are connected for all blocks Q in the partition ~. Let 
[_[~ c I_[ m be the set of all partitions which are so connected, with the induced 
ordering. Any partition ~seL[ m has a unique maximal connected refinement 
~3c__<~, ~c~I_]~ and one may readily see that the equations in (3.11) for all ~3 
having the same ~3 c are identical. Thus (3.1l) reduces to a family of equations 
over the smaller partially ordered set I ~  and inverting we find 

u~: = 2 e~. #2(9~, !~) Vg~, ~ [ I ~ .  (3.14) 
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Here /22 is the M6bius function of [I~.  The expectations @~ in (3.14) do not 
factor further, so we now estimate the sum term by term. 

We bound [~[  by [:1 [[Fib[pE, immediately. To control the M6bius coef- 
i = 1  

ficients/22, it is convenient to embed [I~ in the set of all subgraphs of the line 
graph L(S3) (a true graph defined in Sect. 2). Define the map z: [ [~-+2  L(~) by 

' ( ~ ) =  U L(~)IP, (3.15) 
Peg) 

where we have identified a subset P ~  {1,...,m} with the vertices it labels in 
L(~). Thus, an edge in L(.~) lies in t(~3) when both its endpoints are labelled by 
the same set P ~ .  With 2 L(~) ordered by containment, we see that the identifi- 
cation z preserves the ordering. 

The image of ~ is the set of a l l  subgraphs St cL(SS) which are maximally 
connected in the sense that addition of any new edge from L(~) to ~ will 
decrease the number of connected components of !~/. (This image is of consider- 
able interest in the study of graph coloring problems and finite geometries, 
where it is called the bond lattice [-12].) If ~ is an arbitrary subgraph of L(.~), let 

be the smallest maximally connected subgraph larger than !;l. The map -" 
2L(~5)~z(LI~) is a closure relation (N>~I, ~---R), so if/2a is the M6bius function 
of 2 L(5), 

/220l, t2)= y'  /23(t(9l), !;l), (3.16) 
{sl: ~ =  z(~)} 

as one may readily verify ([3]). 
It is well known that 1/231 < 1 (#3 can be computed explicitly [-2, 12]); thus 

[/22( ~-R, ~)l =< 21'(~)1-I*(m)l (3.17) 

Applying (3.17) to the special case ~ = 1  = {{1, ...,m}} of (3.14). we find 

1 k = O  1 

Since IL(~)t = 1/2 ~ d(Ei), the proof is complete. QED 
i = l  

The graph ~ of Lemma 3.1 is usually composed of two pieces, a basic graph 
F and some edges A1, . . . ,Ac  VF added to it. We would like to estimate the 
exponent ~ ds(E) of (3.9) in terms of the overall degree of d r of F. Since 

Eel5 

2 ds(E)< ~" dr(E)+dr ~ LAy] (3.19) 
E~F E~F j=  1 

and 

Z ds(Aj) <d r ~ IAjl + n(n- 1), (3.20) 
A j ~ - - F  j=  1 
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we find 

n n 2 d 

�89 Z ds~(E)<dr Z IAjI + ~ + 2 1 F ] .  (3.21) 
EE.~ 1 

n 2 
The term 2~ in (3.21) accounts for possible overlap of the sets Agc VF, and can 

be omitted if they are mutually disjoint. 

Lemma 3.2. Let N be a hypergraph with d~ < oo. Given a finite set A a V• and a 
positive integer V, let N~(7, A) be the number of subgraphs Fc(Y with [Fp= 7 edges 
such that Fw{A} is connected. Then 

N~(7, A) < (2d~) laJ + 2,. (3.22) 

Proof Enumerate the elements al,  a2,. . .  , aja r o f  /1, and introduce the line graph 
L(~). 

Let B i a VL(~) be the set of vertices in L(~q) which when regarded as edges 
in ~ contain az. Interpreting the problem in L(~), we must bound the number of 
subsets Va  VL(~), iV[ =7, such that every connected component of the restric- 
tion L(~)IV meets some B i. With this interpretation, we may use a method of 
[4] to obtain a suitable estimate. 

Associate a connected component of L(~)IV with the smallest index i such 
that Bz meets the component, and make the convention that the components of 
all remaining indices are empty. (Note that by the definition of Bz, at most one 
component of L((~) IV may meet it.) Let 71 be the number of vertices of V in the 
i th component. Fix the 7i, i~{1, ..., n}, while otherwise permitting V to vary. 

T h e  i th component of L((r IV admits a spanning tree, with ~ -  1 edges. This 
tree may be traversed by a continuous chain of 2(7 i -1  ) edges, each edge 
appearing twice. There are at most 32(-~,-1) such chains emanating from a 
specific initial vertex b~B~. Letting bi range over B~ and multiplying over all the 
B~, we find the number of families V such that every component of L(.~) I V meets 
some B i and such that the i th component has Yi vertices is bounded by 

IAI 
d~ 7" r] d~(a~). Since the number of possible choices for the 7~ is at most 2 IAI+~, we 

obtain 

IAI 
Ne(y,A)<(2d~)~. 2 IAI l-[ d~(a~)<(2d~)lAl+ 2'. QED (3.23) 

1 

In proving Lemma 3.3 we shall need to estimate the number N~(7) of 
connected subgraphs F a  N with 7 edges which contain a given edge E of (r The 
bound 

N~(7) <d~ '  (3.24) 

follows from the argument just given. 

Lemma 3.3. Let 99~ be a lattice model with vertices ~ ,  hypergraph ~, weights 
{Pe}z~, and Gibbs factors {ge}E~e. For all C > 1 there exists c5 >0  depending only 
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on C and d~ such that if 

Ilg~- 11[p~<c3 VEm~ 

then Z(A) + 0 for all finite A ~ ~, and moreover 

Z ( A - F )  <CIr I V F c A c f f .  

(3.25) 

(3.26) 

Proof By subtracting the edges of F from A one at a time, we see it suffices to 
prove (3.26) when IF] = IAI - 1. We proceed by induction on IAI, showing that if a 
6 can be produced such that (3.26) holds when ]AI < l, it also holds when IAI = 1. 
The special case IAI = 1 may be trivially verified. 

Select A, ]A] = d, let E~ be a distinguished edge of A, and set F =  A -  {E~}. We 
may assume inductively that Z(F)=~0, and so apply the expansion (3.2) to 

@(g~" I1 g~)o=Z(A): 
E c F  

Z ( A )  Z ( ~ -  1 = ~(g~i - 1)o + ~ u(g~, ( g~}~ )o  z ( r -  s3) cr Z(F) (3.27) 

where the sum is over those subgraphs ~ such that ~u{E1} is connected. By 
Lemma 3.1, the bound (3.24), and the inductive assumption, we estimate 

1 < Irl Z ( A ) _  C3+ ~ C31.~I+13~(1+I.61)a~dgI.~IcI61 
Z(F) I~l- 1 

C. aa~. d 2 
<C3+C32 3-~a~ l -c3 C : 3 ~ . d  2 ---~/(C3' C). (3.28) 

It is clear by inspection of (3.28) that, by decreasing C3 if necessary, we make 
q(c3, C) small enough to ensure 

Z(A) 1 <rl(c3, C ) ~  Z(F) < C, (3.29) 
z ( r )  - Z ( A )  - 

and that the requisite value of 6 depends only on C and d~. Thus, the inductive 
step is achieved. QED 

These three lemmas give control of the expansion (3.8), which we now use to 
prove 

Theorem 3.4. Let 9J~ be a lattice model with vertices 5f, probability spaces (X i, 
~ i , v i ) i~  hypergraph ff on 5e, integration weights {Pe}r~e, and Gibbs factors 
g~5~P~(]f[ Xi, I-[ v~). Let A1,. . . ,  A , ~  ~ be n finite subsets, and choose for them 

i~E iEE 

integration weights rA, , .... ra. conformable with each other and the weights p~ of 
(~. There exists a constant D > I  depending only on d~ such that VK>0,  3C3>0 
depending only on K, d~ and n so that if 

I[ge- 1Hp <c5 VE~C~ (3.30) 
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then 
n 2  n 

lU(fa~, .... UA)A--U(UA~, ...,UA)ot <n" 3T D~ IA'I FI IIfA~il~A, 
i=1 

e -Kp({Ad) (3.31) 

for all finite A c N  and all functions f A 6 ~ A , (  I~ xj ,  I~ Vj). Here the spread 
j~Ai jEAi 

p({A~}) of the family {A~} in ~f is by definition 

p({Ai} ) = inf {Irl-/'u{A,, i=  1,... n} is connected}. 
Fc cg 

Remark. Although the 6 we require to achieve a given decay rate K in n th order 
truncated expectations depends on n, it is independent of [A~I and fA,. 

Proof Apply the expansion (3.8): 

Z(A-r)" 
u({fA,})A--U({fA,})o=lnrXAU(fA,,...,fA,,{NE},~r)o " Z(A) n (3.32) 

where the sum is over those F4:0 such that Fu{A~,...,A~} is connected. By 
(3.21) 

u({fA,}'{NE}E~r)OI<32~+d~~IA'I+�89 Q[flr ]'~f~-- 1H). (3.33) 

Since 

i/YAI]I ~nI[YA, I] & I [~ - -  111 ~(1 +6)"-- 1 ~6, ,  

inequality (3.33) implies 

n 2 n 

[u ( { fA , } ,  {~E})0[ ~ 35-+d*'XlAd +�89 n n. 1~[ H f/~[[' 6 f  I. 
1 

By Lemma 3.3, for small 6, 

z(A-r ) ] .  
2(55 j __<c'~., c__>1. 

n 

By Lemma3.2, there are at most (2d~) L~[A'I+21FI'~ 

value of IFI. Combining these estimates, we find 

1 .2 ZIAI [ ~  ] 
lUA -- Uol < -  [n" 3T]  [3 d ~  2d~] 1 ' II fA, II n 

�9 [6, 3 ~d~ C" 4cl~] p({A'}). ~ [6 n 3r C" 4d2] 7 
7=0 

Take D = 3 d~ 2d~, and choose 6 so small that 

3,. 3 ~a~. C".4dZ <e -K 

(3.34) 

(3.35) 

(3.36) 

terms in (3.32) having a fixed 

(3.37) 

(3.38) 
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and 
o0 

[3, 3 ~ee C" 2d2] ~ < n. (3.39) 
0 

(If n = l  the sum in (3.39) starts at 7=1 so that the inequality still may be 
satisfied.) The theorem now follows from (3.37). QED 

Recall that the factor 3 ~/2 in (3.31) arises from the possibility in Lemma3.1 
that the sets A~ might overlap, and can be omitted if A / ~ A s = O V i #  j. In this 
case, the term u({FA~}) o also vanishes. We formalize these comments in a 
corollary: 

Corollary 3.5. I f  the hypothesis of Theorem 3.4 is strengthened by assuming further 
that AicvAs=OV i=~j, the uniform bound (3.31) may be replaced by 

n 

[u(fA,, ' "  ,fA.)AI =< n"D Q A~ [ I  ]l fA "a~ e-  Kp({A~}). (3.40) 
1 

These bounds (3.31), (3.40) on truncated expectations are our central techni- 
cal results. 

Section 4: Applications 

In this section we utilize the decay estimates of Section3 to construct and 
analyze the Gibbs measure /~= lira #A in weakly coupled lattice models. We 

A ~ o o  

shall find that this limit is very well-behaved: it is approached Uniformly over 
the small-coupling region, correlations decay exponentially, expectations are ana- 
lytic in the Gibbs factors, translation-invariant models have translation-invariant 
Gibbs measures, and the central limit theorem holds. Since much of the 
reasoning needed to derive these properties from the uniform bounds of the 
preceding section is somewhat standard, we give brief proofs. 

As a preliminary to construction of the infinite-volume Gibbs measure # we 
control the change in ~(fA)A when a single edge is added to A. 

Lemma4.1. Let g)l be a lattice model with vertices 5f, probability spaces 
(Xi,~31,vi)ij, hypergraph ~, integration weights {PE}E~e, and Gibbs factors 
gEES  w. Let A c 5f, ]A] < o% let r A be a conformable weight for A, and let A ~ q  
be a finite subgraph with A ~ VA. There exists a constant D > 1 depending only on 
d e such that V K > 0 3 3 > 0 ,  fi depending only on K and de, so that if 

then 

le(fA)A~{~} -- e ( G h ]  ----< II fAII r~ DIAl exp [ -- K pe(A, E)]. (4.1) 

Proof. Write 

z(A) 
e(f~)A~(~)- e(fA)A = Z (Aw {E})' [ffi(fA " [g,E - 1])A- e(fA)A e(gE-- 1)A] (4.2) 
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where 

FI 
i ~E-  VA 

(4.3) 

The lemma now follows by applying Lemma 3.3 and Theorem 3.44. QED 

With Lemma4.1 in hand, we construct the infinite-volume limit by adding 
one edge at a time. Let B~(A) and Sr(A ) be the ball and sphere of radius r about 
A: 

BfiA)={E~(N: p(A,E)<=r} 
S~(A) = {eeoc :  ; ( A ,  E) = r}. (4.4) 

Let A c N be a subgraph trapped between two balls: B f i A ) c A  C BR(A ). Order 
the edges E~,E 2 ... .  of A=B,.(A) so that the separation p(A,E~) increases with i. 
Let A i =B~(A)u{Ej:j < i} and write ~(fA)a-~(fA)B~(A) as the telescoping sum 

IA-  B~t 1 

[~(fA)A,,;{~, + ~} -- e(fA)a,]" (4.5) 

By the lemma, we have 

R 
[e(fA)A--e(fA)Br(A)] <= ]dfA]r~A'DIAI" ~, ISp(A)[e -K~ (4.6) 

p--r+1 

If N is a translation-invariant hypergraph on Z N, ]Sp(A)I ~ IAIJ v- ~, and existence 
of the limit lira ~(fA)A is immediate from (4.6) for any exponential decay rate 

A~oo 
K > 0 .  However, power law growth of the sphere surface area [Sp(A)I in the 
radius does not follow from the single assumption d~ < oo. Exponential increase 
appears in Cayley trees and similar examples, correctly suggesting unusual 
behavior [8, 16]. Fortunately, the growth is no worse than exponential, since a 
simple path-counting argument shows 

ISp(A)I < [A[ dE. (4.7) 

Convergence thus follows from (4.6) by choosing fi small enough to ensure 

~c-d~e-K <l.  (4.8) 

We summarize in a theorem these conclusions concerning the existence of 
the infinite-volume limit. 

Theorem 4.2. Let 9)l be a lattice model with vertices 2,~, hypergraph ~, integration 
weights {Pe}e~e, and Gibbs factors gE~L pE. Let A c ~  with [A[< oo, let r A be a 
weight for A conformable with PE, let Br(A ) c ~ be the ball of radius r about A, and 
let A=B~(A), [A[ < oo. There exists a constant D> 1 such that V~c~(0, 1)36>0, 6 
depending only on lc and d~, such that 

.r+ 1 

[(~( fA)A - -  @(fA)B~(A)] < II f A  I[ rA " IAI "Dia l"  ~ --VfA e l l A .  (4.9) 
= 1 - - I r  
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Thus, the net {@(fA)a} of finite-volume Gibbs expectations is a Cauchy set 
converging to the limit @(fA)oo = lim ~(fA)a uniformly in the region Jigs-iII <& 

a~oo 

Proof. The proof is immediate from the discussion of the previous 
paragraph. QED 

Exponential decay of correlations in the infinite-volume limit now follows 
from Theorem 3.4 by passing to the A--, oo limit: 

Theorem 4.3. Let 93l be the lattice model of Theorem 4.2. Let A 1 . . . . .  A,  c S  be n 
finite subsets, having integration weights r A~,... , r A. conformable with those of 9X. 
There exists a constant D > I  depending only on d~ such that VK>0,  3 6 > 0  
depending only on K, d~, and n such that if 

Hge-lllp <~5 V E ~  

r A . then VfAfiE ', 

n2 ~lA,I & Kp({Ad) 
lU(fA,, "'',fA.)oo --U(fA~ .... ,fA.)OI <n" 35-D~ [1 HfA,][,A~ e- (4.10) 

J. 

Here the spread p({Ai} ) in (# of the family {Ai} is by definition 

p({Ai})=inf{IFl: Fw{A1, . . . ,  A,} is connected}. (4.11) 

Corollary 4.4. I f  the sets Af in Theorem 4.3 are mutually disjoint, the bound (4.10) 
may be replaced by 

n 

lu(fA1, .... f~,) oo[ < n" D I'~A~l l~] H fA~ [I ~A, e- K; ({Ad) (4.12) 
1 

Proof. There results are immediate by passage to the limit in Theorem 3.4 and 
Corollary 3.5. QED 

Remark. We emphasize that although the 3 we require for a given exponential 
decay rate K is dependent on the order n of truncation, it is independent of the 
cardinalities [Ai] and functions fA,. Moreover, by taking a weaker measure of the 
spread in N of {Ai}, one may eliminate the n-dependence of 3 as well ]-7]. 

It is evident from the uniform approach to the limit over the weak-coupling 
region ]Lg~-1 ]1 < 5  that an infinite-volume Gibbs expectation ~(fA)o~ is analytic 
in each Gibbs factor geeL rE. This conclusion may be stated more strongly for 
translation-invariant models. 

Theorem 4.5. Let 93l be a translation-invariant lattice model on Z N with fundamen- 
tal edges E1,E 2 . . . .  , E M ~ Z  2v, integration weights {PE,}, 1Ni<_M, and Gibbs 
factors gEeLce~ Then the infinite-volume limit is translation-invariant in the 
polydise of convergence 

P E i  �9 A= (g~,, . . . .  gE~,)e X /~ .Iqg~, 111 < ~  (4.13) 
i = l  
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guaranteed by Theorem4.2. Moreover, for any conformable JA~E ~ the map 

~(fA)~ : A-* C (4.14) 

defined by considering ~(fA)~ as a function of its Gibbs factors is analytic. 

Proof Translation invariance is immediate from Theorem4.2. Analyticity fol- 
lows because ~(fA)~ is the limit of a sequence ~(fA)~r(a) of quotients of 
continuous polynomials which converges uniformly in A. QED 

In many applications the Gibbs factors g~ depend analytically on several 
complex parameters za,...,zk~C representing continuations into the complex 
plane of temperature, magnetic field, coupling strength, etc. Of course, when this 
is so we have analyticity of ~(fa)~ for suitable parameter values by composition. 

We conclude our study of weakly coupled lattice models with the central 
limit theorem. One common criterion yielding this theorem for families of 
dependent random variables is that of strong mixing [-11]. Unfortunately, the 

factor D ~A~[in the bound (4.12) prevents direct verification of strong mixing. On 
the other hand, the exponential decay in (4.12) is much better than strong 
mixing requires, and we shall use it to obtain the central limit theorem in 
another way. 

We introduce some notation. Let ~ be a translation-invariant lattice model 
with probability space (X,~3, v) vertices Z u, hypergraph N generated by the 
fundamental edges E 1 . . . . .  EM~Z N, integration weights { p ~ } ~  ..... ~t~ and Gibbs 
factors gE~L v~. Let A c Z  u, ]AJ < oe, and choose a weight r a for A so that the 
enlarged translation-invariant model 92R + with fundamental edges A, {Ez} having 
weights rA, {PE~} is conformable for integration. Denote by N+ the translation- 
invariant hypergraph generated by the edges A, {Ei}. Select f: xA--~ C such that 
for some t/> 0, 

qrfl~E~. (4.15) 

For i~Z u let f~ be the function obtained by translating f to act on the space 
X A+z. If Vc Z N, I VJ < Go, formally define the mean-subtracted moment generat- 
ing function 

Direct the finite subsets V c Z  ~ by containment, and adjoint a greatest element 
~ .  With reference to this notation, we have 

Theorem 4.6. There exists c~ >0 (depending only on d~) such that if 

Ilge-llJpe<~ Vi~{1 ..... M} (4.17) 

~hen 
0-2Z2 

~bv(Z) -w~ e 2 (4.18) 



116 G.S. Sylvester 

uniformly on compacts, where 

a2-= 2 [e(ff~)o~,~,-e(f)2,~] �9 (4.19) 
i~Z N 

(Note that the Gibbs factors need not be real.) 

Proof We first show that for suitable 6 the moment-generating functions ~b v are 
well-defined and nowhere zero. Take 6 sufficiently small to ensure that if in the 
enlarged model 93l + we have 

IIgA- lll~a <~&llgE - lllpE <6  ViE{I,..., M}, (4.20) 

then: 

(i) there is uniform convergence to the infinite-volume limit in 9J/+ (Theorem 
4.2); and, 

(ii) third-order truncated expectations in 93l + decay exponentially (Theo- 
rem 4.3). 

By decreasing t / if  necessary, we may suppose further that 

LleZZ- 111~,<~ VlzL <~/. (4.21) 

It follows from (i) by (4.9) that q~v(Z) is well-defined and analytic in the disc 

{Izl < r / ' l / ~ } .  We claim further that ~b v never vanishes in this region. To see. 
this, recall that ~v(Z) is by definition the uniform (on compacts) limit of the 
finite-volume expectations 

x e[e ~/~-'~ '. I ]  ge]0. (4.22) 
CA ~ k Z ( A )  J ECA 

The first factor in (4.22) clearly never vanishes in {Izl<~lVI1/2}. The second 
factor also has no zeroes there, because by (4.21) we may regard the factors 

exp(zf~ / l /~  ) as Gibbs factors for the enlarged model 991 + and then invoke 
Lemma 3.3. Taking the limit A-~ o% the Hurwitz Theorem implies that ~v(Z) is 

never zero in {Izl <~  I1 /~) .  (Since q~v(0)= 1, the possibility that ~ v = 0  does not 
arise.) 

We turn now to the question of convergence as V--+ oo. Since 4~ v is nowhere 

zero in {Izl < t/]1/~} we may introduce logarithms in (4.18). Thus we must prove 

log qOv(Z)- ~2 Z 2 0 unif. on cpcts. (4.23) 

(Note that the series (4.19) for 0 -2 is absolutely convergent by (ii).) 
Consider the Maclaurin series with remainder for log q~v: 

log ~bv(Z ) = ao(V ) + a I (V) z + ~ z 2 + Rv(z ). (4.24) 

Without loss of generality, we may take 

~ ( f ) ~ = O  
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in order to simplify the expressions we now give for the coefficients ai(V): 

2 ao(V)=al (V)=O;  a2(V) = ~ ( [ ~  f ]  )~,~- 
i e V  

(4.25) 

By translation invariance, lim a2(V)=a 2, so (4.23) will follow from (4.24) by 
V~oo  

disposing of the remainder Rv(z  ). If Izl < t / 1 1 ~  we have 

(4.26) 

Computing, we find 

e(s [I h )oo,  
i~I/" 

i e V  

where 

3 i~v i~v 
e(]~  h,)2,,~ 

i e v  

(4.27) 

S = ~, f ,  hi = e ;J'~/r (4.28) 
i E V  

Regard the factors hi=exp( ( f / I  rl 1/2) in (4.27) as Gibbs factors for the enlarged 
model 9~ +. By (4.21), we may apply assumption (ii) to show the part of (4.27) in 
curly brackets is uniformly bounded in (, ](I < Jzl. Thus, Rv(z  ) converges to zero 
uniformly on compacts as V~oo at least as fast as 1/IVI 1/2, and the theorem is 
proved. QED 
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