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1. The purpose of this paper is to formulate and prove several basic results for a 
left continuous moderate Markov process, which are analogues of well-known 
results for right continuous strong Markov processes. It turns out that the first 
such result in our development is that about the limit or infimum of excessive 
functions. This was given by H. Cartan in his celebrated papers on Newtonian 
potentials, extended by Brelot to general potential theory, and proved by Doob 
by probabilistic methods. The left version of this result with certain ramifi- 
cations is given in Theorems 1, 2 and 3 below. Several consequences are then 
drawn. In particular, Hunt's result about the regular points of a set, and 
Dellacherie's result on semipolar sets are given respectively in Theorems 4 and 
5. Naturally, proofs of these results in the left setting follow certain well-trodden 
paths in the right setting, but several not so obvious detours are necessary in 
order to avoid the pitfalls. Some of these pitfalls are: there may be branch 
points; there is no zero-one law; excessive functions need not be right or left 
continuous on paths; the minimum of two excessive functions need not be 
excessive. We illustrate these pathologies by a trivial example at the end of the 
paper. Nevertheless, our results are as good as their right counterparts, which 
may or may not be surprising to the conoscenti. (No co-fine topology!) 

Let us begin by giving a definition of a moderate Markov process. Let 
(E, E) be a Lusin topological space together with its Borel field, and let (Pt)t > 0 be 
a Markovian semigroup on E. We set P0(x,.)--ex(. ). Let (Xt)~__> 0 be a process 
with values in E, having left limits everywhere in (0, oo), defined on a measurable 
space ((2, 5), and adapted to a filtration (~t)t>_o with each ~ c 5. We assume that 
(PX)x~e is a family of probability measures on (f2, 5) which depend measurably 
on x and that P ~ { X o = x } = l  for each x in E. The process X is said to be a 
moderate Markov process with semigroup (Pt)t>o if for each predictable stop- 
ping time T, for each positive measurable function f, and for each t > 0, 

EX{f(Xr+~)l~r_]=P~f(Xr_) a.s. on {T<oo) .  
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If X is left continuous a.s., then we may replace the right=hand side of the 
equation with PJ(Xr). 

The class of left continuous moderate Markov processes is at least as 
extensive as Hunt processes. Indeed, every Hunt process (hence every Feller 
process) has a left continuous standard modification which is a moderate 
Markov process. Set )?o=X0,  X t = X  t for t>0.  Then J~t is a left continuous 
process which is adapted to the filtration (~t) of the Hunt process, where (~t) is 
right continuous. Since T+t  is predictable, the quasi-left continuity of X 
implies that for each t>O, Xr+t=Xr+t a.s. Thus in the statement of the strong 
Markov property for X, 

Ex { f (Xr  +t) l ~r} = PJ(X r), 

we may replace X with Jf to obtain 

EX {f (Xr  +,)l~r} = PJ(2r). 

Since PJ(ffr) is ~ r -  measurable, we may replace ~ r  with ~ r -  in the above to 
obtain 

EX{f(22r+~)l~r_}=PJ(Xr) on {T< c~}. 

Thus J~ has the moderate Markov property. 
2. Let (Xt, t>O) be a moderate Markov process with Borelian (P~) (where Po 

=the  identity) as transition semigroup, and left continuous paths in (0, oo). By 
definition cp is superaveraging iff(o>__0 and cp_>Pdp for every t>0 ;  and is 
excessive if in addition limPdp=qo. It follows then that for each c~>0, there 
exists gneE+ such that t+,o 

~o= lim T U~g,, �9 (1) 
n ~ c o  

Lemma 1. For c~>0, g e b g + , t o  U~ g( X t) is left continuous. 

This is stated in [3]; here is the proof. Write 

h ( O  = e -  6, U~g(G). (2) 

Then {h(0, t >  0} is a positive supermartingale. We have g x: 

EX{h(t)}=EX{i e-~g(Xs)ds}. (3) 

By martingale theory, h restricted to Q (rationals) has right and left limits in 
(0, oe). Put 

cp(t)= lim h(q). 
Q ~ q t ' ~ t  , 

For q < t, 

h(q) > EX {h(t)l~q_ } ; 
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hence 

~ ( t )  > E  x { h ( t ) I ~ t _  } = h(t)  

since h(t) is ~,_ measurable by left continuity of X. On the other hand, we have 
by bounded convergence and (3): 

EX{~o(t)}= lim EX{h(q)}=EX{h(t)}. 
Q~q'f'~t 

Thus for each t>0 :  

PX {~o (t) = h (t)} = 1; (4) 

namely, {qo(t),t>0} is a standard modification of {h(t),t>O}. By definition 
t-* ~o(t) is left continuous. Consider now 

F = {(t, w)] ~o(t, w) #h(t, w)}. 

This is a predictable set since qo and X are left continuous. By [4; p. 72], if W 
(=oF) > 0, where na is the projection on f2, then there exists a predictable T such 
that PX{T< ~} >0, [ T ] c F  and so 

o(r )*h(T)  on {T< oo}. (5) 

Let {T~} announce T. We may take T, to be Q-valued (see [3]). We have by (4), 
px-a.s, for all n: 

~o(T.)=h(T.) on {Tn<oo }. (6) 

By Theorem 1 of [3], we have PX-a.s. 

h(T~)~h(T) on {T< oo}. (7) 

Since ~o is left continuous, we have also 

cp(T,)~o(r) on { r <  oo}. (8) 

Thus r W-a.s. This contradicts (5) and so Px{r%F}=0, for every x. 
Hence r and h are indistinguishable and Lemma 1 is proved, 

Lemma 2. I f  (p is excessive, then a.s. 

t ~o(X, )  has right limits on [0, oo) and left limits on (0, oo). (9) 

The same is true if cp is the pointwise limit of a sequence of excessive functions; 
or the infimum of such a sequence. 

For the proof compare [7; p. 150]. 

Proof. Let g, be as in (1), and h, correspond to g, as in (2). By Lemma 1, {h,(t), 
t>0} is a left continuous positive supermartingale. Let M,[a,b] denote the 
number of upcrossings by h,(-) from ( -oo ,  a) to (b, +oo). We have by [8; p. 
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128], Vx: 

b EX(M.[a, b]} <-  
=b-a '  

(lo) 

and consequently if L[a, b] = lim M. [a, b], then by Fatou's lemma 
n 

b 
U {L[a, b]} < 

=b-a" 
(11) 

Let M[a,  b] denote the corresponding number of upcrossings by a path of the 
process {e-~cp(X~), t > 0}. Since e-~*q~(X,)= lira h,(t) for each t, trivial counting 
shows that ,~ o~ 

M [a, b] <<_ L[a, b]. (12) 

It follows from (11) and (12) and the completeness of (Y2,F,P) that 

PX{M[a; b] = oo} =0. (13) 

This being true for every a<b, the paths of e-~t~o(X,) have a.s, no oscillatory 
discontinuities and so (9) is true. 

Next suppose qo =lira % where each cp, is excessive. Let M and M, denote 
n 

the number of upcrossings associated with ~o(Xt) and ~o,(Xt), respectively. For 
each n, we have just proved that there is a random variable L, such that 

M. [a, b] < L. [a, b], 

and 
b 

EX{L.[a,b]} <=b_ a. 

As before, we have in our present connotation: 

M[a,b] <lim M,[a,b] <lim L,[a,b]. 

It follows that (13) is again true and so the result (9) holds for ~o. Finally, let ~0 

=infcp, where each (p, is excessive. Then ~o = lira ~,  where ~ , =  inf ~o m. Since 
n n ~ o o  l < m < - n  

(9) is true when ~0 =~o,, it is also true for ~,  trivially, hence for ~o as just proved. 
Lemma 2 is proved. 

We did not prove nor need the measurability of M[a,  b]. It would follow if 
we could prove that (p(Xt) is a separable process. The same remark seems to 
apply to the argument in [7]. 

Definition. A Borel set A is thin iff V x'  

P~ {TA-----0} =0  , where TA=inf{t>OJXt~A}. (14) 

A set is semipolar iff it is contained in a countable union of thin sets. A set is 
polar if P~{TA< o0} =0, VX. 

For a left continuous process there is no 0 - 1  law to assert that (14) is 
equivalent to W { T A = 0} < 1. 



Left Continuous Moderate Markov Processes 241 

Theorem 1. Let f be superaveraging and f*  = lim Ptf Suppose t ~ f(Xt) has right 
and left limits on [0, oo). Then ~ o  

{ f > f * }  is semipolar. (15) 

Furthermore, for each e > 0: 

{ f > f * + e }  is thin. (16) 

Proof Since f*  is excessive, by Lemma 2 and our hypothesis, both limits below 
exist for all t > 0: 

f*  (Xt)_ = l imf* (Xs), f(Xt)_ = limf(Xs). (17) 
sttt sttt 

Now we assume f bounded. Then we have by bounded convergence for s=>0: 

P~+f= lim Ps + J =  P~(lim P~f)--P J * .  (18) 
t.~$o ~ o  

Furthermore, for each x and t>O: 

E x {f(Xt)_ } = lim Psf(X) = lim P~ +f(x) 
s t t t  s t t t  

= lim P J *  (x) = e x { f *  (X~)_ } (19) 
s t t t  

where bounded convergence is used in the first and last equation; the second 
equation is trivial and the third by (18). For a general superaveraging f, (19) 
implies that for each t and each positive constant m: 

E'{( f  Am)(Xt) }=E~{(f  Am)*(X~)_} <Ex{(f* Am)(X~)_}. (20) 

But f > f * ,  So we must have equality above. Since m is arbitrary and both 
functions in (17) are left continuous in t, it follows that 

W {g t > 0: f(Xt)_ = f *  (Xt)_ } = 1. (21) 

Let q ~ = f - f * ,  where we set o o -  oo =0, then t--,qo(Xt) has right and left limits 
in [0, oo). For such a function, it is an elementary fact that 

{tl lop (X,) - cp (Xt)_ [>e} 

is finite in each finite (0, to). By (21), (p(X,)_ =0  for all t in (0, oo), W-a.s. Hence if 
we write 

A~={xlr 

we have 

W{TA=O } <px{x t~A  ~ for infinitely many to(0, 1)} =0. 

This proves (16). 
We did not use Dellacherie's theorem on semipolar sets. 
The following result is the generalization of the classical theorem due to 

Cartan, Brelot and Doob to the present setting. Let us remark that in the right 
continuous, strong Markov case, a very short proof was given by Chung in [2]. 
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It is not known whether the method used there has a left-handed modification. 
Such a proof would be very interesting indeed. Smythe [9] gave a proof for the 
reverse of a right continuous, strong Markov process. Easy examples show that 
there are left continuous moderate Markov processes which are not such 
reverses. Here we give a proof for the general left case. The method reverts to 
Doob's old idea of supermartingale upcrossing (see Meyer [7]), but does not use 
Dellacherie's deep result on semipolar sets. The final results are somewhat more 
precise than a quick application of the latter would yield. 

Theorem 2. I f  f is the limit or infimum of a sequence of excessive functions, then 
(15) and (16) are true. Under the "hypothesis of absolute continuity" (Meyer's 
condition (L)), the conclusions remain true for the infimum of an arbitrary set of 
excessive functions. 

Proof The f in the first sentence of the theorem is superaveraging, and (9) is true 
when ~o = f  by Lemma 2. Hence the first assertion is a special case of Theorem 1. 
The second assertion is proved in the same way as in Meyer [7, p. 163], except 
for the following observation. For  two superaveraging functions f and g, it is 
not necessarily true that ( f  A g)* = f *  A g*. But it is true that for any sequence of 
superaveraging f ,  and any positive constant m, we have 

(inf(f  n Am))* = (inffn)* A m (22) 
n 

except on a semipolar set. To see this, observe that by the first assertion of 
Theorem 2, the left member of (22) is not smaller than the right member except 
on a semipolar set. On the other hand, it is not greater because for every t > 0, 
we have 

P~ (inf (f .  A m)) < P~ (inff.)  A m. 
n n 

Now an inspection of Meyer's proof loc. cit. shows that (22) is sufficient for the 
conclusions. 

Lemma 3. Let q~ be excessive, then for any predictable S and T such that S < T 
we have V x: 

E={cP(XT);T<ool~s}<=cP(Xs) on {S<oo}. 

Moreover, if ~ is also excessive, then 

EX{(~OAO)(Xr); T<o~l~s}<--_(~oAO)(Xs) on {S<oe}. 

Proof By the moderate Markov property, we have for each x: 

o o  

Hence 

{; } EX{e-~r U~g(Xr)l~s} =E x e-~' g(X,)dtl~s 

<E~{ie-~tg(Xt)dtl~s}=e-~SU~g(Xs), 

(23) 

(24) 

(25) 
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where we have used the convention that (p(X~)=0 for any function r Using (25) 
for g = g ,  as in (1), we obtain (23) by first letting n--, oo and then c~+0, involving 
monotone conergence both times. Now (24) is a trivial (but useful) consequence of 
(23) applied to rp and 0 separately. 

Theorem 3. Suppose that the f in Theorem 2 is such that {f > 0} is a set of potential 
zero. Then it is polar. 

Proof Let f = l ims  where each f~ is excessive. The hypothesis amounts to U~f = 0 

for some ~ > 0. It follows that for each x, PJ(x)= 0 for (Lebesgue) a.e.t. Hence 

f*  (x) = lim PJ(x) = 0, 
t$$o 

and it follows from (20) that 

PX{f(Xt)_ =0 for all ~(0,  ~)} = 1. (26) 

Now {f(Xt), t > 0} is a predictable process because X is left continuous. If it is not 
evanescent under px, then by [4; p. 72] there exists a predictable T such that 
P~{0< T <  oo} >0, and 

f (Xr)  >0  on { r <  oo}. (27) 

Let {Tk} announce T, where each T k is predictable. Since each f ,  is excessive, it 
follows from (24) with 0 = m, a constant, that 

EX{s  T< oo} <EX{s Tk< oc}. 

Hence by bounded convergence we have 

EX{f(Xr)/x m; T< oo} <EX{f(Xrk)/~ m; Tk< oo}. 

(2s) 

(29) 

Since ~ I "  T, we have f ( X r k ) ~ f ( X r ) _  =0  by (26); hence the right side of (29) 
converges to zero. But for large enough m the left side cannot be zero by (27). This 
contradiction proves that f(X~) is an evanescent process and so {f  > 0} is polar. The 
proof for f=infJ~  is similar by use of (24). 

n 

Remark. Unlike Theorem 1, Theorem 3 is not true for a superaveragingf satisfying 
the condition (9). Example: let b be a nonsticky boundary point in a diffusion on R 1 
(or a Markov chain), and f =  l~b ~. Then P t f=0  for every t >0;  and (9) holds when (p 
= f  because {t: X(t)=b} is a discrete sequence. But { f>0}  = {b} is not polar. 

Remark. Some of the results given above have versions in the general theory of 
stochastic processes. Let (f2, ~, P) be a probability space with a filtration (~t), and let 
M t be a nonnegative predictable process with E [M0] < oo. Then M is said to be a 
predictable strong supermartingale if for any pair of predictable stopping times 
S < 7, E[Mr[  ~s - ]  <Ms a.s. on {S < oo}. Mertens [6] has proved versions of the 
following results for optional strong supermartingales, and his proofs apply to the 
predictable case with no change. 
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Theorem. Let M t be a predictable strong supermartingale. 

(i) Then M has left limits on (0, oo). 

(ii) I f  lim Mr ,  = M  r whenever (T~) is a sequence of predictable stopping times 
I1 -§  cO 

announcing T, then M is left continuous. I f  M belongs to the class (D), this is equivalent 
to lira E[MT,  ] = E [ m r ] ,  

n ~ c O  

For example, if ~0 is an excessive funtion, choose (g,) so that U~g, increases to q~, 
Since e-~tcp(Xt)= lim e-~'U~g,(Xt) is a predictable strong supermartingale, we 

n ~ o o  

may apply (i) above to conclude that t~cP(Xt) has left limits a.s. However, 
Mertens's techniques do not seem to yield that t ~  (p(Xt) has right limits a.s. 

For an exposition of Mertens's result, see the forthcoming book by Dellacherie 
and Meyer, "Probabilit6s et potentiel", vol. 2 (Hermann, Paris). 

3. For  the right continuous strong Markov case, it is an essential fact that an 
excessive function composed with the process has right continuous sample paths. 
This is not the case in our situation, in general. We single out two classes of 
excessive functions where regularity does occur. 

Propositions 1 and 2 below follow also from Merten's result (ii) in the remark 
above and related results. 

Proposition 1. Let f be an excessive function and T a predictable time with Prf(x) 
=f(x).  Then f (X , )  is left continuous on ]0, T] a.s. PX 

Proof. Let F~ = {(t, co): f (Xt)_ >fiX,)}. If P~{~aF~} >0, there is a predictable time S 
with IS] c q ,  P~ {S < T} > 0. Let (S,) be a sequence of predictable times announcing 
S. Then 

f (x)  = E x {f(Xr) } ~ E x { f (X  s ̂  r)} < lira E x { f (Xs .  A r)} ----< f(x) 
n ~ c o  

by Lemma 3. Thus, px {S__< T} =0. Now letting F 2 = {(t, co): f (Xt)  <f(X~)} and 
choosing S and (Sn) as before, we have for a sufficiently large constant R > 0 

E ~ {limf(Xs~ ) A R} < E x { f(Xs)  A R}. 
n 

By dominated convergence, the limit may be taken out of the expectation, and the 
second statement in Lemma 3 implies that 

E ~ { f ( x s )  A n }  < lira ~ { f (x s , , )  A n }  < E x { f ( x s )  A n} .  
n 

Thus, P~ {8 _-< T} = 0. 
For Proposition 2 we assume that Q is equipped with a family of shift operators 

(0t)~ >__ o such that for each s, 0 s is a map of ~ into ~ satisfying X t o 0~ = X t +s a.s. for all t. 

Proposition 2. Let A be a continuous additive functional of X with potential f (x)  
E ~ = {A~}. I f  f (x)< o% then f(X~) is left continuous P~ a.s. 

Proof. Let F~, S and (S,) be as in Proposition 1. Then E ~ {h(Xs)_ } > E ~ {h(Xs) }. But 

E~ {h(Xs)_ } <- lim E~ {h(Xs.)} = lira E~{Aco - A s .  } 
n ~ c o  n ~ c o  

_ _  x - E  { A ~ - A s } = E ~ { h ( X s ) } .  
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Therefore,  px {S < ~ }  = 0. Now, looking at the case for F 2, S and (S,), we have that  

EX{h(Xs , )AR}>EX{h(Xs) /xR}  for R > 0  

by the second part  of L e m m a  3. Using dominated  convergence we pass to the 
limit to get that  EX{h(Xs)_/x R} >E~{h(Xs)/x R}. Lett ing R increase to oo, we 
see that  P~ {S < ~ }  =0,  and this completes the proof. 

As remarked above, there is no useful 0 - 1 law for modera te  Markov  processes. 
Thus, if we define ~ ( x )  = U { e  ~ra}, it is not  apparent  that the set {x: ~ ( x )  < 1} is 
semipolar. This follows, however,  as a corollary of the next theorem. 

Theorem 4. Let A be Borel with sup { ~ ( x ) :  x~A} = a <  1. (Such a set is said to be 
totally thin.) Then {s< r :  X ~ A }  is finite a.s. for each r > 0 .  

Proof We first show that {s~[t, t + r ] :  X ~ A }  is finite for t > 0 ,  r > 0 .  Set 7o=t ,  and 
recursively define times T, § 1 = T, + T A o Or,, n = 0, 1, 2 , . . , .  Set R = lira T n. Then 
{ R <  oo} = f2o u f21, where " ~  

f2o = ~) {T, = R  < oo}, 
n 

n 

Suppose Px(Q1)>0. Note  that  the (T,) form a strictly increasing sequence on 
f21. Choose q so large that  PX(g21c-~{R<q})>PX(f21)-e=c>O. Choose S 1 
predictable, 

[S1] ~(T1, T3] c~ {(t, co): Xt(co)6A } n [0, q] 

with P*{S 1 < 00} >c.  Set D 1 = S  1 + T A o Osl < T 4. Proceeding recursively, choose 
S, predictable, 

[S,] c(Tan_ 3, r4,_ 1] c~ {(t, co): Xt(co)6A } c~ [0, q], 

with P~{S,< 00} >c.  Set D, = S ~ +  TAO Os< T4n. Then 

ce-q < E ~ {e-V-} = E  ~ {e-S,@~(Xs.)} 

<aEX{e -s .}  <=aE x {e-V, - ,} < ... <a n. 

Since a < 1, and we may take n arbitrari ly large, this is a contradict ion.  Hence 
P~(t2 0 =0.  

Suppose P~(Q0)>0.  For  each coe~0, there is a sequence (t,(co)) decreasing to 
R(co) with X~,,(~)(co)eA. Set S 1 = (R  +5)/x q where q is chosen so large that  PX{(R 
+ 5)/x q = R + 5} > px (f20) - 3 = c > 0. Then there is an e a < e so that  

P~ {Xt(co)ffA for some te((R +51)/x q, SO} > c. 

Choose  S 2 predictable, 

[$2] c ( R / x  q, (R +5l) /x  q] n {(t, co): X,(co)~A}, 
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with Px{S 2 < oo} >c. Set D 2 = S  2 ~- ZAoOs2 < S  1 . Proceeding recursively, again, 
there is an e, < G-1 so that 

Px {Xt(o~)~A for some te((R + en) A q, S n_ 1)} >c. 

Choose S, predictable, 

[Sn] c (R/x q, (R + en)/x q] c~ {(t, co): Xt(co)~A}, 

with P;'{Sn < oe} >c. Set D , = S n +  TAoOs < S  ~_ 1. Then 

ce-q<Ex{e-D2}  =E~{e-S2q~(Xs2)}  <=aE~{e s2} 

<=aEX{e -D3 < ... <_anEX{e-D,+~}. 

Since n is arbitrarily large, we conclude as before that PX(~2o)=0. 
It remains to drop the hypothesis that t > 0. This amounts to proving that W { T A 

=0} = 0, which is similar to the proof that W(f2o)=0. 

Corollary 1. Let A be a Borel set with q~IA(X ) < 1 on A. Then A is semipolar. In 
particular, if B is an arbitrary Borel set and B~={x: ~BI(X)=I}, then B - B  ~ is 
semipolar. 

Let A n = A ~ l q ~ l ( x ) < l - I  t Then A---~  A n and q~ <~b~. Proof  Therefore, �9 n n ~ - -  

k. M 

sup {(b~.(x): x~An} < 1 --.1 Applying Theorem 4, it follows that A is semipolar. 
n 

If x ~ B - B  ~, then ~_B~(x)<~b~(x)< 1. Thus B - B  ~ is semipolar. This is Hunt's 
theorem (see [7, p. 148]). 

For the remainder of this note, we fix X a left continuous moderate Markov 
process satisfying Meyer's hypothesis (L). Let 2 be a reference probability measure 
for X (see [7, p. 158]). Recall that 

if f is excessive and 2(f) = 0, then f =  0. (30) 

The proof of the following result requires no change in this situation. 

Proposition 3. Let  # be a measure on E. Then # may be decomposed as #=#1  +#2 
where #1 does not charge any semipolar set and #2 is carried by a semipolar set. 

Using Theorems 2 and 4, the proof of the following result is valid here [-7, 
p. 180]. Recall that a set P is finely perfect if P = { ( b l =  1}. 

Proposition 4. Let  A be compact. Then there exists a finely perfect set P ~ A such that 
A -  P is semipolar. 

We now extend Dellacherie's proof of his characterization of semipolar sets to 
this situation. 

Theorem 5. Let  X t be a left continuous moderate Markov process with fundamental 
reference probability measure 2. Let  G be Borel with Pz {X t~G at most countably 
often} = 1. Then G is semipolar. 
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Proof We sketch Dellacherie's argument here (see [5, p. 112]). Set F={(t ,  co) 
X~(co)eG}. By [4, VI-T33], F ~  ~ [Tn] where (Tn) is a sequence of predictable 

n 

stopping times. Define a measure # on E by setting 

# (H)=E '~ 2-" l~oXr, ~ . 
n 

If H c G and #(H) = 0, then H is polar by (30). By Proposition 3, # = #i + #2, where 
#1 does not charge any semipolar set, and #a is carried by a semipolar set. We show 
#1 =-0. It suffices to show that every compact K e G  is semipolar. But K may be 
written as P w ( K - P )  where P is a finely perfect set and K - P  is semipolar by 
Proposition 4. We prove below in Theorem 8 that P=~3. Thus #=#2,  and #2 is 
therefore carried by a semipolar set L < G. But # ( G -  L)= 0 implies G -  L is polar. 
Thus G is semipolar. 

The next proof is a modification of one given in [7, p. 182]. 

Lemma 4. Let P be finely pelfect, and satisfy the hypothesis of Theorem 5. Then P =g. 

Proof F= {(t, co): X,(co)~P} c U [T,] is predictable. 
t t  

P;'{XT eP; TeoOT =O} =EX{XT eP; PxT-[Tp=O]} =P;'{XT eP }. 

Thus T,(co), whenever X T e P ,  is a limit from the right of times (t,(co)) with 
Xtn,o)(co)eP. Set F(co)= {t: Xt(co)eP }. It follows from the preceding sentence that 
/=(co) has no isolated point and hence is perfect and therefore uncountable. We show 
F(co)-f(co) is countable. Recall f(co)={t: ~l(x,(co))=l}. Now tef(co)-r(co) 
exactly when there exist tk(co)ot(co ) such that ~b~(X~(o)(co))=l and 
q~(Xr 1. But e-t~bl(Xt) has only finitely many upcrossings over any level 
(a, b) by Lemma 2. If there were an uncountable number of points in F(co) - F(co), 
there would exist 0 < a < b < l  such that e-t~b~(Xt) had an infinite number of 
upcrossings over (a, b), which is impossible. Thus F(co) is a.s. uncountable, which 
contradicts Xt~G only countably often. Therefore, P=O. 

We conclude with an example which, although trivial, illustrates much of the 
pathology associated with moderate Markov processes. 

C 

Fig. 1 

Let X t be the process uniform motion to the right on the state space given in Fig. 1. 
Upon reaching B, the process moves toward C with probability �89 and moes toward 
D with probability �89 Then X~ is a normal continuous process. However, the strong 
Markov property fails to hold at B because the 0 - 1  law does not hold for the 
hitting time of (B, C]. Let [A, B] (resp. (B, C]) denote the points between A and B, 
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inc luding A and B (resp. the po in ts  be tween B and C, inc luding C and excluding B). 
Then pB [T(B ' q = 0] = �89 Thus the 0 -  1 law does not  ho ld  at  B for this h i t t ing  time. 

If  we let 

/ l on [A,B) 

f ( x ) =  �89 on B 
on (B, C] 

on (B,D] 

t h e n f ( x )  is excessive, bu t  t ~f(Xt) is ne i ther  r ight  or  left cont inuous .  Moreover ,  f A 
�89 is not  excessive. 

Final ly ,  we give a t r ivial  example  of  a con t inuous  m o d e r a t e  M a r k o v  process  
with state space given in Fig.  2 which is no t  the reverse  of  a s t rong M a r k o v  process.  

l [ o , ~ ]  

[ -Lo]  - / [ 0 ' ~  ---- [1,0] 

[ o , - 1 ]  

Fig. 2 

On ((0, - 1), (0, 0)) the process  is un i form m o t i o n  up;  on (( - 1, 0), (0, 0)) the process  is 
un i form mot ion  to the right. A t  (0, 0), the  process  proceeds  up t o w a r d  (0,1) with 
p robab i l i t y  �89 and  t oward  (1, 0) with p robab i l i t y  �89 This  process  is m o d e r a t e  bu t  not  
s t rong Markov ,  and  so is the reverse by symmet ry  of the s ta te  space. 
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