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Introduction 

In this paper we introduce weakly and strongly mixing locally compact  abelian 
groups of measure preserving transformations. For this purpose we generalise 
the limit statement of the mean ergodic theorem for a single contraction, to 
abelian groups of contractions in a Hilbert space, and we define a mean for 
functions on a locally compact  abelian group which plays the role of the strong 
Cesfiro mean for functions defined on the integers. In the second part  we 
consider ergodic, weakly and strongly mixing abelian groups of Gaussian 
automorphisms. We give a spectral representation for weakly stationary pro- 
cesses having a locally compact  abelian group as parameter  group, and we 
generalise Ito's tomplex multiple Wiener integral to abelian groups of Gaussian 
automorphisms. 

w 1. Weakly and Strongly Mixing Groups of Transformations 

We begin with the generalisation of the limit statement of the mean ergodic 
theorem. 

Let H be a Hilbert space, G an abelian group - in the multiplicative notation 
-, {Vt: t~G} a necessarily abelian group of contractions in H with the com- 
position V~ V t = V~t (s, teG), and S the convex hull of {Vt: t~G}. For t I . . . .  , t k~a  , 
( t l , . . . ,  tk) denotes the subgroup of G generated by {t 1 . . . .  , tk}. 

f I-1 J =  M~(t 1 . . . .  , t , ) = I - "  ~ V,I .... ,~,:l, nEN,  t 1 . . . .  , t ,  e G s u c h t h a t ( t ~  . . . .  , t,) is 
i l  . . . . .  i n  = 0 

the direct product of (t~) . . . . .  (tn) }. V f e l l  let J f ( f )  be the norm closure or the 
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weak closure of {M f: M~oU}, which are equal in this case, and J ( f )  the norm 
closure of {Mf: f ~ J } ,  and F={h~H:  V~h=h Vt~G}. By the mean ergodic 
theorem, for any f~H,  ~ ( f ) n F  contains exactly one element f* .  (Jacobs [-43, 
1, pages 87ff). 

Theorem 1. V f e l l ,  V ~ > 0 ~ Mto(tl .... , t , ) e J  such that ][Ml(t 1 . . . .  , t~)f--f* I[ < 
V l>l  o. In particular J ; ( f ) c ~ F = J f ( f ) ~ F .  

Proof. Let fEH, e>0.  There is nothing to prove if f = 0 .  Let f@0.  3 M~XU such 

that HMf-f*] l  < e  and therefore we can find an M ' =  ~ k Vt~ 
2 kl  . . . . .  k n = O  O~kl . . . . . . . . .  t~n, 

where meN, % ...... k > 0 ,  ~ ~k ...... k, =1, and ta .. . .  , t ,~G such that 
kl , . . . ,  kn = 0 

(q .. . .  ,t,) is the direct product of (q),. . . ,(t ,),  for which we also have IlM'f 

2" Abbreviating M z=M t( t l , . . .  , t )  we get for l > m  [IMI I f  ~ II < 

- M '  M t II < 2 nml-~ by a cancellation argument. Thus we get: 

g 

3 lo~lN Vl~lo:  IIMz-M'M~II<211f[I 
and 

Vl>lo IIM~f-f*lL <= ILMJ-M'Mtfll + I]M'Mzf-f* 

<IIM~-M'M, II'IIflI+HM'f-f*II<~. [] 

If G is a finitely generated abelian group, the choice Of t I . . . .  , t, in the proof 
of theorem 1 does not depend on e. Therefore we have the 

Corollary. I f  G is a finitely generated abelian group, i.e. there exist tl, ..., tnEG, 
such that G is the direct product of (tl) . . . .  ,(t,), then for every f~H,  
lim [I M1 (tl .... , t , ) f - - f*  II = O. 
I~oo 

In the following, let G be a locally compact abelian group and F the dual 
group of G. V t~G V 7~F let (t, 7)=7(0. For a topological space E, M(E) denotes 
the Borel-o--algebra in E. M(F) is the set of finite regular Borel measures on F. q3 
denotes the Fourier transform of a complex cp, integrable w.r. to the Haar 
measure on F, and fi is the Fourier transform of #~M(F), where a fixed Haar 
measure on F was chosen, dt denotes that Haar measure on G, which is normed 
with regard to the fixed Haar measure on F, such that the inversion formula 
holds (Rudin [8], page 22). 

Let (W~)~ t be a neighbourhood basis of 1 in F and (~o~)~ a family of real 
continuous non-negative-definite functions on F, such that each q0~ has compact 
support in W~, q~(1)= 1, ~b~ is real and q3>0.  (For the existence of such a family 
see Rudin [8], page 23). From the inversion theorem we get ~ ~b~(t)dt =q0~(1)= 1 
V ~ I .  a 

Thus for all real measurable nonnegative functions ~O on G 

M~O = 5 qL(t) ~,(t) at  
G 
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can be looked at as a mean. Furthermore let aElR and ~ be a real measurable 
nonnegative function on G. The statement lim M~ ~ = a  is defined by: Y ~ > 0 3 

neighbourhood W of 1 in F, such that Vc~EI for which W~cW we have [M=@ 
- a [ < ~ .  

Definition I. Let BeN(G). If lira M~ 18 exists, then the limit d(B)E[0, 1] is called 
the density of B. 

The mean has the following properties: 

1. V#EM(F), VsEG we have 

lim ~ ~b~(t)I/~(st)] 2 dt =X#({7}) 2. 
G yeF 

2. Let ~ be a real bounded measurable nonnegative function on G. Then 

l i m M ~ = 0  <=> l i m M ~ 2 = 0  r Ve>0  3BEN(G) 

for which d(B)=O, such that ~]BC<e. 

Properties 1 and 2 evidence the analogy between the mean lim M~ and the 

strong Ces~.ro mean when G = ~. Rudin ([8], page 118) considered~the particular 
case, when ~=l~l  2 for #eM(F). Let {Ut: teG} be a necessarily abelian group of 
isometries in H. For H'~H,  let Span H' be the complex linear space which is 

spanned by H', and Span H' the subspace of H which is spanned by H', i.e. the 

closure of SpanH'.  We define H~=Span {hEH:YtEG 3ctOl? such that U~h 
=c~h} and Hc=H ~. H~ and H a are invariant under {U~: tEG}. The map 
t~--,(Utff) is non-negative-definite for every fEH. If G is a locally compact 
abelian group and the map tw-,U t continuous in the weak operator topology or 
in the strong operator topology which is the same in the case of isometries, then 
t~--~(U~ff) is continuous for every f eH ,  and by Bochner's theorem (Rudin [8], 
page 19) for every f E H  there is a uniquely determined #fEM(F), such that 

(U t f , f )  = ~ (t, 7- 1) #f(dT) = ~ f ( t )  (teN). 
1" 

Theorem 2. Let H be a Hilbert space, G a locally compact abelian group, 
{Ut: teG} a group of isometries in H, and the map t~-,U t continuous in the weak 
operator topology. Then for all f e l l  the following statements are equivalent: 

1) feH~ 
2) pf is continuous 
3) limM~ I(Ut f f )  I =0  

4) limM~l(U~f,g)l=O \/gEH 

I f  H is separable or if G is countable, 

5) 

6) 

then 5) and 6) are also equivalent: 

3 (t,),~NEG such that U~,,f~O (n ~ oQ) weakly. 
P 

3(t,),~EG Ve>0 VgEH 3 p e n  3 c q , . . . , ~ p > 0 f o r  which ~, %=1, such 
p n- -1  

that VUE{Ut:tEG} we have ~ %](UUt.f,g)l<e. 
n = l  



316 H. Gundel 

(q2={Ut: tEG} is the closure of {Ut: teG} in the set of bounded operators 
with respect to the weak operator topology (Jacobs [4], 1, pages 97ff)). 

The statements 1), 5), and 6) do not depend on a topology on G, on the other 
hand G can always be equipped with the discrete topology. Then G is locally 
compact and t~--, U t is continuous in the weak operator topology. Therefore we 
have the 

Corollary. Let G be an abelian group and {U~: t~G} a group of isometries in H, 
such that H is separable or G is countable. Then for all f ~ H  1), 5) and 6) are 
equivalent. 

Proof of Theorem 2. The following implications will be proved: 

4 )~  1 ) ~ 2 ) ~  3) =~4)~ 5 )~6)~2) .  

I f f ~ H  and f = 0  everything is evident. Let f~=0. 
4) ~ 1): Let g~H d such that V t~G 3 c~t12 (necessarily [c~l= 1) with U t g = c t g, 

thus we have I(f,g)l = ](Utf, g)l and I(f g)l =lira M~ I(U,f g)l =0  ~ fEH~. 

i )~2) :  Let f6H~ and let us assume that 3 7o6F such that #s({7o}) > 0. V teG 
let Vt=(t, 70) Ut. {Vt: t~G} is a group of isometries. 

f~H~f_ l_F ,  and f• by the mean ergodic theorem. Therefore 
we have O~JT'(f)c~F. And according to theorem 1 3t 1, ..., t ~G  3/ocN such 
that V l=> l o (using M z =Mr(t1,..., t,)) 

~({~o})  
HM~f < 2llfH ' 

and this implies 

t(Mt f,f)l < IIM~ f [I I[f [I <�89 

On the other hand we obtain V leN 

~[  l--1 
( M l f f ) =  S 1-1 ~ (t~, 707 -1) #:(d7), 

F k - 1  i=O 

and V 7~F we have 

1 1 if gkE{1,  n} 
1 V (t i ""' lira l- ~ k ,  7o7- )=  1)= 

l ~  k=l i=0 0 (tk, Y07- 1 otherwise. 

By bounded convergence we get 

lim (Ms f f )  =#i({7sF:  (tk, 7o 7 1) = 1 V ks{l ,  ..., n}})>#~({7o}). 

and this is in contradiction with the above result. 
2)~3):  Use properties 1 and 2 from page 315. 
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3)~4) is implied by the following: Let H', H " c H .  If VfEH' and Vg~H" 

lira m~ I(U~f g)l =0, then VfeSpan H' and Vg~Span H" lim m~ ](U~f g)l =0. 

Moreover, if H' cH" ,  then VfeSpan H' and V g~H lim M~ I(U t f, g)l =0. 

4)~5): If H is separable or if G is countable, there exists a sequence 

(g~)z~H, such that {Utf: t~G} cSpan  {gt: leN}. V l~N Vn~N 3BI, s~(G) for 

which d(Bg,)= 1 such that V teB~, 

1 
I(U,f, g~)l < -  

/1 

holds (property 2). 

Define VnsN B ,=  (~B~. We have d(B,)=l.  Let t, EB,. V/~N we have 
j=l 

lira (Ut~f, gl)=0, because of the following: Let feN, e>0  and let N e N  be as 
n ~ o o  

1 
large that ~-<~ and N>l,  then V n>N [(Ut,f, gl)[<~ holds. This implies Ut, f 

0 (n ~ oe) weakly. 
5)~6): cf. Jones [-5]. 

P 

6)~2): Let ( t , ) , ~ G ,  such that r e > 0  3p~N ~ ....  , c~p>0 such that ~ a, 
n = l  

= 1, and 

P 

~, I(U,,. f , f ) l  < 
.=1 I l f l l  2 

holds for all t6G. 

P 

~Vt~G:  ~, ~, l (U, , , , f , f )12<~ 
n = l  

P 

~,f f i ({y})2-- l im M~ ~, c~, I(U..f,f)12 <~ 
y ~ F  ~ n -  1 

(using property 1) 

#r is continuous. 

This completes the proof of theorem 2. 
Let ((2, J~,P) be a probability space, G an abelian group and {Tt: t6G} a 

group of measure preserving transformations in (~, ~, P). V t~G the isometry U t 
in L2(P ) is defined by U t f = f o T  t (f6L2(P)). {Ut: t~G} is an abelian group of 
isometries in L2(P ). 

Definition 2. {Tt: t~G} is called weakly mixing if L2(P)c={1} • 

Remark. The definition of weakly mixing for G = ]R given by Rohlin [7] and the 
usual definition for G = Z  are equivalent to the above definition. If G can be 
equipped with a topology in such a way that G is a compact topological group 
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and that t~--~U~ is continuous in the weak operator topology, then we have 
L2(P)c={0 }. Then {Tt: teG} cannot be weakly mixing except in trivial cases. 
Weakly mixing implies ergodicity. 

A consequence of theorem 2 is 

Theorem 3. The following statements are equivalent: 
1) {Tt: teG} is weakly mixing. 

And, ifL2(P ) is separable or if G is countable, 2) and 3). 
2) Vfe{1} • 3 ( t,),~NeG such that Ut, f -~ 0 weakly. 

n ~  oo  

P 

3) Vfe{1} • 3(t,),~NeG Ve>0  VgeL2(P) ~peN 3~ 1 , . . . ,%>0 where ~ cr 
n = l  

P 

=1 such that v g e @ :  ~ cr 
n = l  

I f  G is a locally compact abelian group and if t~-~ U~ is continuous in the weak 
operator topology, then 4), 5), 6), 7) and 8) are equivalent to 1): 

4) limM~IP(Bc~T, -1C)-P(B)P(C)I=O VB, C e ~  
ct 

5) limM~IP(Bc~Tt-IB)-P(B)2[=O VBe~.  
r 

6) {Tt: teG} has a continuous spectrum in {1} • i.e. Vfe{1} • #y is continuous. 
7) limM~ I(U~f,f)l=0 Vfe{1} • 

c~ 

8) limM~l(Utf, g)[=0 Vfe{1} • VgeL2(P ). 
c~ 

Remark. {T~: teG} is weakly mixing if and only if {T t x Tt: teG} is ergodic. 

The proof is the same as for G =;g (see e.g. Halmos [2], page 39) using the 
mean lim M~ instead of the strong Ces~tro mean, thereby G is equipped with the 

discrete topology. 
Again let G be a locally compact abelian group and let t~--, U t be continuous 

in the weak operator topology. Co(G) is the set of the continuous complex 
functions on G which vanish at infinity. 

Definition 3. {Tt: t6G} is called (strongly) mixing if P(Bc~ T t-1 C) 
-P(B)P(C)eCo(G ) VB, C e ~  

Remark. The notion of strong mixing depends on the topology of G. If G is 
compact then {Tt: teG} is strongly mixing by definition. Thus the definition is 
not useful for compact groups (cf. remark after definition 2). 

Theorem 4. The following statements are equivalent: 

1) {Tt: teG} is mixing. 
2) P(B~Tt-XB)-P(B)2eCo(G) V B e ~  
3) ~yeCo(G) Vfe{1} • 
4) (Utfg)eCo(G) gfe{1} • VgeL2(P). 

Remark. If G is a locally compact and not compact abelian group and geM(F), 
then ~eCo(G ) implies that/2 is continuous. For the proof see Rudin [8], pages 
118-119, but G may not be compact and there, that is overlooked. Thus we 
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have: If G is a locally compact and not compact abelian group and if t~-~U t is 
continuous in the weak operator topology, then from {Tt: teG} mixing follows 
that {Tt: tEG} is weakly mixing. 

w Ergodie, Weakly and Strongly Mixing Gaussian Processes 

Again let (~2, o ~,P) be the underlying probability space. All the stochastic 
processes mentioned in this section are complex processes, unless special men- 
tion is made. Second order processes are processes which have finite second 
moments, normalised processes have expectation 0. Let G be a locally compact 
abelian group and F its dual group. Second order processes (Zt)t~ G are called 
weakly stationary if Vs, t~G: EZsZt=EZs t  1Z1. Stationary second order pro- 
cesses are weakly stationary. If (Zt)t~ ~ is weakly stationary, then the function 
r~-.EZt21 is non-negative-definite. If the map t~-~Z t is continuous in the 
quadratic mean, then according to Bochner's theorem (Rudin [8], page 13) there 
exists a uniquely determined measure #sM(F) ,  the spectral measure of (Z~)t~ G, 
such that EZt21 = S (t, 7 1) #(dT)=~(t) (t~G). The spectral measure is symmetric 
for real processes, r 

Theorem 5 (Spectral representation). Let G be a locally compact abeIian group 
and F its dual group, (Zt)t~ G a weakly stationary process, tF--~Z t continuous in the 
quadratic mean, # the spectral measure of (Z~)t~a, and let the underlying probabili- 
ty space be rich ( f ine)  enough. Then there is a subspace L of L2(P ) which contains 

Span {Zt: t~G}, and there is an orthogonal valued measure M: ~ ( F ) ~ L  (see 
Urbanik [10], pages 6ff for G =2g) such that 

1) S .dM:  L 2 ( # ) ~  L is an isomorphism, in particular V B ~ ( F ) :  #(B) 
= IIM(B)H 2. 

2) V t e G : Z t = ~ ( t - 1 , . ) d M  P-a.s. 
3) if (Zt)t~ G is normalised, then VcpeL2(#): E~cpdM=O. 
4) if (Zt)t~ G is Gaussian, then ~o ldM, . . . ,~qo ,  dM are jointly Gaussian 

V (Pl, " " ,  (PnsL2(#)" 
5) if G is discrete (i.e. equipped with the discrete topology), then L 

=Span {Z,: teG}. 
M has the following properties, if G is discrete. 

6) I f  {U,: teG} is the abelian group of unitary operators on L for which UsZ ~ 
=Zts (s, t~G), then 
VcpeL2(#): ([ ,S(pdM=~(t 1, ")(pdM P-a.s. 

And if we also assume (Zt)t~ G to be real, then 
7) VcpEL2(#):~cpdM=~(o (. 1) dM P-a.s., in particular V B e N ( F ) : M ( B )  

= M ( B -  1). 
8) We have V B, C s ~ ( F )  

i) R e M ( B ) = R e M ( B -  i), I m M ( B ) =  - I m M ( S -  1) 
ii) E(ReM(B)  I m M ( C ) ) = 0  

iii) E(Re M (B) Re M ( C)) = �89 ca C) + #(U ca C-  1)) 
iv) E(Im M (B) Im M(C)) = �89 ca C) - #(n c~ C-  1)) 
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9) I f  (Zt)t~ G is normalised and Gaussian, then 
i) (ReM(B))B~(r)and ( ImM(B))~(r )  are normalised, Gaussian and inde- 

pendent, 
ii) V B 1,..., B, ~N(F), for which B 1 ... .  , B,, B ~ 1 . . . . .  B2 1 are pairwise disjoint 

M(B1), ~.. , M(B,) are independent. 

Theorem 5 is a generalisation of Cramdr's spectral representation (Cram6r 
[1]). The proof is similar to the case where G =Z.  

The following statement: - Let #sM(F)  and Be ~ ( F)  such that B = B  -1, 
{TEF: ? Z = l } c B  and # ( F \ B ) > 0 .  Then there is a compact K c F \ B  such that 
K c~K-1 =0  and #(K u K - 1 ) > 0  - together with an exhaustion argument gives 

Theorem 6. Let #~M(F). Then there exists P ~ ( F )  such that F ~ F - I = O  and 
#(/~w/~- 1)= #(C \ {TeV: 7 2 = 1}). 

Theorem 9 is valid for all Hausdorff topological groups. 
Now we extend the multiple Wiener integral to real normalised stationary 

Gaussian processes with distribution R having an abelian group G as para- 
meterset. The spectral measure # of the process, which is obtained, when G is 
equipped with the discrete topology, is assumed to be continuous and 
#({TeF:  ~2 = 1})=0.  

Let K~: IRG~IR be defined by Kt(x)=x t and Tt: IRG_,IRG by (Tt(X))s=X~ 
(s, teG; X=(X~),~GeiRG). {Tt: teG} is an abelian group of measure preserving 
invertible transformations on (IR a, ~G, R). Let {Ut: teG} be the abelian group of 
unitary operators in LE(R ), which was defined for {Tt: teG} in section 1. 

The definition of the multiple Wiener integral can be done by repeating the 
arguments from Totoki [9], pages 48-57 (cf. Ito [3]), if one replaces the set 

1 0 [--5, ], which is used there for G = ~ ,  by/~ from theorem 6, using the measure 
with orthogonal values M which belongs to the process (K~)~ o according to 
theorem 5. For p ~ N w  {0} let Ip be the p-th complex multiple Wiener integral, 

H o = {Iv(c): col;} =IE 

H~ = {Ip(%): % ~ L z ( F  v, #')} (peN). 

The Hp(peNw{O}) are pairwise orthogonal and invariant under {U~'taG} 

and L2(R ) = + Hp. 
p=0 

1 
For q~peL2(F p, U p) let ~Sp=~. v ~ ~0po~z, where @ is the p-th permutation 

group. We have I;(~pp)=Ip(?pv) and 

p 

Theorem 7. Let G be an abelian group and R the distribution of a real normalised 
stationary Gaussian process with parameterset G. Let F be the dual group of G 
and # the spectral measure of the process, which we get, when we equip G with the 
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discrete topology, and let #({76F:  72=1})=0. {Tt: t~G} is the above defined 
group of measure preserving invertible transformations of (IR a, Y)a, R). Then the 
following statements are equivalent: 

1) # is continuous. 
2) {Tt: tsG} is ergodic. 
3) {Tt: tEG} is weakly mixing. 

Proof 3 ) ~ 2 )  is evident, and 2 ) ~ 1 )  is similar as in the case G = g  (Totoki  [9], 
page 58). 

1) ~ 3): i) Let f ~Lz (R  ) be eigenvector of {U~: t~G}, then 3 ~/0EF such that 
Utf =(t, 7o)f (t~G). 

We have: V p ~ N  ~(49p~L2(] "p, #P) and 3 ~Oo~1I; such that f =  ~, Ip(q)p). 
p=0 

N o w  we get (t, 7 o ) f =  y, Ip((t, 70)(}p) and 
p=0 

U,f=p~oI  p =  _ (t 1, ~))qSp(Ta ' ..., 7p) (t~G). 

Thus V p e N  Vt~G ~N(p, t )6N(F ~) for which #P(N(p,t))=O such that 
V(71, ..., 7p)~N(p, t)~: 

P 
(t, 70) (Pp(71," ' ,  7p)-~ H (t, ~)v- 1) (~p(71," ' ,  7p), 

v-1 

and therefore 

( P )  ~p(Vl, . . . ,  vp)= t, Vo I I  v~ c~p(vl, . . . ,  vp). 
V=I 

ii) V p e N  V ~ > 0  3M(p ,e )e~(F  p) for which #P(M(p,e)c)<e such that 
c~p (71, ..., 7p) = 0 V (71 . . . . .  7p) e M (p, e). This is implied by the following: 

( D "1 
. . . . .  t I  w e  h a v e  s ince  For  is 

v=l ) 
continuous.  

V(71 . . . . .  7p)~N(p) c ~t~ ...... v sG such that t~ ...... v~,7o 7~ 4:1 since G 

separates the points of F (see Rudin  [8], page 24). 
V (]21 . . . . .  7p)~N(p) c 3 open ne ighbourhood U(71, ... ,  7p) of (71 . . . . .  7p) such 

that V (Pl, -.-, ~p)e U(71, ..., 7p) 

P 

Fur thermore :  ~ compact  K (p, ~) c N(p)~ with #P (K (p, ~)~) < ~. 

{U(71 . . . . .  7p): (71 . . . .  ,7p)~K(p, ~)} is an open covering of K(p, ~). 
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~(7~  . . . .  ,7~v)~K(P, e ) ( n =  1 , . . . ,k)  

such that  

k 

i r  

k 

M(p, ~)=K(p, 8 ) \  U1N(p, tv~ 1 ..... ~p) 
K =  

has the required properties.  

(}p=0 #P-a.s. V p e N  ~ f=I0(~Oo)eC ~ L2(R)c={1}• 

{Tt: t~G} is weakly mixing. []  

The equivalence of 1) and 2) has been proved  by M a r u y a m a  [6] if G = ~ .  

Theorem 8. The same assumptions as in theorem 7 are made and G is assumed to 
be infinite. Then 1) fieCo(G ) and 2) {Tt: teG} is mixing, are equivalent. 

Proof We have to prove  1 )~2 ) :  V p e N  let Nz={cpeL2(FP,#P):qo=l B . . . . . .  Bp 
where B 1 . . . . .  Bpe~(F)  and B~cI? or B ~ . l c F  ( v = l , . . . , p )  and B1, . . . ,Bv ,  
B ;  1 . . . . .  B ;  1 are pairwise disjoint}. Since G is not  finite, # is continuous,  and we 

have Span Np = L 2 ( C  p, #v) (Totoki  [-9], page 51) and Hp = Span {Ip(~Ov):(ppeNv}. 
For  H'={Iv(cpv):  p e N ,  (pv~Np} we have Span H ' = { 1 }  • and it is enough to 

show that  (Ut f f ) eCo(G)  V f e l l ' .  Consequent ly  let p e N ,  ~opeNp, ~ov= 1B . . . . . .  Bp. 
We get Iv(qov)=M(B1)... M(Bp) and U t Ip(cpv ) = U t M(BI) . . .  UtM(Bp) (teG). 

We have V re{1 . . . . .  p} U t M(B~) = S (t 1, .) 1Bvd M ( theorem 5). 

~UtM(B~) and hence UtM(B~)M(B~) are measurable  with respect to ~r 
=a(M(C): CeN(F), C=B~). 

~r . . . .  , ~r are independent .  
P 

~(U~ Ip(cpv), Iv(cpv)) = ~I (Ut M(B~), M(S~))e Co(G), 
v = l  

using (U,M(B~), M(B~))6Co(G ) since M(B~)eSpan {Kt: t~G} ( v =  1 . . . . .  p). Thus 
theorem 8 is proved. 

References 

1. Cram6r, H.: On harmonic analysis in certain functional spaces. Ark. Mat. Astronom. Fys. 28 B, 
No. 12 (1942) 

2. Halmos, P.R.: Lectures on ergodic theory. Math. Soc. of Japan (1956). 
3. Ito, K.: Complex multiple Wiener integral. Japan. J. Math. 22, 63-86 (1952) 
4. Jacobs, K.: Lecture notes on ergodic theory. Matematisk Institut, Aarhus Universitet, 1 

(1962/63) 
5. Jones, L.: A generatisation of the mean ergodic theorem in Banach spaces. Z. Wahrscheinlich- 

keitstheorie und verw. Gebiete 27, 105-107 (1973) 



Mixture of Locally Compact Abelian Groups of Transformations 323 

6. Maruyama, G.: The harmonic analysis of stationary stochastic processes. Memoirs Fac. Sci., 
Kyushu Univ., Ser. A, 4, 45 106 (1949) 

7. Rohlin, V.A.: Selected topics from the metric theory of dynamical systems. Amer. Math. Soc. 
Transl. 49, 171-240 (1966) 

8. Rudin, W.: Fourier analysis on groups. New York: Interscience Publishers 1962 
9. Totoki, H.: Ergodic theory. Matematisk Institut, Aarhus Universitet, Lecture Notes Ser. No. 14 

(1970) 
10. Urbanik, K.: Lectures on prediction theory. Lecture Notes in Mathematics 44. Berlin-Heidelberg- 

New York: Springer 1967 

Received May 28, 1977; in revised form October 20, 1978 


