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Summary. As is well known, in a subfair primitive casino a gambler with an 
initial fortune f, 0 < f < l ,  desiring to reach 1 (his goal) should play boldly 
since there is no other strategy that can provide him with a higher utility (the 
probability of reaching his goal). Now suppose the game is modified by 
adding a discount factor which is used to motivate the gambler to recognize 
the time value of his goal and complete the game as quickly as is reasonably 
consistent with reaching his goal. Then one would intuitively suspect that 
again the bold play would be optimal. We will show in this paper that for 
certain subfair or fair primitive casinos the bold play is always optimal 
regardless of the discount factor; however, for some subfair or fair primitive 
casinos, there exist some discount factors for which the bold play is no 
longer optimal. 

1. Discounted Primitive Casino 

Consider the following gambling problem: A gambler has an initial fortune in 
(0, 1) and wishes to reach 1 (his goal). He may stake any amount, s, of his current 
fortune in each game, winning s(1-r)/r with probability w and losing s with 
probability 1 -  w, where w and r are two constants in [0, 1]. He receives a utility 
//n if he reaches his goal on the n th game, where 0 < /?<  1 is the discount factor. 
Then what is the optimal strategy which provides the gambler with the highest 
expected utility? 

To make this new gambling problem fit more clearly and easily into the 
gambling framework of Dubins and Savage (1965), we consider it as one 
whose set of fortunes, utility function, and set of available gambles are as follows 
(although the game itself is unchanged): F = [ 0 ,  ~ ) ;  u ( f ) = 0  or 1 according as 
0 < f < l  or f > l ;  Fp . . . .  (f)=F(f)={7(fs)lT(fs)=~6(O)+fiwc~(f+s[f/r]) 
+fi'~6(f-s); 0<s_-<f} if f <  1 and F~,~r(f ) = F ( f )  = {6(f)} if f__> 1. Here fi, w, r 
are three constants such that 0 < fi __< 1 (fi = 1 - fi), 0 _< w < 1 (~ = 1 - w), 0 _< r _< 1 (~- 
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= 1 -  r), and 6(f) denotes the probability measure which assigns probability one 
to {f}. The reason that we set F(f)={g)(f)} for f >  1 is that when the gambler 
has a fortune f > l ,  he has reached his goal already and he can leave the 
gambling house. 

This new gambling problem is a modification of the primitive casino 
considered by Dubins and Savage (1965) and is also a generalization of the 
discounted red-and-black considered by Klugman (1977). The modification is 
designed to motivate the gambler to recognize the time value of his goal and 
complete the game as quickly as is reasonably consistent with reaching his goal. 
To distinguish it from the primitive casino game considered by Dubins and 
Savage, this new gambling problem will be simply called "discounted primitive 
casino". 

In [4], Dubins and Savage showed that the bold strategy (the strategy which 
stakes as much as possible without risk of overshooting the goal) is optimal for a 
subfair primitive casino (Theorem 6.3.1. of [4]). In [6], Klugman also showed 
that the bold strategy is still optimal for a discounted subfair red-and-black 
(Theorem 2.4 of [6]). Based on these results about the optimality of the bold 
strategy, one would intuitively suspect that the bold strategy should also be 
optimal for a discounted subfair primitive casino. However, this intuitive conjecture 
is not always true and, in [3], Chen has shown that the bold strategy is not 
necessarily optimal for a discounted subfair primitive casino if 0 < w __< r < �89 or 

�89 (Theorem 3 of [3]). In this paper, we show that the bold 
strategy is again optimal for a discounted primitive casino if 0_<w_<�89 

or �89 1 and r> ( l f5 -1 ) /2 .  The results in this paper and [3] combined 
with the results in [4] (Chap. 6 of [4]) provide us with a better understanding 
of subfair primitive casinos (discounted or non-discounted). Since this paper is a 
continuation work of [3], all notation will follow that in [3]. Since the 
possibilities w--0 or 1, or r =0  or 1, would not be interesting, we will always 
assume that 0 < w, r < 1 in this paper. 

2. The Utility of Bold Strategies 

In [3], Chen showed that, in a discounted primitive casino F~ .. . . .  the utility 
function of the bold strategy is the unique bounded solution of the following 
functional equation: 

[~ wR~.Xw,r (f/r) if 0 < f < r, 

Rp .... (f)=~flw+fl~R~,~,r[(f--r)/Y ] if r< f < 1, (1) 

tl  if f > l .  

Furthermore, R~ . . . .  is right continuous and strictly increasing on the interval 
[0, 1] and satisfies the following identities: 

R~ .... (f)=R~,w,~[R-fl, r,~(f)] if 0__<f=<l and 0 < r < l ,  (2) 

R~l,r,~(f)=R1,~,r(f) if 0__-<f<l and 0 < r < l .  (3) 
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(R1 .... is continuous and strictly increasing if 0<w, r <  1; see pp. 99 of [4] too). 
For simplicity, we will hereafter write R~ for R~ . . . .  whenever w and r are 

fixed. 

3. The Optimality and Non-Optimality of the Bold Strategy 

As defined in [4], an available strategy (in a discounted primitive casino) for the 
gambler is a sequence a = ( a 0 , a a , a 2 , - - -  ) such that o- o is a gamble in the set 
F~ . . . .  (f) of available gambles, and, for each integer n>  1, a, is a gamble in the 
set F~ . . . .  (f,) of available gambles, where f is the gambler's initial fortune and f ,  
is the gambler's fortune after n games 

The worth of a particular available strategy (in a discounted primitive 
casino) a is given by its utility, u(a), i.e., the probability that the gamber reaches 
his goal by using the strategy a. An available strategy for the gambler is optimal 
if no other available strategy has a higher utility. In this section, we show that 
the bold strategy is optimal for a discounted subfair or fair primitive casino if 

O<w<�89 or �89 and (1/5-1)/2<r_<1. We also show that the bold 
strategy is not optimal for a discounted superfair primitive casino even if/~w < r. 
With the result about the non-optimality of the bold strategy in [3], now we are 
able to tell a gambler when he should play boldly and when he should not play 
boldly in a discounted primitive casino. As in [3], let V~(f,g)=R~(rf+i;g) 
- f iwR~(f)- f i~R~(g)  for O<g< f < l. Let Vi(fg)=R~(f  +g) -R~( f ) -Rp(g  ) if 
0 < f  g, f + g < l ,  and V~(fg)=R~(f .+g-1)-R~(f)-R~(g)+(1-f i~)( f iw)  -1 if 
0 < f g < l a n d  l < f + g < 2 .  

From [3] and [6] we have the following lemmas. 

Lemma 1. V~(fg)>=O for all 0 < g = < f < l  if and only if V~(fg)>O for all O<f  
g < l  and 0 < f + g < 2 .  

Proof. See p. 173 of [3]. 

r - !  O<=w<�89 and 0 < f i < l ,  then the bold strategy is optimal. Lemma 2. If -2, 
Proof. See p. 737 of [6]. 

The next lemma is elementary, but it is included for the sake of complete- 
ness. 

Lemma 3. I f  {dili=O, 1,2... } is a non-decreasing sequence of non-negative in- 

tegers and ~ ~ wdi~ i+ ~<w< l, then l ( i+di )<  1. 
i=0  

Proof. (i) If do=d 1 = ... =0, then 

(w)di(~)i+l(i+di)= ~ Ni+l(i)=w2/w2<--_l. 
i=0  i=1 

(ii) If do=d 1 . . . .  = d p = 0 <  1 <dp+ 1 < ... for some integer p>0,  then 
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• wd~ff~i+J(di+i) = ~ wi+l(i)+ 
i = 0  i = 0  

W d, ff~i + 1 (d i _+_ i) 
i = p + l  

P 

i = l  i = 0  i = p + l  

=(ff~2/w2){1-wP+l(l +pw)}+ ~ we'~i+l(di). 
i = p + l  

(a) If  w__>2 then 

~9 

2 Wdiff~i+l(di) <=w(w/w) 
i = p + l  

and 

~i<wv~ 
i = p + l  

w d, ff~i + 1 (d i + i) < (~2/w2) + w~ < 1. 
i = 0  

(b) If  �89 < w < ~ then 

Wdi,~i+ l(di) <=2wl~p+ 2 
i = p + l  

and 

• wd~ff~i+l(di+i)<(~Z/w 2) {1 -- #P+  1 (1 +pw)+ 2w3# p} < 1. 
i = 0  

(iii) If  d o > 1 then 

~wd~ff~i+l(di+i)<(~2/w)+w(~'/'z)-l<l if  w>-23, 
i = 0  

and 

co 

~, wd~v~i+l(di+i)<(#Z/w)+2w~<l if � 8 9  
i = 0  

L e m m a  4. I f  � 8 9  then F~(fg)>O for all 0 < f l < l ,  0 < f ,  g < l ,  and l < f  
+ g < 2 .  

Proof Since if(f ,  g) => 0 (Theorem 6.3.1 of  [4]) and V~ ( f  g) = Vt'(f g ) -  [V[(f  g) 
- V ~ ( f g ) ] ,  it suffices to show V ~ ( f g ) - V ~ ( f g ) < O  for all 0 < f i < l ,  0 < f  g < l ,  
and 1 < f +  g < 2. N o w  

V; ( f  g) - V~ ( f  g) = [ 1 + R 1 ( f  + g - 1) - R 1 ( f )  - R 1 (g)] - [(1 - fl w)/(fi ff~) 
+ Rr ( f  + g - 1) - R~ (f)  - R~ (g)] 

< [R~ ( f +  g -  1 ) -  Rp( f+  g -  1)] - (1 - fi)/(fl#) 
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for all 0 < f l < l ,  0 < f  g < l ,  and l < f + g < 2  since R I ( f ) > R B ( f )  and 
R l ( g ) > R p ( g  ) for all 0 < f l <  1. Since R~ is right continuous, it suffices to show 

that (1 - fl)/(fl ~) >__ R 1 (h) - R~ (h) for all h = ~ r d* f~ where {do, d l , . . . ,  d,} is a non- 
i = 0  

decreasing, finite sequence of positive integers. (We will always write r ~ for 

re+ 1~ for any integer d > 0 ) .  Since, by the functional equation (1)on p.2, if h 
j = 0  

= ~ rd'f i, then Rl(h)= ~ wd*~ i and R~(h)= ~ (fiw)d~(fi~) i, 
i = 0  i = 0  i=O 

R 1 (h) - R~ (h) = ~ (w) d~(~)i { 1 - (fi)d~ + i} 
i = 0  

G (1 -- fl) ~ w d* ~i (d i 4- i) <= (1 - fi)/(v~) < (1 - fl)/(fl ~) 
i = 0  

by Lemma 3 and the fact that 0 < fl < 1. 

Lemma 5. I f  �89 < w < r and (]/5 - 1)/2 < r < 1, then V} (f, g) > 0 for  all 0 < fl < 1, 0 G f,  
g <  l, and 0__<f+g< 1. 

Proof. Without loss of generality, we can and do assume that 0 < g < f <  1. Since 
Rp is right continuous and strictly increasing on the interval [0, 1], it suffices to 

l 

show that V~(f,g)>0 for f =  ~ r~ f l and  g =  rb~fl where {al} and {bl} are two 
i = 0  i = 0  

finite, non-decreasing sequences of positive integers. Since g_<f, b o > a o. Since 

0 < f +  g < 1, f + g  can be expressed as rC~ f i or ~ r c~ f i we will always write r d 
i = 0  i=O 

r a + l r  j for any integer d > 0 )  where {cl} (possibly f ini te)is  a non- for 
j = 0  / 

decreasing sequence of positive integers. Now we assume that f + g =  ~ reef ~ 
i = 0  

/ 

(the case that f + g =  ~ rC~f i can be proved similarly). Let k = i n f { i [ a i > c i }  if 
\ i = 0  / 

there is a such i, and = / + 1  if there is no a such i. Since Ck=Ck+l=. . .  
=Ck+p <G+p+ 1 < ... for some integer p>0,  

~ rcjfj<~,rCkfJ=rCk-lp k. 
j=k j=k 

Now if k--O then G + k = c o < a o < = b o  and if k > l  then 

rCk-1 fk> ~ rCjfj>=g>r b~ 
j=k 

and G + k < b  o since 0<f=<r2<l .  Now 
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V~(f g) = R z ( f  + g ) -  R~(f) -R~(g)  
l 

j=O -- j = 0  

= ~, (flw)c'i(flW) J -  ~=k([~w)aJ(~))J-~- ~, (flw)bJ(~w) j . 
j=k j_ j=O  

It is easy to see that V~(f, g)=> 0 if 

l 

wC~_>- ~ (w)~ Z (w)~(~/ 
j=k j=O  

since 0 < f i < l ,  Ck+k<ak4-k , and Ck+k<b o. Hence we can and do assume that 

l 

wCkl~k < 2 ( w)aj~/~j + ~ wbJl~J" 
j=k j=O  

By Theorem 6.3.1 of [4], we have 

(w) ~(~)j>__ ~ w ~ ~J + w~J. 
j=k j=k j=O  

Hence there are two cases to be considered. 

"Case I" 
1 

wCk l~k ~ 2 waJ I~;J ~- ~ wbJl~J-~- ~ wCJl~J" 
j~k j=O  j=k 

In this case, we let G(fi)= ~ WCJ-c~(#)J-k(fl) (cj-~)+(j-k) and 
j=k 

1 

H (fl) = ~ (w) aj - ck (~)(j- k) (fl)(aj - ~) + (j- k) + ~ (w)bJ- c~-k (~)# (fl)bj- ~ -k + j 

j=k 1=0  

then V~(f,g)=wC~ff;k(fl)c~+k{G(fi)--H(fl)}. To show that V~(f,g)>O, it suffices to 
show that G ( 1 ) - G ( f ) < H ( 1 ) - H ( f l )  since G(1)=H(1).  Now if 0 < f l <  1, then 

] { H ( 1 ) - H ( f l ) } / ( 1 - f i ) -  k~ + (W)CJ-ck(~)/-k _-->H(1)-- ~ (w)Cj-Ck(w)J-k=l 
j =  1 j = k + l  

and 

{ G ( 1 ) - G ( f i ) } / ( 1 - f i ) -  ~ (w)CJ-~k(~) j k 
j = k + l  

<= ~ (w)CJ-Ck(WFk {(cj--Ck)+(J--k--1)} < l 
j = k + l  

since G ( 1 ) = H ( 1 ) = I +  ~ (w)CJ-C~(v~) j-k. Hence 
j = k + l  

(by Lemma 3) 

H ( 1 ) -  H(fl) > G(1 ) -  G(fl). 
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Therefore V~(fg)>O for all O<f i<  1 and the proof of "Case I" is complete. 

1 

"Case II" (w)~(~ k) < Z (w)~(w) j § i (w) b~ (w)J < i (w) cj(vv) j. 
j=k  j=O j=k  

k 

In this case, we choose g', 0 < g ' < g ,  such that f + g ' =  ~ r~ /z+ ~ re~ j for 
j = 0  j = k + l  

some non-decreasing sequence {d;} of positive integers (possibly finite) such that 
d~ + 1 > c~ + 1 and 

Z 2 2 
j = k + l  j=k  j = 0  

Now let 

G(fl)= l + ~, (w)dj-c~(w)J-k(fl) (dj-~)+(j-k) 
j = k + l  

and 

l 
H(/~)= ~ (w)"~ ~(~)0-~)(/~)(o~ ~)+(~-~)+ ~ (~)~-c~-~(~)j(/~)~j-c~ ~+j. 

j=k j=o 

Follow the proof of "Case I", we get G(fi)>=H(fi) for all 0 < f i <  1. Now 

k 

R~(f +g)> R~(f +g')= y, (fiw)CJ(fiff~)J + ~ (fiw)aJ(fi~) j 
j=O  j = k + l  

since R~ is strictly increasing on [0,1]. Therefore R~(f+g)-R~(f)-R~(g)  
= V~(f g)=>0 for all 0 < ~  1 and the proof of "Case II" now is complete. 

Lemma 5. If0<w=<�89 l, then the bold strategy is optimal. 

Proof. By Theorem 2.12.1 of [4J, it is suffieent to show that R~(rf+Fg) 
>=flwR~(f) + fi~R~(g) for all 0_-<g =<f__< 1. By Identities (2) and (3) in Sect. 2, 

R~(rf + fg)=Rp, w,4(R~ lr, �89 + f-g))=R~,~,�89 + Fg)). 

Since l<r,  Rl,},r(rf+Fg)>�89189 ) (Theorem 6.3.1 of [4]). By 
Lemma 2, 

Rfl, 1 1 w,-~-[~Ri,~,r(f)+~Ri, ,,r(g)] 

> fiwR#,w,-~[R1,�89 + fiw R#, w, ~ [Ri, ~,r(g)]. 

Hence 

R~ (r f +  rg) >= fiwR~,,~, ~ [R1, ~, r(f)] + fi~R~, w,-~ [R1, ~,r(g)J 

= fl w R~, w, i [R i-, lr, ~(f)] + fi u5 R~,w, ~_ [R ~, ,1., i(g)] 

=fiwRp .... (f)+fi~R~ .... (g) if O<g<f<l .  

Therefore the bold strategy is optimal. 
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By Lemmas 4, 5, and 6, we have the following theorem about the optimality 
of the bold strategy in a discounted subfair primitive casino if 0_< w _< �89 r < 1 or 

�89 and (]//5-1)/2 < r _< t. 

Theorem 1. In a discounted subfair primitive casino F~ ... . .  if 0<w<�89 1 or 

�89 < w<r and (1/5-1)/2<r__< 1, then the bold strategy is optimal. 

Remark. As in [43, if the bold strategy is optimal, then there are some nonbold 
strategies which are optimal too. 

The next theorem about the non-optimality of the bold strategy in a 
discounted primitive casino is due to Chen. For the sake of comparison, we 
include it as Theorem 2. 

Theorem 2. In a discounted subfair primitive casino F~ ... . .  if 0 < w < r < � 8 9  or 
l < w < r < ( ] / 5 - 1 ) / 2 ,  then the bold strategy is not necessarily optimal, i.e., for 
some discount factors fl in (0, 1), the bold strategy is not optimal if0<w__<r<�89 or 

�89  < ( l f  5-1)/2.  

It is known that if fl = 1 and 0 < r < w < 1 then the bold strategy is no longr 
optimal. But when f lw<r the process of the gambler's fortune is a super- 
martingale since 

and the optimal sampling theorem (Theorem 5.10 of [2]) gives the result 
U~(f )<f  for all 0 < f < l  indicating that the game is subfair (see p. 74 of [4]), 
where U~ is the utility function of the game (see p. 25 of [4]). One would 
intuitively suspect that for any superfair primitive casino there exists some 
discount factors for which the bold is optimal. However, this intuitive conjecture 
is false even if/~w < r. The next two theorems tell us about the non-optimality of 
the bold strategy for discounted superfair primitive casinos. 

Theorem 3.-In a discounted superfair primitive casino F~ .. . .  if 0 < r < w  < 1 and 

0 < r < ( ] /5-1) /2  then the bold strategy is not optimal, i.e., for any discount factor 
fl in (0,13, the bold strategy is not optimal if O<r < w < l  and 0 < r < ( ] / 5 - 1 ) / 2  
(even if flw <r). 

Proof, In view of Theorem 2.14.1 of [4], it suffices to show that V~(fg)<0 for 
some 0 < g <f__< 1 which by Lemma 1, is equivalent to showing that V~ (f, g) < 0 

for some 0=<f g < l .  Since 0 < r < ( 1 / ~ - l ) / 2 ,  0 < r + r 2 < l .  Now we let f = r ,  g 
= r  2, then f + g = r + r 2 = r +  ~, rCJ~ ~ for some non-decreasing sequence {cj} of 

j = l  

positive integers (possibly finite). Hence Re(f+g)=(f lw)+ ~ (/?w)CJ(fluS) ~, Re( f  ) 
j = l  

=flw, R~(g)=(flw) 2. By Theorem 6.5.1 of [-4], ~wCJwJ<w 2. Since 0 < f l <  1 and 
) 

c j_-> 1 for all j _-> 1, ~ (flw)CJ(/Sv~) J < (flw) 2. 
J 
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Theorem 4. In a discounted superfair primitive casino Fp ...... if ( ] /5-1) /2  < r < w 
< 1, then the bold strategy is not necessairly optimal. Actually there exists a/3o in 
[0, r/w) such that the bold strategy is not optimal if the discount factor/3 >/3o. 

Proof. As in the proof of Theorem 3, it suffices to show that V~(f g )<0  for some 
0 < f  g__< 1. Since 0 < r <  1, there exists a positive integer k such that r < r + r k <  1. 
Now let f =  r and g = rk- Then f +  8 = r + r k = r + ~ r c~ fJ for some non-decreasing 

j = l  
sequence {c j} of positive integers (possibly finite). We assume that {cj} is infinite 
since the case that {c;} is finite can be proved similarly. 

(a) If c 1 + 1 __> k, then 

V~ ( f  + g) = (fl w) + ~ (fl w) cj (fl ff))J < V~ (f) + V~ (g) = (fi w) + (/3 w) k 
j = l  

for all 0< /3<  1 since ~ (w)~J(#)J<w k (by Theorem 6.5.1 of [-4]). 
j = l  

(b) If c 1 + 1 <k, then 

V~ ( f +  g) - V~ ( f )  - V~ (g) = ~ (/3 w) c~ (/3 ~)J - (/3 w) k < 0 
j = l  

for all fi > fl0 for some rio in [0, r/w). 
By Theorems 1, 2, 3, and 4, we have the following figure. 

r = l  

r + r 2 = l  

1 

I) The bold strategy is always optimal for any discount factor fl in (0, 1]. 
II) The bold strategy is always not optimal for any discount factor ]3 in 

(0~ 1]. 

III) There is a rio in (0,1] such that the bold strategy is not optimal if 
the discount factor fl is in (0, flo)- 

There is a/3 0 in [0,w r--) such that the bold strategy is not optimal if the IV) 

discount factor/3 is in (/30, 1]. 
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Remarks. 1. We do not  know abou t  the existence of an op t ima l  s t ra tegy when the 
bo ld  s t ra tegy is not  opt imal .  

2. The d i scount  factor  in this pape r  is used to mot iva te  the gamble r  to 
recognize the t ime value of his for tune (his goal)  and  to hand le  inflation.  W e  
recent ly  used a more  direct  m e t h o d  to handle  inf la t ion (the m e t h o d  is to 
d i scount  the gambler ' s  for tune step by  step by the fixed d i scount  ra te  (1 + c~) 1, 
here e is the inf la t ion rate). W e  have ob ta ined  some results  abou t  the op t ima l i ty  
and  non -op t ima l i t y  of the bo ld  strategy.  The  proofs  of  these results  will appea r  
somewhere  else. 
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