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Summary.  Given independent identically distributed random variables 
{x , ;nsN q} indexed by q-tuNes of positive integers and taking values in a 
separable Banach space B we approximate the rectangular sums 
{ ~ x,,; ncN q} by a Brownian sheet. We obtain the corresponding result for 

m ~ n  

random variables with values in a separable Hilbert space H while assum- 
ing an optimal  moment  condition. Generalized versions of the functional 
law of the iterated logarithm are thus derived. 

1. Introduction 

Let N q denote the set of  q-tuples of  positive integers. For  any q=> 1 and n~]N ~ 
we define: 

q 

n=(~,...,n~), [hi=Fin, 
i = 1  

and 
a, =(2q  [n] logtog + [n]) ~:z. 

Here log + r= tog(max(r ,  8)). Set e=(1,  ..., tq). Also, for m, n ~ N  q, put m<n (resp. 
m < n) if mz < nz (resp. rn i < n~) for each i = 1, ..., q. 

Throughout  this paper  we denote generically by {x , ;n~N q} a collection of 
independent copies of a random vector x and set S , =  ~ x m. 

Assume for the moment  that x is real valued. If  q = 1, it is welt known that  

( i . i )  
x~L z and Ex=O 

~ l i m  a2 1 IS, I< co a.s. 
~ oo 

However  if q > 1, it is knm~aa that  

(1.2) 
xe(L21ogq-~ L)/IoglogL and Ex=O 

, ~ l i m  s u p a 2 l t S ,  l < ~  a.s. 
r ~ c o  [n]>r  
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(see [16], p. 280). Moreover whenever (1.1) or (1.2) is in force a corresponding 
functional law of the iterated logarithm holds. A basic consequence of the 
work presented here is that these results extend to the case of a random 
variable x taking values in a separable Hilbert space (Corollary 1). 

Let B denote a real separable Banach space with norm N" LI. If {z,; h e n  q} is 
a collection of B-valued random variables such that t 

limP(llz.ll > e ) = 0  
n 

for every e > 0, we designate this property by writing 

P l i m z , = 0 .  
n 

The covariance function T(. , . )  of a B-valued random variable x is defined by 

(1.3) T ( f  g) = E {f(x) g(x)} f, geB* 

and x is said to be pregaussian if its covariance structure is realized by some 
Wiener measure on B. (For a construction of Wiener measure see [4].) 

The following theorem generalizes a result of Philipp [13] to integers q > 1. 

Theorem 1. Let q> 1. Suppose that x is a random variable taking values in B. 
Assume that 

x eL  2 logq- 1 L, 

x is pregaussian and P lima,- 1S, = 0. 
n 

Then there is a Brownian sheet {W(t); tel-0, oo)q} in B with covariance function 
T( ' , ' )  determined by (1.3) such that 

(1.4) lima~ -z I[S,-W(n)I I = 0  a.s. 
n 

A Brownian sheet {W(t); te l0 ,  oo)q} in B with covariance function T(-,.) is 
a B-valued process having independent increments W(RO,.. . ,W(Ri) when 
Rt , . . . ,R  i are disjoint rectangles in [0, oo)q and W(t)=0 if any of the coor- 
dinates of t vanishes. Further, the increment W(R) over a rectangle R has 
distribution /*lal where IRI is the volume of R and, for r>0 ,  #r is a Wiener 
measure on B with variance parameter r satisfying 

Sf({)g({)#r(d{)=r.T( f ,g)  f g e B * .  
B 

Here, we put W(R)=~(+_)W(v), the sum extending to all vertices v of R. 
We have a functional law of the iterated logarithm for the Brownian sheet 

{W(t); te l0 ,  oo)q}. Let CB([0,1] q) denote the Banach space of B-valued con- 
tinuous functions f on E0, 1] q with the norm 

I[fLIB,~= sup Hf(t)l]. 
t e [ 0 ,  1 ] q  

1 lira means lim , lim means lira sup. 
n [ n ] ~  co n r ~ c o  [ n ] > r  
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For n~N q and t=( t l ,  ..., tq)~[0, 1] q define s  CB([0, 1] q) by 

'a2 1 W(m) for t~=m]ni; i=1  .... ,q, e<_m<_n. 

0 if tz = 0 for some i = 1 .. . .  , q. 

(1.5) f , ( t )= .  [Lagrange interpolation in t l , . . . ,  tq over the 
/ 

cube {t~[0, 1]q: m i -  1 < t i <mi, i= 1 .... , q}, 

(e<_m<n. 

Let H r be the reproducing kernel Hilbert space in B generated by the co- 
*. variance function T=T( . , . )  of W(e). Let further {qo~ ,v=  1} be a sequence of 

bounded linear functionals on B with the property that the points (p~ 
=~(p*(~)P{W(e)~d~} ,  n > l ,  constitute a C.O.N.S. {(p~,v>l} in H r and 

B 

= ~ (P*(0cPv for ~ H  r (see e.g. [9], Lemma 2.1). The inner product (.,-) in H r 

is given by (pu, (p~)=[~p*(~)cp*(~)P{W(e)ed~}. We put 
B 

(1.6) S t =  feCB([O, 1] q) 

f ( t ) e H  r for t~[0, 1] q, (p* ( f )~ l  for v > i ,  ] 

t 

f (t)= ~ q)v ~ {d(p*~ ( f ) /d l  }d l  and ~ {dq)*~ (f)/dl} 2 dl <= 1. 
v 0 v 

Here, l denotes Lebesgue measure on [-0, 1] q. 

Theorem 2. Let fn and •T be as given in (1.5) and (1.6) respectively. Then 

lim inf I ]s  =0  a.s. 
n f e ~ T  

and 
P({feCB([O, 11~ f is a r['][~, ~-lirnit point of {f~; ne]N~}} = Y r ) =  1. 

Note. Theorem 2 also holds when in the definition of f ,  the R.H.S. of (1.5) is 
replaced by a n  1 W ( n  1 t 1 . . . .  ,nqtq). Implicit in this statement is the fact that a 
Brownian sheet in B has continuous sample paths, 

We shall prove Theorem 2 and this Note in Sect. 8. 
Let us say that a mean zero B-valued random variable x having a second 

moment belongs to FLIL if Theorem 2 holds when f ,  is replaced by gn and T 
= T(.,.) is defined by (1.3). Here, by gn we mean the R.H.S. of (1.5) with S m in 
place of W(m). Let K be the closed unit ball of H T. We say that x belongs to 
CLIL if 

(i) l iminf l ]~-a21S, [ ]=0  a.s. 
n ~ e K  

(1.7) and 

(ii) P ( { ~ B :  ~ is a [J. []-limit point of {a2iS , ;  ne]Nq}}--K)=I. 

We also say that x belongs to BLIL if just (1.7)(i) holds. Clearly, 
FLIL = CLIL = BLIL. 
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Theorem 3. Let q>= 1. Let x be a B-valued random variable with xeL  2tog q- 1L. 
Then 

(1.8) p t i m a  21S~ - 0 ~ x ~ F L t L  
n 

and 

(1.9) xeBLIL  ~ l ima 21E ItS, l! --0. 
n 

Theorem 3 is proved in Sect. 9. I conjecture that the moment condition of 
this theorem can not be improved. Nevertheless if we make x take values in a 
separable Hilbert space / - / then  we obtain a characterization of the invariance 
principle (1.4) with a weaker moment condition when q > 2. 

Theorem 4. Let q> 1. Let x be a random variable taking values in a separable 
Hitbert space (H, 1"1). Then 

~x~L 2, q = l  
(1.10) Ex=O and [x~(L21ogq_lL)/loglogL, q>2 

if and only if there is a Brownian sheet {W(t);te[O, ~)q} in H with covariance 
function T(',.) given by 

such that 

(1.11) 

T(f,g)=E{f(x)g(x)} f, geH* 

lima21 IS,,-W(n)t=O a.s. 
n 

Corollary 1. Assume the hypothesis of Theorem 4. Then, (1.10) holds 
x e F L I L  <=> x e BLIL. 

Corollary 1 generalizes a functional law of the iterated logarithm due to 
Wichura [16]. To prove the corollary, notice that Theorems 2 and 4 combine 
to give (1.10) ~ xsFLIL,  while the proof of the reverse implication is the same 
as that for H = IR (cf. (1.2)). 

Let us develop the main ideas of the proof of Theorem 1. First, the proof is 
reduced to the verification of Proposition 4.1 by the method illustrated in 
Sect. 7. 

We prove a bounded law of the iterated logarithm for rectangular sums 
(Proposition 3.1) so a finite dimensional approximation can be effective. To do 
this we adapt both the Hartman and Wintner [6] truncation approach 
and the Kuelbs [8] approach to a Kolmogorov law of the iterated logarithm 
for B-valued random variables to the situation of multiparameter indexing 
(Sect. 2). In Sect. 5 we show that certain rectangular sums of finite dimensional 
random vectors obey a kind of weak law of the iterated logarithm (Proposi- 
tion 5.6). Proposition 4.1 is thus obtained via an application of Theorem 3 of 
Philipp [13] (quoted here in Sect. 6). 

We prove Theorem 4 in Sect. 10 by modifying the proof of Theorem 1. 
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2. Prel iminary L e m m a s  

To begin we follow the approach of Ha r tman  and Wintner  [6]. Let  x be a B- 
valued r andom variable with x~L 2 log q- 1L for some q >  1. Denote  the distribu- 
t ion of x by a. Let  -c be a probabil i ty  measure on B satisfying 

(2.1) and 

II ~ II 2(log + ]] ~ II) q- 1 r(d r < o9 
B 

I[r ~(dr S 
Ilgll>~ I1r 

[0, oo)-+IR + which for some decreasing function Z: 
Choose ~: N--,IR + so that 

(2.2) 

II~lr ~(d~) 

tends to zero at infinity. 

(i) e(r)> z(r 1/9) 
(ii) eft) > r -  1/6(loglog+ r)l/2 
(iii) e(r)~O as r ~  oo 

(iv) o:(r)=e(r)(r(loglog + r)-l)J/2~oo as r--,oo. 

Define '  

(2.3) % =  S Ug][a(dg) 
[I ~ [I > r 

(2.4) Lemma.  

neN q. 

~, a~ lw ,<  oo. 
nE1N q 

Proof. By (2.1)-(2.3) and partial  summation,  

(2.5) ~, amlWm N 2 a~.lZ(c~([m])) S II~l[~(d~) 
r a < n  m<=n I[r > ~([ml) 

[n] 

= ~ [lg]l~(dr 
I1r II > c~([n]) i =  1 

[n]- 1 
+ 2 j" I[~FI z(d~) ~, co(i)ac~z(~(i)). 

r= 1 ~(r)< I1r _-<~(rq- 1) i =  i 

Here, we put  

Put  also: 

Then by partial summation,  

co(i)=coq(i)= ~, 1. 
nl  . . . n q = n  

D(r )=  ~ coq(i). 
l<_i<_r 

(2.6) 

co(i) a/-~ Z(a( i ) )=a~ 1Z(~(r))D(r) 
i = 1  

r - 1  

+ ~ (aF 1 ) (~ (i)) - a ~  Z (c~ (i + 1))) o (i). 
i = 1  
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But, from [5], 

(2.7) D(r),~r(logr)~ 1 / (q_t ) !  (r~o~). 

So, breaking up the R.H.S. of (2.6) and using (2.2) (i)-(iv) together with (2.7) we 
find: 

(2.8) R.H.S. of(2.6)=O(a;- ~Z(r*/3)D(r)+D(P/3)) 
r - i  

+ ~ {(a/- 1 _ aF+~ ) Z(e(i)) + ai+~ (Z(c~(i))- Z(~(i + 1))} D(i) 
i=r~/3 

= 0 (a;- 1 z(rl/3) D (r) + D (r~/3)) + 0 (Z(~(r~/3)) ~ (a~ -~ - ai+~)/(log + i) q-- ~) 
i=rl/3 

= O((log+ r)q--1 c~(r)). 

Hence, combining (2.5), (2.6) and (2.8), 

a2,~w,,=O(~[[~l!2(log~ ![ ~ [!)"- ~ -c(d ~.)) < oe. 
m<n B 

The following lemma is a generalization of Ottaviani's inequality ([2], 
p. 45). 

(2.9) Lemma. Let  {y , ;n~N q} be independent B-valued random variables for 
some q> l. Set 7~= ~ Yk" Fix n ~ N  ~. Let  @~(n) denote the set of non-empty 

k <=m 

differences A = R 1 "" Re generated by rectangles R i ~ {m 6 N  q: m < n}; i = 1, 2, with 
R 1 having a vertex at n. Define ro(6)=b , rl(b)=c~/(1-6), and r~+ l(b)=ri(ri(6)) for 
0 <= (3 < 1. Suppose that 

(2.10) and 

for some A > O. Then 

max P({i ~ Y,,,il > A ) = 6 < l  
Ae~q(n) inca 

rq_ l(fi)<l.  

(2.11) P(max[! T,,[I > 2 q A ) < ( t - ~ _  ~ (6))--qP(![ T, il >A). 

Proof When q = l ,  (2.10)~(2.1t) follows by Ottaviani's inequality which is 
valid in the Banach space setting. We assume iductively that (2.10)~ (2.11) for 
q<Q-1. 

For Q >_2 and  m=(m 1 . . . .  , m(2)eN (2 we write: 

m' = ( m  2 . . . .  , mo)~NO- 1 
and 

W,~,= E Yk'= E ( E  Yk, E Yk,'", E y~)en'% 
k'<m" k'<=m" k l < l  k1<=2 k lNnl  

Let the norm IJJ. []t on B v be defined for v > 1 by 

Jl]~ J]] = m a x  Jt~,]], ( =(~1 . . . . .  (,,) eB*- 
i=<v 
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Clearly, we have max IITmlr = m a x  lilTS,Ill. Thus by our induction hypothesis we 
obtain m__<. m' __<." 

(2.12) 

Here, 

(2.13) and 

P(maxI[TmII~2~A)<=(1-r~_2(6'))-~+IP(IIIT~',IH>2A), n~N ~. 
m < n  

8 ' =  max  P(I[I ~ y~,III>2A) 
A ' e ~ O - l ( n ' )  k'~A" 

IJl ~ y~,,tl} ---max ]l ~ YklJ" 
k 'ed" i<=nt k 'eA" k~<i  

Hence, by Ottaviani's inequality, 

6 '< max ( 1 - 8 ) - I 8 = q ( 8 ) .  
A" ~ r  - 1 (n ' )  

Similarly one finds that 

P([ll T~', III > 2 c0 < (1 - a")-  1 P(l l  Z. rJ > A)  
(2.14) with 

8"=maxP(l l  ~ yklr > A ) < L  
i<n l  k ' ~ n ; i < k l < n l  

The proof by induction is complete upon combining (2.12), (2.13) and (2.14) 
and noticing that 

(1 - r e _ l  ( 6 ) ) -  e + 1 (1 - 6 ) - 1  =< (1 - r e _ I  ( 8 ) ) -  ~ 

for 0_---2. [q 

The next lemma suits our purposes as a multiparameter analogue of Theo- 
rem 3.1 of I-8]. 

(2.15) Lemma. Let {y , ;n6N q} be independent mean zero B-valued random 
variables for some q >= 1. Put T, = ~ Ym" Suppose that 

m < n  

Ily.II __<r~(1-n]) 

with ~(') as defined in (2.1)(iv) and a constant E Suppose also that 

limEIry, jI2<l and l imP(a ,  - l jrT.Ir>C)<~4 
n // 

for some positive constant C. Then there is a finite number L such that 

Iima 21 F] Tnlr = L 
n 

a . s .  

Proof. Write: 

d m = (d~ (1) .. . .  , d,~(q)) = (2 m* - 2 .. . .  ,2 '~. - 2) 

for m=(ml , . . . ,mq)eN q. By the Borel-Cantelli lemma it suffices to show there 
exists a number M so that upon defining the events 

(2.16) E~={ max (a21HT, H)>M} 
dm<n<-dm+e 
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one has 
Z P (Era) < oo. 

m~N q 

For, by the Kolmogorov 0-1 law it is enough to have 

iim a 21 II T, II < ~ a.s. 
n 

By first assuming that the random vectors {yn;ncN ~} are symmetric and 
later removing this restriction one finds exactly as shown in [8] that 

supa21E l] T,I] < ~ .  
n 

Similarly, we have the following. 

Remark. If one assumes here that P l i m a ,  1T,=0 then 
tl  

lima21ElIT, I] =0. 
n 

We define rectangles Am(J) for each mclN q and J c {1, ..., q} by 

( qldm(i)<ni<-d,,+,(i) for i~J and]  
A,"(J)=ln~N ni<d,,(i) for i(~J; i= 1 .... ,q 

Then, 
P(  max a21]jY,[l>M) 

(2.18) d,,<,_-<~m+. 
=< ~ P( max [I ~ Ykl[>2-qadmM) �9 

, / = { 1  . . . . .  q} dm<n<=d~+e k<<_n, kEAm(y) 

We choose M > 23q+ z sup a -  1 d,, max EHT, I [ which is possible by (2.17). Using 
m dm<=n<dm+e 

Lemma 2.9 and elementary probability inequalities one sees that the R.H.S. of 
(2.18) is bounded by 

(2.19) 2q(1--rq_l(2-q-1)) -q 2 P(IIT.H>2-3qad~M) �9 
nelNq:ni=dm(i) o r  dm + e(O 

Finally, to each of the summands in (2.19) we apply Theorem 2.1 of [8] with 

b=b(")=[d,,+,] l/z, c=c(")=F[d,,+e]-t/Ec~(dm+,]) 
and 

e= e  (") = 2 -  3q- 1 Madrid,,+, j -  1/2. 

Then from (2.16), (2.18) and (2.19), 

P ( E , . ) = O ( e x p { - e 2 ( 1 - ( l + ~ c / 2 )  ~ EI]y,[[Z/[d,~+,] 
?l<~drn+e 

- max ElbT, lh/Z[dm+e]~/2e)}) 
dm <=n<~dm+ e 

since lime(m)dm)=O (by (2.2)(iii)) and Ily.[I <d")b("~) for n<d,,+,. Moreover, if 
m 

M is sufficiently large, 
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while 

Hence when M is large, 

lira max E rlT. ll/2[d,.+e]l/z e(m~ < �88 
m d m < n < d m + e  

lim Ida+e] -1 ~ ENYnH2~ 1. 
m n < = d m + e  

P(E,.) = O (2  exp ( - (e(m))2/4)) 
m m 

= O(~ (m 1 + . . .  +mq) -2q) < ~ .  
m 

3. Bounded Law of the Iterated Logarithm 

The following proposition provides us with a bounded law of the iterated 
logarithm. We shall reduce its proof to the verification of (3.3), below. 

(3.1) Proposition. Let q> 1 and x be a B-valued random variable with 

x c L21ogq- l L and P lim a~ l S,=O. 
n 

Then we have 

(3.2) lim inf []anlSn-~ll =0 a.s. 
n ~ K  

where K is the closed unit bali of the reproducing kernel Hilbert space H T 
determined by the covariance function T(., .) defined in (1.3). 

Proof. We may assume that x is symmetric. For, if e takes the values _+ 1 each 
with probability 1/2 independently of x then 8x is symmetric and E{f(x)g(x)} 
=E{f(ex)g(ex)} .  Moreover K is symmetric and ]e] = 1, so 

inf pJayleS,-~lr = inf [laz1S.-~H. 
~eK ~eK 

Assume now that in addition to our hypotheses we have 

(3.3) P({a: 1S,; n e N  q} is relatively compact in B) = 1. 

The conclusion of Proposition 3.1 then follows by the argument provided in 
the proof of Theorem 3.1(I) of [7]. To see this we need only note that Wichura 
([16], Theorem 5 and comments p. 280) has shown: 

(3.4) P(lim f (a21S,)  =E1/2f2(x)) = 1 f e B * .  
n 

Thus, by (3.4) and Lemma 2.1 of [7], for any f e B *  one gets 

E1/2f2 (x) = sup f(~). 
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Hence, by the separability of B and the Hahn-Banach Theorem, 

P({accumulation points of {a~- 1S,; n ~ N q} } r K) = 0. 

Whence (3.2) must hold, for otherwise we gain a contradiction. 
Thus to complete the proof of the proposition there remains only to show 

that (3.3) holds. For this purpose we truncate the random variables {x,; n ~ N ~} 
by setting 

( 3 . 5 )  x'.  = x .  l { i i x ,  t L -<:~[.l)} 

with ~(.) as defined in (2.2)(iv). Put S',= ~ x~,. 
? n ~ n  

We first notice that if ~ a 2  1 c ,<oo for some non-negative numbers 
n 

{c,,; n e N +} then by partial summation, 

l im(r loglogr)  -1/2 ~ c ,=0 .  
r~  ce [n] _-< r 

But, by Lemma 2.4, ~ a 2 ~ IIx,-x',ll < oe a.s. It therefore follows that 
n 

(3.6) l ima2 t IIS,-S',L I =0 a.s. 
n 

Next, we define the mapping z~ that Kuelbs introduced in his proof of 
Theorem 4.1 of [8]. Namely, if 0 < & < 1, 

z+(~)=E(xlx-~(ri))(~), ~eB, 

Here I is a finite partition of B containing {0} such that 

A ~ I < .  - A e I  

and 
EIl~+(x)-xll2<=6. 

Since {0}~I we also have EI]%(x'n-x'.H2<6. Put y.=, , (x ' . )  and T.--T.(b) 
= ~ y~. Since z 6 has finite dimensional range and 

m ~ n  

one has IJY]]. < C~(~([n]) + 1), supE Ijy.H z =< C~E{(1 + Ilxl]) 2} < ~ and 
n 

(3.7) P l ima 2 ~ T. = O. 
n 

Therefore Lemma 2.15 implies 

(3.8) P({a 2 ~ T ;  h e n  q} is relatively compact in B)= 1 

since bounded subsets of finite dimensional spaces are relatively compact. 
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Now (3.6) and (3.8) will combine to yield (3.3) if for each e > 0 there is a 
= 6~ > 0 so that 

(3.9) lim a21[]S'~-~@ll <~ a.s. 
n 

For, given (3.9), with probability one we can use a diagonalization procedure 
to construct from any sequence {a2(~S,(~), i> 1} a subsequence which is Cauchy 
and therefore convergent. 

To obtain (3.9) we first notice that P l ima21S' ,=0.  (Use (3.6) and the 
n 

assumption that P lira a 2 i S, = 0). Therefore, by (3.7), 
tl  

(3.10) P l im 1 , a~- ( S , -  T,) =0.  

But S '~-T ,= ~ x ' - y  m is a sum of independent random vectors and IIx; 
m < n  

-yoll <const. c4[n]). Thus by (3.10) and the Remark included in the proof of 
Lemma 2.15, 

(3.11) lim an  1 E II S'. - Z. II = 0 ,  
n 

Finally, if e>0  and F m is defined by the R.H.S. of (2.16) with e in place of M 
and S',-T,(cS) in place of T, we use (3.11) and the argument of Lemma 2.15 to 
get 

P(Fm) < oo. 
m 

This gives us (3.9). Whence (3.3) holds. ~] 

4. Reduction of  Theorem 1 

Because we are dealing with sums of independent identically distributed ran- 
dom vectors, to prove Theorem 1 it is enough to establish the following 
proposition. 

(4.1) Proposition. Let q> l and let x satisfy the hypothesis of Theorem 1. Then 
for each 0 > 0  there is a Brownian sheet {W0(t); t~[0,  ~)q} in B with covariance 
function T( ' ,  ") defined by (1.3) such that 

l ima  21 IIS, _ W0(n)] ] < 0 a.s. 
n 

To prove Proposition 4.1 we approximate x by a finite dimensional random 
vector. For this we employ the maps H N associated to the covariance function 
T(-, ") of x, as defined in Lemma 2.1 of [7]. With the notation of the in- 
troduction we write 

N 

(4.2) Hu(~)= y. ~o*(~)(p~, ~eB.  
v = l  
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(4.3) Lemma. Let x be as in Proposition 3.1. Let 0>0.  Then there exists N o 
such that 

lim a21 I[S.-FINoS.[ ] <0/3 a.s. 
n 

Proof. The lemma follows by Proposition 3.1. Indeed the maps QN= 1 - 1 I  N are 
linear and continuous. Thus 

lim inf Ila2lS.-r =0  a.s. 
n ~ e K  (4.4) 

lim inf I[a21QN(S,)-QN(~)II = 0  a.s. 
n ~ e K  

Moreover as shown in Theorem 3.1 of [7], given 0 > 0  there exists N o such that 

(4.5) sup IIQN0(~)H <_0 
~ :  =3" 

(This relies on the fact that K as defined in Proposition 3.1 is compact in B.) 
Combining (4.4) and (4.5) we evidently have the statement of the lemma. [~ 

We now fix 0 > 0  and N = N  o. The space FIr(B ) is the Euclidean space IR p (p 
=min(N,  dim Hr)  ) equipped with the norm I" I = I1" IIT induced by the B-norm 
on H r c B .  The B-norm [/" [I is continuous with respect to the norm 1"1 on H r 
and in fact 

(4.6) ][~ll<gl/21lxll21~.l, ~ H T .  

We define 2=IIN(X ) with HN given by (4.2). Thus, 2 is a random variable in 
IR" having the properties: 

(4.7) [~[= I[•N[I Ilxl[, E ~ = 0 ,  E2)U=Ip.  

Let {2,; n ~ N  q} denote generically a collection of independent copies of 92. Set 

ga ~< rt 

The point of Lemma 4.3 is that we need only obtain the conclusion of 
Proposition4.1 when B=-]R p for some p > l .  This is accomplished over the 
course of the next two sections. 

5. Weak Law of the Iterated Logarithm 

Let 

with 

cm =(cm(1) . . . .  , c,,,(q)) 

0, e < m 
(5.1) c m = 

[cm~/(c-1)], e<m; i = l , . . . , q  

for m=(m 1 . . . .  ,mq)~N q and some 1 < c < 2 .  For  each subset J c { 1 ,  ..., q} put 

(5.2) H ~ ( j ) = { n ~ N  q cm(i)<ni <=c,,+e for iCJ ; ,  
l <=ni<c,,(i ) for i~JJ  mENq" 
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The sets H,~(qS) so defined par t i t ion  N q as m runs through N q. Set 

(5.3) hm(J)=]Hm(J)f ; m E N  q, J c { 1 ,  ... ,  q}. 

Then observe that  there is an absolute  constant  C o so that  

q 

C ~1 ' < C o ;  (5.4) 1/C o <h, (Y) (c -  1) ]JI - F~ n. 

n ~ N  q, J c { 1  . . . .  ,q}, 1 < c < 2 .  

Recall ing (2.2)(iv), (4.7) and (5.1)-(5.3) we now define for all n e N  q and J 
~ { 1  . . . .  , q}, 

Xm(J)=hml/2(J) ~ -~n 
n~Hn~(J) 

(5.5) and 

X'~(J) = h2, 1/2(j) F, (2,1~t~,,i ~( tcm)~-E(2 ,  l~j~,,i ~(t~)~)). 
n e H m ( J )  

, j Write F~ J) (resp. F~ J~') for the dis tr ibut ion of Xm(J) (resp. X m ( ) )  and G for the 
Gauss ian  distr ibution on IR p with covar iance matr ix  Ip. 

Fo r  a set A c l R P  and r = 0  we denote  X =  U {r/: I ~ / - ~ [ < r } .  
~EA 

(5.6) Proposit ion.  Let d ~  {1, ... ,  q}. Let p > 0  and put 

(5.7) p m = p ( 1 o g l o g  + rcm]) 1/2. 

Then there exist non-negative numbers ((rm, m ~ N q) such that 

m~Nq 

and 

F(~J)(A)<G(AP~)+cr,, for each Borel set A c I R  p. 

T h r o u g h o u t  the remainder  of  this section we fix J and drop  the dependence  
on J f rom our  notat ion.  Let  G~, denote  the Gauss ian  distr ibution on IN p with 
covar iance  mat r ix  

r; =Ex' x2. 

Define the P roho rov  distance d(F, G) between distr ibutions F and G on ]R p as 
d(F, G ) = i n f { e > 0 :  F(A)<G(A~)+e for all Borel  sets AclRP}.  We shall obtain:  

(5.9) (i) ~ ' ' P ( l X ~ -  X~l > ~p~) < oo 
mCNq 

(ii) Z d(F,~, G;,) < oo 
r n ~ N q  

and ( i i i ) ~  P(1Y-Y,~I a ' >gp,,,) < oo 
m ~ N  q 
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where Y' ~C,' and Y~G~ From (5.9)(i)-(iii) one deduces that m - - , .  

F,~(A) < P(x~ ~ A p~) +�89 

__< P(Y" e A(~+ ~;a) +~a,. 
< P ( Y s A (2 ~ ~ + ~,,)/3) + % < G (A p") + % 

for some non-negative numbers (a~, m e N q) with ~ o-,. < oo and any Borel set A 

IR p. Thus, to prove Proposition 5.6 it suffices to verify (5.9)(i)-(iii). 

(5.10) Lemma. Take F/: as given by (5.8) and denote by ( . ,  . )  the standard 
inner product for IR v. Then 

lim sup (~, (F,~-Iv) ~) =0.  

Proof. Since all norms on a finite dimensional space are equivalent, by (4.7), 
(5.5) and (5.8) it suffices to show that 

limEIXm-X~12=O. 
m 

But, by (5.5), 

E Ix , . -x~ , l  2 < 4E(12t 2 1{i~1 > ~(t~,,J)}) 

since by (4.7) 2 ~ L  2 and E 2 = 0 .  Thus, by (2.2)(iv) and (5.1) the proof is 
complete. 

Proof of (5.9)(i). Let ~ denote the distribution of 2. Define ~,  by the R.H.S. of 
(2.3) with a replaced by 3. Then by Markov's inequality, (5.1)-(5.4) and (5.7), 

P(lX~-X~l>�89 ' '  ~ E]~,l{~,>=(tc,,j)}] 
neHm(~) 

< const a2 1 ~, ~,, uniformly in m. 
nsltm((o) 

An application of Lemma 2.4 now finishes the proof. 

Proof of (5.9)(ii). By the main theorem of Yurinskii [17] we calculate that 

~ El2~,~l{l~I<=~([~..l)}-E(x.,il{I~.l<=~([~1)})I 3 
d(F/., G'~) ~ const i_<p, ~,~ (E { (h~/2 X~,)2}) 3/2 

< const h2, i/2 E(121s 1(1~ I__<~(tc~)}) for large [m]. 

q 

Thus, setting s(m)= ~ mi, we have 
i = 1  
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d G;, G;.) 

( ~(s(m)-l~176 ) 
N const 1 q - 2 r  ~s(m) Z c}#P(c'U/aKl2l~c~ 

m #=i 

=<const (1 + i ~'fl--1 C--�89247176 v)Ec~P(cN2<I ~1~c(t~+1)/2)) 
v=l ~<v 

=const  (1 + i c}UP(cW2<lxl<c(U+I)/2)i Ifl-lc-�89176176 
/i=l v=# 

~t=l 

_-< const (1 + g(t~la(log + I)21) a- ~/log log + 12l)) < oo. 

Proof of (5.9)(iii). By (4.7), (5.4) and (5.5) it suffices to show that for large [m], 

(5.11) ~ e x p ( - � 8 9  -+ ~ e x p ( - l ( ~ , U - ~ > ) d ~  
A APm/3 

+ const Ira] - 2 for all Borel sets A ~ IR p. 

The change of variable t /=F  "-~ ~ takes condition (5.11) into the form 

Sexp( 1 - g ( ~ ,  ~>)d~ < ~ (A pro/3) exp(- �89 t/))dt/ 
r.;-- ~ 

+ const Ira]- 2, for all Borel sets A ~ IR p. 

But (5.12) holds if we can show it holds with 

A c {4 E1RP: ]~1 < const (loglog + [cm]~)}. 

Now, by Lemma 5.10 and (5.7), if t /eA and A satisfies (5.13) then 

Itl-F/,~rll<-_p~/3 and F~, is non-singular 

since [m] is large. But then F ' ~ A c A  pm/3 or AcF,~-~(AP'~/3). Thus (5.11) holds 
as does (5.12). 

The proof of Proposition 5.6 is now complete as t he  statements (5.9)(i)-(iii) 
have all been verified. 0 

6. Proof of Proposition 4.1 

The following Theorem is due to Philipp [13]. It generalizes Theorem2 of 
Berkes and Philipp [1]. 

Theorem. Let {Bk, ink, k> 1} be a sequence of complete separable metric spaces. 
Let {X~;k>l}  be a sequence of random variables with. values in B k and let 
{Lk; k >  1} be a sequence of a-fields such that X k is L~-measurable. Suppose that 
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for some sequence {(bk, k > 1} of non-negative numbers 

IP(AB) - P(A) P(B)[ <= q~kP(A) 

for all k>=l and all A~Vj<kL~ and B ~ L  k. Denote by F k the distribution of X k 
and let {Gk, k>=l} be a sequence of distributions (G k a distribution on Bk) such 
that for some non-negative numbers Pk and a k 

Fk(A) < ~k( U A {~" mk(~, n)<P})+ac 

for all Borel sets A c B c. Then without changing its distribution we can redefine 
the sequence {Xk; k_>l} on a richer probability space on which there exists a 
sequence {Yk; k>= 1} of independent random variables Yc with distribution G c such 
that for all k ~ 1 

n (ink (Xk, Yk) >= 2 (~k + PC) ~ 2 (Pc + aC)" 

By the conclusion of Proposition 5.6 we can apply the above theorem 
directly (with (~i--0) because we are working with independent random vectors. 
Thus, for independent vectors Ym, we have: 

(6.1) ~ p([xm(~b ) - Y,,] > 2pro ) < 
m 

where Y ~ d V ( O ,  Ip) and Xm(q~ ) is given by (5.5). Now if {Wo(t); t~[0, ~)q} is a 
Brownian sheet in B with covariance function T(. , ' )  then the action of the 
canonical maps F1 u defined by (4.2) render HN(W(t))%fW(t)~JV(O,[t]I;).  
Hence by (6.1), the assumption that x is pregaussian and Kolmogorov's 
existence theorem, 

(6.2) ~ P(hz~(~b)[ ~ 2.- Wo(n~(4,))l->2pm)< oo. 
m n~Hrn(~) 

Here we have put 

~o({k~]N~: m< k<_-n})= ~ (+_) ~o(k) 
k:Ci~ltti--1 o r n i  

for m, n e N  ~ with m<n. 
Next, by (5.1)-(5.4) and (5.7), 

q 

h~(qS) pm<const  p ~ c ,~ (loglog + [-%])~ 
m<n m<_n 

< c o n s t p ( c ~ - l ) - q a t ,  for 1 < c < 2 .  

This, together with (6.2), yields 

(6.3) lira a -1 IIS~,,§ - Wo(c + )ll -<const p (c~-  l) -~ a.s. 
C m  m e - -  

m 

To obtain Proposition 4.1 from (6.3) and Lemma 4.3 we need the following 
lemma which gives us a bound on the fluctuation of S, over the set Hm(qS). 
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(6.4) Lemma. Set c= 03+ 1 in definitions (5.1)-(5.3). Then for any proper subset 
J ~ { 1 .. . . .  q} and small positive number O, 

~lima~-ml max [I ~ 2k11<~2 a.s. 
nsH,n(~)) k~Hm(J),k<=n 

Proof. We apply Lemma 2.9 to obtain 

P(max I[ ~ xk[I >2-q  Oac~/12) 
nEHm(r k~Hm(J),k <=n 

(6.5) <const(0)-P(l[ ~ 2,f[ >2-2qOac,,/12) 
neHm(J) 

for [m] sufficiently large (depending on 0). This is valid because the mean zero 
random vectors {2, ; h e N  q} are finite dimensional and independent. Hence the 
conditions of Lemma 2.9 are easily seen to be satisfied by applying (~ebyffev's 
inequality. 

Now set p = 0 2q in (5.7). By Proposition 5.6, 

P(ll ~ 2.[] > 2  - q 0 a ~ / 1 2 )  
neHm(J) 

<F~J~({~. elRP: I~.l >2-2q Oa~,,h~,+(J)/12E} IlxH 2) 
< % + e ( { ~  elR~: 1~1 > ( C o  O(c - 1 ) - ~  - 0 2q) ( l o g l o g  + [cm]) ~ ) 

for some absolute constant C o. Thus, if 0 is sufficiently small, 

,, L.H.S. of (6.5)<const(0) (1+ ~ {am(O)+P ()~2(0)> 30 i=1 ~ mi)}). 
An application of the Borel-Cantelli lemma completes the proof. D 

We are now ready to finish the proof of Proposition 4.1. We take c = 03 + 1 
and p = 02L Let neNL This determines m = m ~ e N  q by 

Cm < H < C m +  e 

We then write 

a21 1[~,, - Wo(v)l p <a2ml HScm+ ~ - 17f0(cm ~_e) [] 

+ac- 1 ~ max (I]Wo({jeH,,(J),j<k})U + JI 
J~{1 ..... q} keHrn(J) jeHm(J),j<k 

Therefore by (6.3), Lemma 6.4 and our choices of p and c, 

lim a~ -1 ]lXn - ~0(n)ll <_0 . = 3  a.s. 

when 0 is small. This, together with Lemma 4.3, yields the 
Proposition 4.1. 

Y/l). 

conclusion of 
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7. Proof  of  Theorem 1 

By utilizing Proposition 4.1 we can patch together various independent Brow- 
nian sheets to obtain a single Brownian sheet satisfying (1.4). Our method is 
similar to that employed by Major [11]. 

For each i_>_0 we construct pairs of processes ~,.,(~(~)', n~Nq}, 
{W(~ t~[0, oo) o} which are independent for different i. Further, for each i we 
take 

and 

{~c (~)" n s N  q} = a collection of independent copies of x 

{W(i)(t); ts[0,  oo)q} = a  Brownian sheet in B 

with covariance function T(. , . )  given by (1.3). Put S(, ~  ~ x~); n~N q, i>0.  By 
Proposition 4.1 we construct these processes so that ,---<, 

(7.1) lim a2 t [IS~~ -i a.s., i>0.  
?1 

Using (7.1) and Lebesgue's bounded convergence theorem we choose an 
increasing sequence {vi, i>  1} of qth powers of positive integers such that 

(7.2) P(sup > v i a 21 II S(, i) _ W(i)(n)II > 2-  i+ 1) < 2 - i. 
[nl  

We pick a subsequence {v'i} of {vi} so that with n(i)=(v'O 1/q. e e N  q we get 

(7.3) and 

P {an"l(llS~~ I[ + II W(~ > 2 - i }  < () (3 
i > l  

P {a2i,~ (1[ S~i~i)LI + I1W(~ > 2-i} < oo. 
i ~ 1  

This is possible because lira P {a~- 1 ([[ S~i)II + [I W")(n)II) > 2 -  ~} = 0 for each i >_ 0. 
/I 

We now define inductively {W(t); tel0,  oo)~} and {S,; n~N q} by putting 
W(0)=0, S0=0  , n(0)=0, v'0=0 , t = ( t l ,  . . . ,  tq) and 

W(t)  = W( i ) ( t ) -  W(~ + W(n(i)) for v' i < r l . . .  tq < v'i+ 1 

(7.4) and 

In this way 

(7.5) and 

S -.q(i)_~(o J-.~ for v ' ,<[n]<r 1 �9 i>O, 
- -  ~ n  ~ n ( i )  - -  ~ n ( i )  - -  ~ - -  

{S.; n~Nq s {S~~ n~Nq} 

{W(t); t~[O, oo) q} =D {W(~ t~[O, oo)q}. 
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Thus, from (7.3), (7.5) and the Borel  Cantelli  lemma, 

(7.6) lim a,~i~ (l[ Wti)(n(i))l[ + [I W(n(i))ll + I[S~oll + IlS~ a.s. 
i ~ c o  

Moreover ,  from (7.2) and the Borel Cantelli  lemma, 

(7.7) lira sup a21 HS~~162176 = 0  a.s. 
i~co  [nl>v'~ 

Finally, let neN q. Then for some i=i(n) we have v'i<[n]<v~+ I, and, from 
(7.4), 

a. l l[W(n)-S(n)ll < sup a21 ]lS~i)-W<i>(n)ll 

(7.8) 

+ a; l(H W(i)(n(i))]1 + II W(n(i))]l + II S~i~i)[] + [I S,<i)[]). 

Hence, (1.4) follows from (7.6)-(7.8). D 

8. Functional Law of the Iterated Logarithm 

We first note  that  a Brownian sheet {W(t); t~[0,  oQ)q} in B has cont inuous 
sample paths. To see this we use the argument  in [2], p. 258-259. Let  O u 

= {2- N n: 1 < n i < 2 N, i = 1 . . . .  , q; n ~ N  q} and put  D = ~ D N. Define 
N > I  

u~ = sup tl w(t)-  w(s)II. 
s,t~D 

I s i - t i l  <=2- v; i= 1, ...,q 

We must  show that  lim Uv=0 a.s. and for this it is enough to show that  
v 

l im P(U~>6) - -0  for each 3 > 0  since U~ is non-increasing in v. 

Put  Y~ = Y,, v= sup II W(t) -  W ( 2 - ~ ( n -  e))ll. Then 
teD 

( n i - 1 ) 2 - v < = t i < n i 2  v ; i =  1, . . . ,q 

C~ < 3 max Y,,, 
{neNq: 1 < n i <  2 v ; i =  1 ... . .  q} 

SO 

P(Uv>~)_ -< F, P(L>~/3) 
l ~ n / = < 2  v 
i = 1  .... .  q 

= 2  ~q P(Y~> 6/3). 

Now observe that  P(Ye> 6/3)= lim P(  sup ][ W(t)[I > 6/3). Moreover ,  by a 
N~oo  t e D N , t < _ 2 - v e  

result of Fernique [33 there is some c~ > 0 for which E exp(c~ [[ W(e)[I 2) < oe. Thus 
by L e m m a  2.9, 

P( sup II w(t)[I > ~/3) 
teDN, t < 2 - V e  

< C e x p ( - ~ 3  2 2vq/9) 
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for some constant C depending only on a, 6 and q. Therefore 
P(U~>6)< C 2 ~ e x p ( - a d  z Tq/9), and this last expression clearly tends to zero 
a s  v---~ O0. 

We now show that Theorem 2 holds when we replace B by FI~(B) for any 
N >= 1. Here, 1-1 x is the canonical map on B as given in (4.2). To do this we need 
only modify slightly Pyke's proof of a functional law of the iterated logarithm 
for a Brownian sheet {W~ ta[0, oo)q} in IR p with covariance matrix Ip ([14], 
Theorem 4). 

First, if p=min(N,  dim HE) the limit set J f r  defined in (1.6) with B replaced 
by HN(B ) is just the set 

(8.1) ~r  ,f~ c.~(E0, ly) 

f is absolutely continuous w.r.t. Lebesgue] 
measure 1 on [0, 1] q, f ( t )=0  if 
t~ = 0 for some i=  1,..., q and 

(df/dl, df/dl) dl<__l 
[0, 1]q 

Let us write I~[~ = max [~i[ for ~ =(~l .... ~p)elR v. We put 
i=  l , . . . p  

~(V)={gECR~([O, t]q): I f -g[oo<~ for some f e K  (p)} 

and 

g/]~ = a2 i W~ ti,...,nqtq) te[O, 1]q,n~N q. 

Then, just as in [14], 

P( W ~ (~ :Xr~ Ip)) <= (log In])- (1 + ~)q 

for some fi=fi~>0. Thus, with % given by (5.1) one deduces that P(W~~ p) 
for large [m])= 1 since ~ ( m  1 + ... +mq) -(l+~)q < co. 

?n 

Let now neN q. Suppose that cm_r %. For t= ( t  1 ... .  ,tq)e[0,1] q we 
define t,=(tn(1 ) ... .  ,t~(q))~[0,1] q by setting t~(i)=n~ti/cm(i ) i = t  ... .  ,q. For any 
gEJd ~e~ and t~[0, 1] q we write 

W~ - g(t) = (Wc~ - g(t.)) a~a. + (_~_a~.~ _ 1)x g(t.) + (g(tn) - g(t)) ac'~a. 

From (8.1) and the Cauchy-Schwarz inequality, observe that for any rectangle 
R c [ 0 ,  1 ]  q the increment g(R) satisfies 

(8.2) ]g(R)[o~ --< l(R). 

Therefore 

l w  ~ - g l ~  <= I~ ~ ar a ;  1 

+(acma21-1)[g[o~+2 q max (1-n]cm(i))ae a2 ~ 
i~  1, ..,,q 
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Thus, by taking c close to 1, 

(8.3) P(W,~ ) whenever In] is large)= 1. 

Therefore, since X (p) is ]'ro~-compact, with probability 1 the collection 
{W~ nEN q} is relatively compact and has its limit points in gU(P) (with respect 
to the norm I'1oo). We prove that the limit set of {W,~ nEN q} is almost surely 
equal to 2((p). 

Let # be a positive integer. We divide the unit cube [0, 1] q into #q cubes l 
each having sides of length 1/#. Denote by N, the collection of all such cubes 
which do not have some face in one of the planes {t=(t~ ... .  ,tq): t~=0}, i 
=1 ... .  ,q. Let gEXf (p) with ~ (dg/dl, dg/dl) d l = l - ~  for some c~>O. By 

[0, 1]q 

(8.2), (8.3) and the separability of 3(4 (p) it suffices to show that infinitely many 
of the events 

An = {I Wn~ g(z)l~p <~, t ~ , } ,  n~ga  

occur with probability 1 for each # > 1 and ~ > 0 (cf. the argument of Strassen 
[15]). As in [15] we estimate that 

P(An) > const (log [n])- (1- a)q (# loglog In])- ~ p/2 

for In] sufficiently large. Then, putting n(k)=(#k~,...,# k~) for each k 
=(k 1 ... .  ,kq)eN q, we notice that the events A,~k) are independent by our choice 
of ~,.  Moreover, 

E P(A~(k,)= oo 
k 

and 
(k 1 + ... +kq)(- 1+~)~ = co. 

k 

By the Borel-Cantelli lemma we have accomplished what we set out to do. 
We have thus proved Theorem 2 with f , ,  B and ~ffT replaced by W, ~ IIN(B ) 

and 2(c~ respectively. But, if f o is defined by the R.H.S. of (1.5) with W~ 
instead of W(m) we get lim If, ~ - Wn~ =0  a.s. Therefore 

n 

(8.4) and 

P(lim inf f l f ,~  
n f ~ ( ' ( P )  

P({f~Cap([O, 1]q): f is a I ' l l-limit point of 

{s n~Nq}} = y(p)) = 1. 

We now pass to the general case. Let {W(t); tr or)q} be a Brownian 
sheet in B with covariance function T(., ' ) .  Let 0>0. From (1.5) and Lemma 
4.3 there is N = N  o such that 

(8.5) P(lim H(I --HN) (f,)HB, ~ =< 0)= 1. 
n 
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From (1.6), (4.2) and (8.1), 

(8.6) Hn(o~ffr) =oU ~ with p =min(N,  dim Hr). 

Moreover, by (1.6), (4.2) and (4,6), 

(8.7) lim ItIINf--flLB ,~=0 f~Yr" 
N 

Therefore, because {IIN(W(t)); tel0,  oe)q} is a Brownian sheet in IRP with cova- 
riance matrix Ip, (8.4)-(8.7) yield Theorem 2. [3 

To prove the Note following Theorem 2 we calculate by Lemma 2.9, the 
aforementioned result of Fernique [3] and the Borel-Cantelli lemma that 

lim [lf~- W~fin, ~ =0  a.s. D 
n 

9. Proof of Theorem 3 

Proof of (1.8). Let g, denote the R.H.S. of (1.5) with Sm in place of W(m), Let T 
=T( . , . ) ,  Y r  and fin be as defined in (1.3), (1.6) and (4.2) respectively. We 
mention that the definitions of HT. and S r depend only on T, Observe that for 
any N> 1, fiN(x) satisfies the hypotheses of Theorem 1. Hence, by Theorems t 
and 2 it follows that 

(9.1) 

and 

(9.2) 

P(lim inf tlHN(g .-f)ll~, ~ = 0 ) =  1 
n f e ~{"r 

P({f~C~([O, 1]q): fiN(f) is a LI" 1[ B, o<limit point of 

{nN(g.); neNq} } = f i N ( S 0 )  = 1. 

Furthermore by Lemma 4.3, (8.5) holds with f ,  replaced by g,. This together 
with (8.7), (9.1) and (9.2) yields (1.8). 

Proof of (1.9). For any e > 0  

lim P(a21flS,!l > e ) < t i m  P(a;II!HN(S,)II >e/2) 
n 

(9.3) + lira P(a21 [I QN(S,)[I > el2) 
n 

where QN=I-fiN. But, because fIu(B) is a finite-dimensional space, by 
Cebygev's inequality it is clear that 

(9.4) lira P(a 211111u(S,)tl > e/2) = 0, N > 1. 
n 

Further by (4.5) and (1.7) (i) 

(9.5) lim lim P(a 21 !t QN(S,)L1 > e/2) = 0. 
N ~  o~ 
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As z is arbitrary, (9.3)-(9.5) give 

(9.6) P lim a~- 1 Sn = 0. 
n 

To finish the proof of (1.9) we define x', by (3.5) and put S'. = 
m < n  

by (2.3) and Lemma 2.4, 

' Then X m . 

(9.7) lim a21E I[S.-S',,I[ <lim a21 ~ %.=0. 
n tl ~ n  

The last equality follows by the argument just preceding (3.6). From (9.6) and 
(9.7) we get P "  -z , hm a, S ,=0 .  We now apply Lemma 2.15 together with the 

n 

Remark included in its proof to obtain lira a2 ~E IIS',Jl =0. This together with 
n 

(9.7) yields (1.9). 17 

10. Proof of Theorem 4 

Let c~(.) be as defined in (2.2) (iv). For each 6 > 0, put 

(10.1) @ ) =  .f I~1 P{xed~} .  
I~I ----> ( l o g l o g  + [nl) s ~ ( [ n l )  

The proof of Lemma 2.4 can easily be adjusted to yield the following. 

(10.2) Lemma. Let xeLZ(log q-1L)/ loglogL for some q> 2. Then for each 5>0  
we have ~ (loglog + In])-1 +~ a, -1-..(~) < oo. 

n 

Our next result is a direct analogue of Proposition 3.1. 

(10.3) Proposition. Let x be a mean zero random variable taking values in a 
separable Hilbert space (H,[-[) with xeL2(togq-l L)/ loglogL for some q ~ l .  
Then x~BLIL. 

Proof By Proposition 3.1 this result holds for q =  t since, in fact, tim a 2 1 E  IS,I 
n 

= 0  by Cebygev's inequality. So, we take q>2 .  Also, as in the proof of 
Proposition of 3.1 it is enough to assume that x is symmetric, so we do. 

The argument below follows along the lines of Wichura [-16]. We set: 

fl(r) = (loglog + r) 3/s r a/z, 7(r) = (loglog + r) ~(r) 

x ' ,  = x, ,  1{1~. I _< ~([,,j)}, x~,' = x n l { i x .  I =< ~ ([,,])} 

x* = x, 1{~([,] ) < I~,I =< ~([,l)~, x** = x, - x, -- x , .  

s;= E x;.,s;= E E x,*.,s*.*=s';-s',,-s*.. 
m<=n m<=n m ~ n  

By Lemma 10.2 we have (as in (3.6)) that 

tima~ -1 iIS,-S','t]=O a.s. 
n 
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Thus, by the argument of Sect. 3 it suffices to have 

- ' S "  S ' I  (10.4) l ima,  t , -  ,: = 0  a.s. 
tl 

To obtain (10.4) we shall in turn show that 

S*: (10.5) l ima2 i 11 ,,! = 0  a.s. 
n 

and 

(10.6) lhna~ -i [iS**{i = 0  a.s. 

Write: 
d,, = (2 "I - 2 ... .  ,2 mq - 2), m = (m 1 . . . .  , mq)eN q 

(10.7) and 

Am= {neNq: d, ,<n<dm+~}.  

Let e > 0. By the 4th moment form of ~ebygev's inequality, 

P(] ~ x*l>e%m) 
. E A r n  

(lO.8) 
<(e%.~)-4 E ~ , , z (x j, xk ) 

j, k~A,, 

_--< (e%m) -4  (1 + E Ix[ 2) (fl2(Edm+ e] -I- [din+ el) 2 E IX.g[ 4) 
"~Ara  

__<const(e)(toglog+ [d,,])-s/4 [dm] 1 ~, E [x*l m 
nE Zlm 

(10.9) {max t ~ x*l>eae, ,} ,meN q. 
n e A m  k ~ A m ,  kN_n 

Thus, by (10.7)-(10.9) and the Borel-Cantelli lemma, to establish (10.5) it is 
enough that 

(10.10) ~, logtog+ [dm]- 5/4 [dm]- 1 ~ E Ix*] 2 < oo 
m n E A m  

We employ the inequality: 

b 

E Ix[ 2 1{o5_ I~1 =<b} =< a~ P {Ix[ > a} + 2 ~ rP(lx] > r) dr. 
a 

For n~A m we estimate that 

e Ix*? =< ~([d.~+e]) e {Ixl > ~ ( [d j ) }  
(loglog + [dm]) 5/8 ~([dm + e]) 

+ 2 5 rP(Ix[ > r) dr + fi(l-d..+ e]) U(5/8) dm * 
~([a,,]) 

Since this bound tends to zero as Ira]--roe we can apply Lemma 2.9 to the 
events 
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Then, breaking up the above integral and making trivial estimates, by (10.1) 
and (10.7), 

1 0  

e Ix.*l z 5- ~ Edm. e] (loglog [din. el)-1 + ~/8 p {Ix[ > (loglog + [ d , J ) ~ }  
i = 1  

+ [dm+ ~] (loglog + [-dm]) 3/8 u(~/8) 
dm 

Hence 
Z (l~176 + [d,,])- 5/4 [d,, 3-1 Z E Ix*l z 

n ~ r n  

= 0  ~ a~- 1 (loglog+ InI) ( - 1  + ~ )  -L (L+~--a''-~,16 4f~nt, 162(i-1-'i 
i - -  n 

+ O(V a 2 1 (loglog+ [n])-  3/s u(S/s)). 
n 

Thus, by Lemma 10.2, (10.10) holds and as already stated this yields (10.5). 
To establish (10.6), let 

E , ,={x**%0 for at least two n TM in Am}. 

Since l ima 2 1 7([n])=0, by (10.7) and the Borel-Cantelli lemma it is enough to 
tl 

show that ~ P(E,,) < oo. Now, by independence and (~ebygev's inequality, 
m 

P(E,,)< ~ P(x**4=O)P(x~*+O for some k#n, keA,,) 

5- Z f l -~( [n])e  * '4  Ix, I ~ /~-=([k])elxl = 
me,din k e d m  

= o ( [ a J -  l(loglog+ Ida3)- ~" ~ e Ix~*l ~ 
n~ Am 

But, we have the bound: E [x**[ _-<7(In]) %(7/8). Therefore, 

~P(Em) = 0 (2  a 2 * (loglog + [n])- ,/4 u~V/8)). 

This last expression is finite by Lemma 10.2. Whence (10.6) holds. D 
To finish the proof of Theorem 4 we proceed exactly as in the proof of 

Theorem 1. Since x takes values in a separable Hilbert space it is well known 
that x is pregaussian. The analysis of Sects. 4, 6, and 7 therefore goes through 
with Proposition 10,3 taking the place of Proposition 3.1 if we can show 
Proposition 5.6 holds under the hypothesis of Theorem 4. 

By checking the proof of Proposition 5.6 one sees that it is only necessary 
to demonstrate the validity of (5.9) (i). Fix a subset J c { 1  . . . . .  q}. In what 
follows we drop the dependence on J from our notation. Let X m and X~ be as 
defined in (5.5). Put 

X* = hff, ~ ~ (2. l~=(r.])_< I~l ~#(M)} -E(2.  I{=(E.I)< I~.l <#(t.l)})), 
n ~  Jcfm 

x** =h2. ~ F, (~. I~(L.~)< I~I~,(~.~)~-E(~. l~(~.j)< I,~ 
n ~ Hm 

(10.11) and X2,=X;,+X*+X** 
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Then,  using L e m m a  10.2, 

! tt 1 (10,12) Z P(IX,,-X,,I > ~ p , , ) <  co. 
m 

Fur ther ,  by the same a rgumen t  used to es tabl ish (10.5), 

P(lX*l > ~ p ~ )  < co. 
in  

(10.13) 

Final ly ,  

while 

* *  1 ^ P(X* > g p , , ) N P ( [  ~ x,l,~(t,~)<lel<_,(t~l~/t 
n ~ H m  

>~pmh,~- ~ E(I2,[ l~([,l)<lx,l=<,(t,l)I), 
n ~ H m  

lim a L  1 ~ E([2,I l~(t,l)<l~,l~(t,j) ~) 
m n ~ H r n  

_-<lim a~- l (f l ([c ,J))  -1  h,, E ]212 = 0 .  
m 

Hence,  in the  same way tha t  we verif ied (10.6), 

(10.14) ~ P(IX** l > ~  p,~) < co. 
m 

C o m b i n i n g  (10.11)-(10.14) a n d  L e m m a  10.2 we ob t a in  (5.9) (i). D 

G.J. Morrow 
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