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Summary. Given independent identically distributed random variables
{x,;neN%} indexed by g-tuples of positive integers and taking values in a
separable Banach space B we approximate the rectangular sums
{ x,;neN by a Brownian sheet. We obtain the corresponding result for

ms=n

random variables with values in a separable Hilbert space H while assum-
ing an optimal moment condition. Generalized versions of the functional
faw of the iterated logarithm are thus derived. ‘

1. Introduction

Let IN? denote the set of g-tuples of positive integers, For any g=1 and nelN?
we define:

4q
n':(nl:""nq)’ [n]znnl
i=1
and
a,=(2q[n]loglog™ [n])'"*.

Here log™ r=log{max{(r, 8)). Set e=(1,...,1,). Also, for m, neIN% put m=<n (resp.
m<n) if m;$n,; (resp. m,<<n) for cach i=1,....q.

Throughout this paper we denote generically by {x,;neIN?} a collection of
independent copies of a random vector x and set §,= 3 x,.

msn

Assume for the moment that x is real valued. If g=1, it is well known that

xel? and Ex=0

(D) < lima! [S,|< a0 as.

B> 00
However if ¢>1, it is known that

xe(l?log? *L)/loglogl. and Ex=0

(1.2) < lim supa;t'|S,|<o0 as.

r—a [mlzr
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(see [16], p. 280). Moreover whenever (1.1) or (1.2) is in force a corresponding
functional law of the iterated logarithm holds. A basic consequence of the
work presented here is that these results extend to the case of a random
variable x taking values in a separable Hilbert space (Corollary 1).

Let B denote a real separable Banach space with norm ||-||. If {z,;neIN?} is
a collection of B-valued random variables such that!

lim P(|z, | >&)=0

for every ¢>0, we designate this property by writing

Plimz,=0.

n

The covariance function T(+,) of a B-valued random variable x is defined by

(1.3) T(f,8)=E{f(x)g(x)} fgeB*

and x is said to be pregaussian if its covariance structure is realized by some
Wiener measure on B. (For a construction of Wiener measure see [4].)
The following theorem generalizes a result of Philipp [13] to integers g>1.

Theorem 1. Let g=1. Suppose that x is a random variable taking values in B.
Assume that
ssume xel?logi~ 'L,

x is pregaussian and Plima; 'S =0.
n

Then there is a Brownian sheet {W(t); t€[0, 0)?} in B with covariance function
T(-,*) determined by (1.3) such that

(1.4) lima; S, —~W(n)| =0 as.

A Brownian sheet {W(¢);te[0, ©0)?} in B with covariance function T(-,-) is
a B-valued process having independent increments W(R,),...,W(R;) when
R,,...,R; are disjoint rectangles in [0,00)? and W(t)=0 if any of the coor-
dinates of ¢ vanishes. Further, the increment W(R) over a rectangle R has
distribution g, where [R| is the volume of R and, for r>0, u, is a Wiener
measure on B with variance parameter r satisfying

if(f)g(é)ﬂr(dﬁbr-T(f, g) f.geB*.

Here, we put W(R)=> (£)W(v), the sum extending to all vertices v of R.

We have a functional law of the iterated logarithm for the Brownian sheet
{W(1); te[0, 0)}. Let Cx([0,1]9 denote the Banach space of B-valued con-
tinuous functions f on [0, 1]? with the norm

I fll5,0= sup [S(OI
te[0, 114

! lim means lim , lim means lim sup.

n [rl-w n roo [rlzr
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For neN? and t=(t,, ..., ¢,)e[0,1]% define f,€ C4([0,17%) by

a; * W(m) for t;=my/n;; i=1,...,q, eSm=n.

0if t;=0 for some i=1,...,q.

(L.5) f,(t)=1[Lagrange interpolation in ¢,,...,f, over the
cube {te[0,1]9:m,—1=5t,Sm,,i=1,...,4q},

esmsn.

Let H; be the reproducing kernel Hilbert space in B generated by the co-

variance function T=T(-,*) of W(e). Let further {¢¥;v=1} be a sequence of

bounded linear functionals on B with the property that the points ¢,

=[E@¥()P{W(e)ed&}, n=1, constitute a CONS. {¢,v=1} in Hy and ¢
B

=3 0¥ (&)e, for EeHy (see e.g. [9], Lemma 2.1). The inner product (-,-) in Hy

v=1

is given by (¢, 9,)=[ ¢} (&)@} (&) P{W(e)edl}. We put
B

(1.6) Ar= {fe Cp([0,1]%)

Jf(eH for te[0,1]% oF(f) <l for v=1,

f(t)=2¢v£{deoé‘(f)/dl}dl and ) [{do¥(f)/dl}*dI=<1.

Here, | denotes Lebesgue measure on [0, 1]4,

Theorem 2. Let f, and Ay be as given in (1.5) and (1.6) respectively. Then
lim inf | £, —f||=0 as.
fed ¢

n

and
P({feCyx([0,17%): f is a |||, ,-limit point of {f,;nelN%}}=H7)=1.

Note. Theorem 2 also holds when in the definition of f, the R.H.S. of (1.5) is
replaced by a, ' W(n,t,,...,n,t,). Implicit in this statement is the fact that a
Brownian sheet in B has continuous sample paths.

We shall prove Theorem 2 and this Note in Sect. 8.

Let us say that a mean zero B-valued random variable x having a second
moment belongs to FLIL if Theorem 2 holds when f, is replaced by g, and T
=T(-,-) is defined by (1.3). Here, by g, we mean the R.H.S. of (1.5) with §,, in
place of W(m). Let K be the closed unit ball of H;. We say that x belongs to
CLIL if

(i) liminf||é—a;'S,|[=0 as.
ceK

(1.7) and
(ii) P({£eB: ¢ is a || ||-limit point of {a; 'S, ;neN}}=K)=1.

We also say that x belongs to BLIL if just (1.7)(Q) holds. Clearly,
FLIL =CLIL =BLIL.
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Theorem 3. Let g=1. Let x be a B-valued random variable with xcI?log? ' L.
Then

(1.8) Plima; 'S,=0= xeFLIL
and
(1.9) xeBLIL = lima_ 'E |IS, | =0.

Theorem 3 is proved in Sect. 9. 1 conjecture that the moment condition of
this theorem can not be improved. Nevertheless if we make x take values in a
separable Hilbert space H then we obtain a characterization of the invariance
principle (1.4) with a weaker moment condition when g=2.

Theorem 4. Let gq=1. Let x be a random variable taking values in a separable
Hilbert space (H,||). Then

xel? q=1
1.10 Ex=0 and ,
(110) X an {xe(Lz log?~ ! L)/loglogL, g=2
if and only if there is a Brownian sheet {W(1);t€[0, 00)} in H with covariance
Jfunction T(-,-) given by

T(fe)=E{f(x)g(x)} fgeH*

such that
(L1 lima  *{S,—W(n)i=0 as.

Corollary 1. Assume the hypothesis of Theorem4. Then, (1.10) holds
<> xeFLIL < xeBLIL.

Corollary 1 generalizes a functional law of the iterated logarithm due to
Wichura [16]. To prove the corollary, notice that Theorems 2 and 4 combine
to give (1.10)= xeFLIL, while the proof of the reverse implication is the same
as that for H=IR (cf. (1.2)).

Let us develop the main ideas of the proof of Theorem 1. First, the proof is
reduced to the verification of Proposition4.1 by the method illustrated in
Sect. 7.

We prove a bounded law of the iterated logarithm for rectangular sums
(Proposition 3.1) so a finite dimensional approximation can be effective. To do
this we adapt both the Hartman and Wintner [6] truncation approach
and the Kuelbs [8] approach to a Kolmogorov law of the iterated logarithm
for B-valued random variables to the situation of multiparameter indexing
(Sect. 2). In Sect. 5 we show that certain rectangular sums of finite dimensional
random vectors obey a kind of weak law of the iterated logarithm (Proposi-
tion 5.6). Proposition 4.1 is thus obtained via an application of Theorem 3 of
Philipp [13] (quoted here in Sect. 6).

We prove Theorem 4 in Sect. 10 by modifying the proof of Theorem 1.
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2. Preliminary Lemmas

To begin we follow the approach of Hartman and Wintner [6]. Let x be a B-
valued random variable with xeI?log?~* L for some g=1. Denote the distribu-
tion of x by . Let 7 be a probability measure on B satisfying

[1€12og™ €)= e(dE) < oo

B

I IEled)=x() [ li€l=dd)

&>~ el >r

(2.1) and

for some decreasing function y: [0, c0)=IR* which tends to zero at infinity.
Choose ¢: N—IR " so that

() e)>x (')
(i) &(r)>r~S(loglog* r)*/?

22) ..
(iii) &(r)—0 as r—oo0
(iv) a()=e()(roglog* r)~ 12100 as r— oo.
Define:
2.3) we= | lElode) neNe,
&1 >a(n
(24) Lemma.

a~'w < oo,
Z n n

nelN?

Proof. By (2.1)-(2.3) and partial summation,
25) Y an'wu< Y ay tx(@m) [ (€] edd)

ms=n m=n &1 > allm])
In]
= [ 1EIt@dd Y o@a;  xx()
&1 > alln) i=1
[n}—1

LY 10 S el)ar ).

r=1a@) <|[¢}] Sa@+1) i=1

Here, we put

o=w,0= Y 1.

ni...ng=n

D(r)= 1 Y @, (i).

igr

Put also:

liA

Then by partial summation,

¥ wl)a 1ati)=a; 1(6) D)
2.6) o
+ 3 (a7 1(al0) = a2 1+ 1) DG
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But, from [5],
(2.7 D(ry~r(logr)® *fg—1)!  (r—>o0).

So, breaking up the R.H.S. of (2.6) and using (2.2) (i)—{(iv) together with (2.7) we
find:

(2.8) R.HS. of (2.6)=0(a;* x(r**)D(r)+ D(r'/%)
r—1

+ ) a7t —ar ) xle) +ay (@) — x(eli+ 1)} DE)

i=pl/3

=0(a, ' y(r'®)D(r) +D(r'1*)+ O (x(a(r' 1) Z (a7 ' —a; .Y i(log* iy~ 1)

i=ypl

=0(({log* r}*~* a(r)).
Hence, combining (2.5), (2.6} and (2.8),
Y Gy W, =0(f €[ (logh 1] 1(dE) <oc0. [0
B

The following lemma is a generalization of Ottaviani’s inequality ([2],
p. 45).

(2.9) Lemma. Let {y,;neN%} be independent B-valued random variables for
some q=1. Set T, =3 y,. Fix neN%. Let 9,(n) denote the set of non-empty

kgm
differences A=R,~ R, generated by rectangles R, {meN*: m<n}; i=1, 2, with
R, having a vertex at n. Define 1,(0)=29, r(8)=6/(1~9), and r,__ ((0)=71,(r,()) for
0= 0 <1. Suppose that

max P(| > y,|>A)=d6<1

de@Dq(n) med

{2.10) and
r,_1(0)<1.
Jor some A>0. Then
(2.1 P(max|T,[ >22A) (1 —r,_(8)"* P(| T, ]| > 4).

msn

Proof. When g=1, (2.10)=(2.11) follows by Ottaviani’s inequality which is
valid in the Banach space setting. We assume iductively that (2.10)=(2.11) for

g=0 -1
For Q22 and m=(my,...,my)eIN? we write:

m=(my,...,my)eN?~*

To=Y Vo= X (Y Vo 3 Vioerrr 2, JIEB™.

kK Zm’ RMEm k121 ki£2 kiZn

and

Let the norm J||-|| on B® be defined for v=1 by

e =maxfi&l,  £=(&y, - &)eB.



LIL for B-valued Random Fields 271

Clearly, we have max|[T,,|| = max||7..||. Thus by our induction hypothesis we
obtain men m s
(212)  P(max|T,|z224)S(1~1,_,(0) ¢ " P(IT;l1>24), neN

Here,
o= max P(ll 3. yll>24)

A'eDo-1(n) k'ed’

(2.13) and
Y, yell=max| Y .

Ked iSny Ked, ki i
Hence, by Ottaviani’s inequality,

§< max (1—38)"18=r/(d)

AeDg-1{(n')
Similarly one finds that
P(ITylll>29)<(1—6")" " P(| T, > A)

(2.14) with
F'=maxP(| Y pl>A)=s.

i<nm k' Zn,i<ki£ny

The proof by induction is complete upon combining (2.12), (2.13) and (2.14)
and noticing that

(I—=75_ J@) -6t ~T5_ {(0)¢
forQ=2. 1[I

The next lemma suits our purposes as a multiparameter analogue of Theo-
rem 3.1 of [8].

(2.15) Lemma. Let {y ;neN? be independent mean zero B-valued random
variables for some g=1. Put T,= > y,. Suppose that

m=<n

Iyall =T o[r])

with a(+) as defined in (2.1)(iv) and a constant I Suppose also that

limE|y,|?<1 and limP(a, ! |T,] > C) <4

Jfor some positive constant C. Then there is a finite number L such that
lima; Y| T,|=L as.
Proof. Write:
d,=(d,(1),...,d, (g) =™ —2,...,2m—2)

for m=(m,...,m)eIN“ By the Borel-Cantelli lemma it suffices to show there
exists a number M so that upon defining the events

(2.16) E,={ max (4 '|T[)>M}

dm<iZdm+e
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one has
z P(E,) < 0.

melN9

For, by the Kolmogorov 0-1 law it is enough to have

lima ' |T) <o as.

By first assuming that the random vectors {y,;nelN?} are symmetric and
later removing this restriction one finds exactly as shown in [8] that

supa; 'E|T,| <o,

Similarly, we have the following.

Remark. If one assumes here that Plima, ' T, =0 then
n

lima; 'E| T,| =0.

We define rectangles 4,,(J) for each meN? and J = {1,...,q} by

t=—="m+|e

d,()<n<d,, () for ieJ and
m=d, () for i¢gJ;i=1,...,q

Am(J):—{ne]Nq

Then,
P( max a;l|T|>M)
(218) dm<nZdmie
< )Y P( max | Y yl>27%a, M)

Joil,...,q¢ dm<nSdm+e k=<nked,(J)

We choose M >2%*?supa; > max E|T,| which is possible by (2.17). Using
p dyn n

dmSnZSdm+e

Lemma 2.9 and elementary probability inequalities one sees that the R.H.S. of
(2.18) is bounded by

(219 2 —r,_, 27 )~ > P(|T,|z27*a, M).

neN%:n; = d,, (i) or dm + (i)

Finally, to each of the summands in (2.19) we apply Theorem 2.1 of [8] with

b=b"™=[d, "% c=c"=r[d,, ] "*ad,,.])
and

e=e™=2"3%"'Mgq, [d,. ] 7.

Then from (2.16), (2.18) and (2.19),
P(E,)=0(exp{—e*(1—(1+ec/2) >, Ely,|*/d,,.]

nZdm+e

— max E|TJ/2[d,..]"?¢)})

SR Sdm+ o
since lim&™ c™ =0 (by (2.2)(iii)) and |y,| £c™b™ for n<d,,, . Moreover, if

M is sufficiently large,
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lim  max E|T,/2[d,,J"*em <}

m dmSnSdmse

while
lim[d,, J"" Y Ely[*<L.

n=dm+e

Hence when M is large,
2. P(E,) =0 exp(—(™)*/4)

=0 . (m+...+m) ) <co. [

3. Bounded Law of the Iterated Logarithm

The following proposition provides us with a bounded law of the iterated
logarithm. We shall reduce its proof to the verification of (3.3), below.

(3.1} Proposition. Let g2 1 and x be a B-valued random variable with
xel?log? 'L and Plima;'S,=0.

Then we have

(3.2) lim 5m£ la;tS,—¢l=0 aus.

where K is the closed unit ball of the reproducing kernel Hilbert space Hp
determined by the covariance function T(-, -) defined in (1.3).

Proof. We may assume that x is symmetric. For, if & takes the values +1 each
with probability 1/2 independently of x then ex is symmetric and E {f'(x) g(x)}
=FE{f(¢x)g(ex)}. Moreover K is symmetric and |¢|=1, so

inf ja; *eS,—&|=1inf [a; 'S, —¢|.
geK ¢eK
Assume now that in addition to our hypotheses we have
(3.3) P({a;'S ; neN7} is relatively compact in B)=1.

The conclusion of Proposition 3.1 then follows by the argument provided in
the proof of Theorem 3.1(I) of [7]. To see this we need only note that Wichura
([16], Theorem 5 and comments p.280) has shown:

(3.4) P(lim f(a;'S)=E'?f?*(x))=1 feB*.

Thus, by (3.4) and Lemma 2.1 of [7], for any feB* one gets
EY2f2(x)=sup f(9).
¢eK
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Hence, by the separability of B and the Hahn-Banach Theorem,
P({accumulation points of {a;'S,; neN%}} ¢ K)=0.

Whence (3.2) must hold, for otherwise we gain a contradiction.

Thus to complete the proof of the proposition there remains only to show
that (3.3) holds. For this purpose we truncate the random variables {x,; n €N}
by setting
(3.3) X2 =% L) 2oy
with a(-) as defined in (2.2)(iv). Put S;,= " x;,.

We first notice that if ) a;'c,<o for some non-negative numbers

n
{c,; neIN?} then by partial summation,

lim (rloglogr)=1* Y ¢,=0.

n
r= [n] =

But, by Lemma 2.4,  a; ' |x, —x,|| <o a.s. It therefore follows that

n

(3.6) lima;!|S,—S,| =0 as.

Next, we define the mapping 7; that Kuelbs introduced in his proof of
Theorem 4.1 of [8]. Namely, if 0<é<1,

15(§)=E(x|x~ (1)), ¢&eB.
Here I is a finite partition of B containing {0} such that

Ael<w —Ael
and
E|ts(x)—x[|* <.

Since {0}el we also have E |t (x,—x,[><d. Put y,=t4(x)) and T,=T,(5)
= )"y, Since 7, has finite dimensjonal range and

msn

(O =Cs(IEIl+1),  CeB
one has ||y, < Cs(e([n])+1), sup E||y,||* < CZE{(1+|}x|)*} <o and

(3.7) Plima ' T,=0.

Therefore Lemma 2.15 implies

(3.8) PHa;*T,;

n’

nelN?} is relatively compact in B)=1

since bounded subsets of finite dimensional spaces are relatively compact.
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Now (3.6) and (3.8) will combine to yield (3.3) if for each ¢>0 there is a
=§,>0 so that

(3.9) lim a_ ! 1S, —T,(d)l<s as.

For, given (3.9), with probability one we can use a diagonalization procedure
to construct from any sequence {a, S, i=1} a subsequence which is Cauchy
and therefore convergent.

To obtain (3.9) we first notice that Plima; 'S =0. (Use (3.6) and the

assumption that P lima; 'S, =0). Therefore, by (3.7),

(3.10) Plima; (S,—T)=0.

But §,—T,= ) x,—J,is a sum of independent random vectors and |x;

msn

—y,l const. a([n]). Thus by (3.10) and the Remark included in the proof of
Lemma 2.15,

(3.11) lima-*E|S, =T, =0.

Finally, if ¢>0 and F, is defined by the R.H.S. of (2.16) with ¢ in place of M
and S, —T,(d) in place of T, we use (3.11) and the argument of Lemma 2.15 to
get

Y P(F,) <.

This gives us (3.9). Whence (3.3) holds. []

4. Reduction of Theorem 1

Because we are dealing with sums of independent identically distributed ran-
dom vectors, to prove Theorem 1 it is enough to establish the following
proposition.

(4.1) Proposition. Let g=1 and let x satisfy the hypothesis of Theorem 1. Then
Sor each 0>0 there is a Brownian sheet {W,(t); te[0, c0)¥} in B with covariance
Sfunction T(-, *) defined by (1.3) such that

lim a; ' ||S,—W,(m)|| <6 as.
To prove Proposition 4.1 we approximate x by a finite dimensional random
vector. For this we employ the maps IT, associated to the covariance function

T(-,+) of x, as defined in Lemma 2.1 of [7]. With the notation of the in-
troduction we write

(4.2) Oy&=3% ¢¥&e,, EeB.
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(4.3) Lemma. Let x be as in Proposition 3.1. Let 8>0. Then there exists N,
such that

lim a; ! [S,~My,S,1<6/3 as.

Proof. The lemma follows by Proposition 3.1. Indeed the maps Qy=1—1II are
linear and continuous. Thus

lim inf [la; 'S, —¢[=0 as.

n &ekK

= lim inf a; ' Qy(S,)— 0y =0 as.

n £ek

(4.4)

Moreover as shown in Theorem 3.1 of [7], given 08>0 there exists N, such that

6
(4.5) sup [|Qy, (Ol =5
ek

(This relies on the fact that K as defined in Proposition 3.1 is compact in B.)
Combining (4.4) and (4.5) we evidently have the statement of the lemma. [

We now fix >0 and N =N,. The space IT4(B) is the Euclidean space IR” (p
=min (N, dim H)) equipped with the norm |-|=]-|; induced by the B-norm
on Hy<B. The B-norm | +| is continuous with respect to the norm |-| on H,
and in fact

(4.6) NEI<EY|x|? (¢, ¢eHq.

We define £=1ITy(x) with ITy given by (4.2). Thus, X is a random variable in
R? having the properties:
(4.7) [X|=[Myfl x|, E%=0, EXX'=I

o
Let {x,; ne N%} denote generically a collection of independent copies of x. Set
S, = Y X

The point of Lemma 4.3 is that we need only obtain the conclusion of
Proposition 4.1 when B=IR? for some p=1. This is accomplished over the
course of the next two sections.

5. Weak Law of the Iterated Logarithm

Let
¢, =(c,(1), ..., ¢,(q)
with
0, e<m
(5.1) C"’:{[cmi/(c—l)], e<m; i=1,...,q
for m=(m,, ..., m)€IN? and some 1 <c<2. For each subset J={1, ..., g} put

ey <m=c,., for iéJ} e NS

- q
(5.2) H,(J) {ne]N 1<n,<ec,, (i) for ieJ
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The sets H,,(¢) so defined partition N? as m runs through IN% Set
(5.3) ho(D)=H,(Dl; meNe, J {1, ..., q}.
Then observe that there is an absolute constant C, so that

2

(5.4) 1/Co<h,(Ne=1) ¢ 5" < Cy;

nelN%, Jcf{l,...,q}, l<c<2.

Recalling (2.2)(iv), (4.7) and (5.1)-(5.3) we now define for all neIN? and J
< {11 q}a

X,(D=h 20 Y %,

neH,, (J)

(5.5) and
XN =h 20 Y Bl zaemn — ECn s gatenny)

neH,(J)

Write EY) (resp. FY)) for the distribution of X,,(J) (resp. X/, (J)) and G for the
Gaussian distribution on IR? with covariance matrix I,.
For a set AcIR” and r20 we denote A4"= |} {n: [y —¢|<r}.
éeA

(5.6) Proposition. Let J={1, ..., q}. Let p>0 and put

(5.7) pm=p(loglog™ [c,])'".

Then there exist non-negative numbers (c,,, meIN%) such that

Y 6,<©

meN4

and
F9A)Z£G(A*™ +a,  for each Borel set A=R?.

Throughout the remainder of this section we fix J and drop the dependence
on J from our notation. Let G,, denote the Gaussian distribution on R? with
covariance matrix

I=EX,X..

Define the Prohorov distance d(F, G) between distributions F and G on IR? as
d(F, G)=inf{¢>0: F(A) £G(A°) +¢ for all Borel sets 4 =R?}. We shall obtain:

59) @ X PUX,—X,I>5p,) <o
melN?
() Y d(F,, G)<oo
melN9
and (i) Y P(Y-Y>1p,) <o

melN?



278 G.J. Morrow

where ¥, ~ G, and Y ~G. From (5.9){(i)-(iii) one deduces that
F(A)SP(x,ed’) +30,
SP(Y, e APmtomity 4 246
SP(YedBrmtomidy 16 <G(A") +0,

for some non-negative numbers (,,, meIN% with ) g, <o and any Borel set 4

< IR?. Thus, to prove Proposition 5.6 it suffices to verify (5.9)(1)-(iii).

(5.10) Lemma. Take I, as given by (5.8) and denote by {-,+> the standard
inner product for R?. Then

lim sup G (5, —1)E>=0.

m EelRP, (& &> <1

Proof. Since all norms on a finite dimensional space are equivalent, by (4.7),
(5.5) and (5.8) it suffices to show that

lim E|X,,— X!, |2=0,

But, by (5.5),
E|X,— X SAE(37 1es aeny)

since by (4.7) £eL? and EX=0. Thus, by (22)(iv) and (5.1) the proof is
complete. []

Proof of (5.9)(i). Let ¢ denote the distribution of X. Define W, by the R.H.S. of
(2.3) with ¢ replaced by . Then by Markov’s inequality, (5.1)-(5.4) and (5.7),

P(X,—X,|>%p,) Sconsth, /> p.! HZ , E|%, L+ aqenyl
ne Hp{d)y

<consta; ' Y W
neHp,(¢)

uniformly in m.

An application of Lemma 2.4 now finishes the proof. []

Proof of (5.9)(ii). By the main theorem of Yurinskii [17] we calculate that

; ZI;T E b)é”’i l{lﬁﬂl Saffemll} - E(XA"’ i 1{13371* éa({cm])})!3
’ Ty< Tspneky,
d(F,, G} Sconst ERPX )

Sconsthy P E(XP 1 coqe,ny)  for large [m].

q
Thus, setting s(m)= Y m,, we have
i=1

=
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Zd(F',G’

%(s(m)—loglog* s(m))

<const (1 +Y ¢ Esm c%”P(c’“2<I)EIéc"“”’/z))
m

u=1

oo
<const (1 A Y VAT e B loslog T N o3k pomi2 < || < W F 1)/2))

va 1 usvy

o oo
=const (1+ Z c‘%"P(c“/2<[>€{£c(“+ 1)/2) Z yi=1 —-%(wloglogw))
pe= 1 v=p

<const (1 + Y (log* (¢!~ e* P(c"? <|R| S ¥+ V2)/loglog™ p,))

S

<const(l +E(|%|*(log* |£)*~'/loglog™ |%])) <. [
Proof of (5.9)(iii). By (4.7), (5.4) and (5.5) it suffices to show that for large [m],

(5.11) iexp(*‘%i Erdis(det)* | exp(—3{& L, 10)de

APml3
+const[m]~?  for all Borel sets 4= R?.

The change of variable n=1I."%¢ takes condition (5.11) into the form
};eXp(_%@f»dééri, (4P exp (= 3<n, ) dn

+const[m]~2, for all Borel sets AcR?.

But (5.12) holds if we can show it holds with
Ac{EeRP: |¢ <const(loglog™ [¢,]9)}.
Now, by Lemma 5.10 and (5.7), if ne A and A satisfies (5.13) then
m—TIin|<p,/3 and I, is non-singular

since [m] is large. But then I A< AP® or AT, ~#(A"'). Thus (5.11) holds
as does (5.12). [

The proof of Proposition 5.6 is now complete as the statements (5.9)(i)-(iii)
have all been verified. [}

6. Proof of Proposition 4.1

The following Theorem is due to Philipp [13]. It generalizes Theorem 2 of
Berkes and Philipp [1].

Theorem. Let {B,, m,, k=1} be a sequence of complete separable metric spaces.
Let {X,;k=1} be a sequence of random variables with values in B, and let
{Ly: k=1} be a sequence of o-fields such that X, is L,-measurable. Suppose that
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for some sequence {@,, k= 1} of non-negative numbers
|P(AB)—P(A) P(B)| = P, P(4)

Jor all k=1 and all Ae\/;_,L; and BeL,. Denote by F, the distribution of X,
and let {G,, k=1} be a sequence of distributions (G, a distribution on B,) such
that for some non-negative numbers p, and g,

EA)= G"(gUA {n: m(& m<p})+o,

for all Borel sets A= B,. Then without changing its distribution we can redefine
the sequence {X,; k=1} on a richer probability space on which there exists a
sequence {Y,; k=1} of independent random variables Y, with distribution G, such
that for all k=1

Pm (X, V) Z2(D+p) =2(p + %)

By the conclusion of Proposition 5.6 we can apply the above theorem
directly (with @,=0) because we are working with independent random vectors.
Thus, for independent vectors Y,,, we have:

(6.1) Y P(X,(9)—Y,122p,) <0

where Y, ~A7(0,1,) and X, () is given by (5.5). Now if {Wy(r); t€[0, c0)} is a
Brownian sheet in B with covariance function T(:,*) then the action of the
canonical maps II, defined by (4.2) render H,\,(W(t))d-~‘°'-f ()~ A0, []1)
Hence by (6.1), the assumption that x is pregaussian and Kolmogorov’s
existence theorem,

(6.2) Y P AP Y %, — W H(d)=2p,)< 0.

ne Hm(¢)
Here we have put

W(keNt: m<ksn)= Y (£) Wk

kiki=mi—1orn;
for m,nelN? with m<n.
Next, by (5.1)~(5.4) and (5.7),
S i($) puconstp ¥ ¢ 2 (loglog™ [e,])t

<constp(c*—1)"%q, for 1<c<2.

[

This, together with (6.2), yields

(6.3) lim az IS, . —We, )l Sconstp(c*—1)7¢ as.

Cm+te m+e

To obtain Proposition 4.1 from (6.3) and Lemma 4.3 we need the following
lemma which gives us a bound on the fluctuation of S, over the set H,(¢).
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(6.4) Lemma. Set c=60°+1 in definitions (5.1)~(5.3). Then for any proper subset
J{l1,...,q} and small positive number 0,

11— 2
“lima' max [| ) XlZ2—5 as
0 m nEHm($) keHm(),k<n 12

Proof. We apply Lemma 2.9 to obtain
P(max | Y %[>2""0a,/12)

nEHm () ke Hm(J) k<n

(6.5) Sconst(®)-P(| Y %,>27%*0a, /12)

ne Hy(J)

for [m] sufficiently large (depending on 6). This is valid because the mean zero
random vectors {X, ; neIN?} are finite dimensional and independent. Hence the
conditions of Lemma 2.9 are easily seen to be satisfied by applying Cebysev’s
inequality.

Now set p=021 in (5.7). By Proposition 5.6,

P(l Y %,]>2%6a,/12)

ne Hm(J)

SEM((EeRP: E>27 24 0a, b, *(J)/12EF | x]?)

Cm m

<0, +G{EeRP: [¢]>(CG 0(c —1)7* — 627) (loglog™* [c,,1)*)

for some absolute constant Cy. Thus, if 8 is sufficiently small,

ZLHS of (6.5) < const(h) (1+ Z{ 9)+P<xp(9)>3q Z )})

An application of the Borel-Cantelli lemma completes the proof. [

We are now ready to finish the proof of Proposition 4.1. We take c=0°+1
and p=0621. Let neN“ This determines m=m,cN? by

C,<n=c,. .,
We then write
a; IS, — W)l a2 M IS, . ~Wyc
+azl Y max (|W({jeH,D)LisEHI+I Y £

Cm

Je{l,....,q) keHm(J) JeHm(J), j <k

mie)

Therefore by (6.3), Lemma 6.4 and our choices of p and c,
T & 0
lim a; ' |S,—W,(n)| §§ a.s.

when @ is small. This, together with Lemma 4.3, yields the conclusion of
Proposition 4.1. [
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7. Proof of Theorem 1

By utilizing Proposition 4.1 we can patch together various independent Brow-
nian sheets to obtain a single Brownian sheet satisfying (1.4). Our method is
similar to that employed by Major [11].

For each ix=0 we construct pairs of processes {x¥;neN?},
{W9(1); te[0, c0)?} which are independent for different i. Further, for each i we
take

{x9; nelN?} =a collection of independent copies of x
and
{W(1); te[0, c0)?} =a Brownian sheet in B

with covariance function T(-,*) given by (1.3). Put S¥= Y x¥; nelN% i=0. By
Proposition 4.1 we construct these processes so that ~— ms»

(7.1) lima ! |SO—WOm)| £2-' as, i=0.

Using (7.1) and Lebesgue’s bounded convergence theorem we choose an
increasing sequence {v;,i=1} of ¢ powers of positive integers such that

(7.2) P(supz v, a, ' |7~ WOm)| 227+ ) <2,
[n]

We pick a subsequence {v;} of {v;} so that with n(i)=(v})'/?. eeN? we get
i; P{aq) (1SS + WO m@)) >277} < eo

(7.3) and
Y P{ag (1S9l + 1 WOm@)l)>27 < oo.

i1
This is possible because lim P{a; '(|S?[ + | WO(m)|[)>2~"} =0 for each i=0.

We now define inductively {W(t}; te[0, 0)?} and {S,; nelN?} by putting
W(0)=0, S,=0, n(0)=0, vo=0, t=(t,,...,t,) and

W(t)=WO0)—WOn(i)+W(n(@) for vi<t,...t,<Vi,
(7.4) and |
S, =89 -8 +8,, for vi£[n]l<v, ,;i=0.
In this way
(S, neN?} 2 (5 neNg
(7.5) and

{W(2); te[0, w0)7} 2 {WO(t); te[0, 00)7}.
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Thus, from (7.3), (7.5) and the Borel Cantelli lemma,
(7.6) lim a,i} (I WO@@)) + | W @)+ 1581 +18,,) =0 as

I— 0

Moreover, from (7.2) and the Borel Cantelli lemma,

(1.7) lim sup a; * |SO—WOm)|=0 as.
i—w [nlZ Vi
Finally, let neIN% Then for some i=i(n) we have v;<[n]<v;,,, and, from
(7.4),
a, HIWm—=SmI < sup at|SP-WOn)
viS[nl<vity
(7.8)

+a; (WO + W @)+ 1ST I+ 1S,61)-
Hence, (1.4) follows from (7.6)-(7.8). [

8. Functional Law of the Iterated Logarithm

We first note that a Brownian sheet {W(¢); t€[0, c0)?} in B has continuous
sample paths. To see this we use the argument in [2], p. 258-259. Let Dy
={2"¥n:1=m,<2%,i=1,...,q;nelN} and put D= | ] Dy. Define

NE1

U= sup W (@)= W)l
|Si—ti|§S2’EE"l;)i= 1,...9

We must show that limU,=0 as. and for this it is enough to show that
lignP(Uv>5)=O for each >0 since U, is non-increasing in v.

Put Y=Y = sup |W(t)— W2 (n—e))|l. Then

teD
mi—1)2- vt sm2 - vii=1,...q

U3 max Y,
neNZ: 1 =m<2vii=1,...,q}
SO
PU>0s Y P(Y,25/3)
1§fi§2"
i=1,....4

=2" P(Y,=4/3).
Now observe that P(Y,=26/3)=1lim P( sup |[[W()]|=5/3). Moreover, by a

N- oo teDnN,t<27 Ve

result of Fernique [3] there is some o> 0 for which E exp(« | W (e)|?) < oo. Thus
by Lemma 2.9,

P( sup [W()]z6/3)

teDN,t£2 Ve

< Cexp(—ad?2"1/9)
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for some constant C depending only on o & and g. Therefore
P(U,>8) S C2"%exp(—ad?2"4/9), and this last expression clearly tends to zero
as v—» 0.

We now show that Theorem 2 holds when we replace B by IT,(B) for any
Nz1. Here, Il is the canonical map on B as given in (4.2). To do this we need
only modify slightly Pyke’s proof of a functional law of the iterated logarithm
for a Brownian sheet {W°(z); te[0, 00)?} in IR? with covariance matrix I, ([14],
Theorem 4).

First, if p=min(N, dim H,) the limit set A7 defined in (1.6) with B replaced
by II,(B) is just the set

f is absolutely continuous w.r.t. Lebesgue
measure [ on [0,174, f(H)=0if
;=0 for some i=1,...,q and

[ cdfjalafjaly di<i
[0, 172

81)  AP={feCy([0,119

Let us write || ,= max [§] for £=(£,,... £,)eR?. We put
i=1,...p

AP ={geCp([0,119): |f—gl,S¢ for some feK®¥}
and
Woty=a; " Wn ty,...,n 1) te[0,1]%, neN
Then, just as in [14],
P(W0¢4,7) < (log[n])~ 1+

for some 6=49,>0. Thus, with c, given by (5.1) one deduces that P(W2 ex,®
for large [m])=1 since Y. (m;+...+m)~ "+ <co.

Let now nelN% Suppose that c, ,sn=c,. For t=(t,,...,,)e[0,1]* we
define t,=(t,(1),...,£,(q)e[0,1]¢ by setting t(i)=n;t;/c, (i) i=1,...,q. For any
ge AP and te[0,17 we write

WO —g() =(W2(¢,) —g(t,) % + (%'ﬁ- - 1) 8(t,) +(g(t,) —e(®) %"i

From (8.1) and the Cauchy-Schwarz inequality, observe that for any rectangle
Rc[0,1]7 the increment g(R) satisfies

(8.2) lg(R)| o, SUR).

Therefore

-1

W2 —gl 2 W2 ~2l,a,,a
+(a,, a7 ' —1)igl,+27 max (1-n/c,(i)a, a;

Tm R
i=1,..,4
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Thus, by taking ¢ close to 1,
(8.3) P(WPeX P whenever [n] is large)=1.

Therefore, since A" is |+|_-compact, with probability 1 the collection
{W?; nelN%} is relatively compact and has its limit points in 2#"® (with respect
to the norm |+|_ ). We prove that the limit set of {W,*; neN%} is almost surely
equal to A",

Let u be a positive integer. We divide the unit cube [0,1]? into p? cubes :
each having sides of length 1/u. Denote by &, the collection of all such cubes
which do not have some face in one of the planes {t=(t,,...,t): ;;=0}, i
=1,...,q. Let geA'” with | <dg/dl dg/dlydl=1—5 for some 6>0. By

[0, 1]2
(8.2), (8.3) and the separability of & ® it suffices to show that infinitely many
of the events

A, ={W (1)~ g(lps <&, 167}, neNT

occur with probability 1 for each u=1 and ¢>0 (cf. the argument of Strassen
[15]). As in [15] we estimate that

P(A4,)= const (log [1n])~ 1~ 94 (y loglog [n])~ 7/

for [n] sufficiently large. Then, putting n®=(u*,...,u*) for each k
=(ky,...,k,)eIN% we notice that the events A, are independent by our choice
of #,. Moreover,

Y P(A,0)= 0
k

and

;(kﬁ... +k) 1O = o0,

By the Borel-Cantelli lemma we have accomplished what we set out to do.

We have thus proved Theorem 2 with f,, B and % replaced by W.°, I1,(B)
and J"® respectively. But, if £,° is defined by the R.H.S. of (1.5) with W°(m)
instead of W(m) we get lim |/,°—W?| =0 a.s. Therefore

P(lim inf [f2—fl5 »,=0)=1
n fex'(p)
(8.4) and
P({ feCg,([0,11%: fis a |+| ,-limit point of
{f2; neN®}} =4 W) =1.
We now pass to the general case. Let {W(z); te[0, c0)?} be a Brownian

sheet in B with covariance function T(-,*). Let 8>0. From (1.5) and Lemma
4.3 there is N =N, such that

(8.5) P(lim [[(I —ITy) (f)ll 5, SO)=1.
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From (1.6), (4.2) and (8.1),

(8.6) (A=  with p=min(N, dim H;).
Moreover, by (1.6), (4.2) and (4.6),

(8.7) [y =Sl =0 fetr.

Therefore, because {I1,(W(t)); tef0, c0)?} is a Brownian sheet in R? with cova-
riance matrix I, (8.4)~(8.7) yield Theorem 2. []

To prove the Note following Theorem 2 we calculate by Lemma 2.9, the
aforementioned result of Fernique [3] and the Borel-Cantelli lemma that

im | f,— W5, =0 as. [

9. Proof of Theorem 3

Proof of (1.8). Let g, denote the R.H.S. of (1.5) with S,, in place of W(m). Let T
=T(,"), A, and IIy be as defined in (1.3), (1.6) and (4.2) respectively. We
mention that the definitions of H, and 2 depend only on T. Observe that for
any N =1, IT{x) satisfies the hypotheses of Theorem 1. Hence, by Theorems 1
and 2 it follows that

(CRY P(lim inf [IIy(g,~ )l »,=0)=1
n fedr
and
9.2) P({feC([0,119: ITy(f) is a ||+ |, ,-limit point of

{Iy(g,); neN} =T (A7) =1.

Furthermore by Lemma 4.3, (8.5) holds with f, replaced by g,. This together
with (8.7), (9.1) and (9.2) yields (1.8).

Proof of (1.9). For any >0
lim P(a; ' [|S,] > &) <lim P(a; * | ILy(S,)] >¢/2)

03) +Tim P(a, 105 >5/2)

where Qy=1I~ITy. But, because II(B) is a finite-dimensional space, by
Cebysev’s inequality it is clear that

(9.4) lim P(a; * | IS, >2/2)=0, N> 1.

Further by {4.5) and {1.7) {j)
9.5) lim lim P(a; ! QS >&/2)=0.

N—w
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As ¢ is arbitrary, {9.3)-(9.5) give
9.6) Plima;'S§, =0.

To finish the proof of (19) we define x, by (3.5) and put §,= 3, x,,. Then
by (2.3) and Lemma 2.4, E

0.7 lim a; 'E[S,~S,|<lim a; ! Y w,=0.

msn

The last equality follows by the argument just preceding (3.6). From (9.6) and
{(9.7) we get Plima 'S =0. We now apply Lemma 2.15 together with the

Remark included in its proof to obtain lima ' E||S.[=0. This together with
(9.7) vields (19). [0

10. Proof of Theorem 4

Let uf+) be as defined in (2.2 (iv). For each §=0, put
{10.1) U= { [E| P{xed&}.

|¢] z (oglog * [rD a(in])

The proof of Lemma 2.4 can easily be adjusted to yield the following.

(10.2) Lemma. Let xeI*(log? ! L)/loglog L for some q=2. Then for each §=0
we have Y (loglog* [n])~' "% a, ' u! < 0.
Our next result is a direct analogue of Proposition 3.1,

(10.3) Proposition. Let x be a mean zero random variable taking values in a
separable Hilbert space (H,|-|) with xeI?(log?~' L)/loglog L for some gq=1.
Then xeBLIL.

Proof. By Proposition 3.1 this result holds for ¢=1 since, in fact, lima; ' E|S, ]|

=0 by Cebysev’s inequality. So, we take g=2. Also, as in the proof of
Proposition of 3.1 it is enough to assume that x is symmetric, so we do.
The argument below follows along the lines of Wichura [16]. We set:

B(r)=(loglog* r)*'® r'/2, y(r)=(loglog™* r) o(r)
X =X Lt oy X0 = Xn Lijxa) 2 vtan)

E s ’ %
X0 = X Lt < fal < pitmyy> X+ =Xy — X X

Si=3 x5, 8= xp,Sk=Y x¥ Si*=8/-§ —S§*

m> S
m=n m=n

msn =
By Lemma 10.2 we have (as in (3.6)) that

lima; 'S, —S/|=0 as.
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Thus, by the argument of Sect. 3 it suffices to have

(10.4) lima-'|S/~S]=0 as.

To obtain (10.4) we shall in turn show that

(10.5) lima ' |S¥ =0 as.

and

{10.6) lima * [|S*¥*] =0 as.
Write: ‘

d, =™ —2,...,2"=2), m=(m,,...,m)eN?
(10.7) and ’

A,={neNi: d <n<d, .}

Let &>0. By the 4th moment form of Cebysev’s inequality,

P( Y x¥>ea,)

ne Ay

(10.8)
S(eq, ) *E Y (xFxp?

Jikedm

=(ea,,)” * (L EXD) (B2 ([ I+ [dpi ) Y, EXFTH

RE A

<const(e) (loglog™ [d,,])"**[d,]" " > Elx¥?

nEAm

Since this bound tends to zero as [m]—co we can apply Lemma 2.9 to the
events

(10.9) {max| Y x}|>eaq, },meN.

nedm kedmksn
Thus, by (10.7)(10.9) and the Borel-Cantelli lemma, to establish (10.5) it is
enough that

(10.10) S loglog* [d,]~ ¥*[d,]1"' ¥ Elx#?<w

nEAm

We employ the inequality:
b
Elx? Lygq<n £a* P{lx|>a} +2 [rP(Ix|>7) dr.

For ned,, we estimate that

Elxi?<a*([d,, D) P{lx|>o(ld, ]}
(loglog + [dm])sls a{l{dn + o]}
+2 f rP(x|>r) dr+p(d,,, D) u’®.
a([dm])
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Then, breaking up the above integral and making trivial estimates, by (10.1)
and (10.7),

10 .
Elx}?< Y [d,, . J(oglog[d,,, . J)~+"® P{lx|>(loglog* [d,.])s}
i=1

+d,,, ] (loglog* [d,1)*® u®
Hence

Y. (loglog™ [d, 1)~ **[d,]~" 3, Elx}?

" nEdm
10
=0 (3, S oglog™ 1)) (— 1+ (¢~ (5
i=1 n
+0(). a, * (loglog™ [n])~ 318 519)).

Thus, by Lemma 10.2, (10.10) holds and as already stated this yields (10.5).
To establish (10.6), let

E. ={x¥*+£0 for at least two n* in 4,}.

"

Since lima; ' y([n])=0, by (10.7) and the Borel-Cantelli lemma it is enough to
show that ) P(E,)< 0. Now, by independence and Cebysev's inequality,

P(E)S Y P(x**+0)P(xf*+0 for some k=+n ked,)
m n k

RE Awm

< Y BN ERET Y B KD E X

neE Am kedm

=0([d,,]” '(loglog™ [4,])"*"* } E|x}*?

nEAm

But, we have the bound: E |x*| < y([n]) w”/®. Therefore,
Y P(E,)=0(),a; *(loglog™ [n])~*/*u{"/®).

This last expression is finite by Lemma 10.2. Whence (10.6) holds. []

To finish the proof of Theorem 4 we proceed exactly as in the proof of
Theorem 1. Since x takes values in a separable Hilbert space it is well known
that x is pregaussian. The analysis of Sects. 4, 6, and 7 therefore goes through
with Proposition 10.3 taking the place of Proposition 3.1 if we can show
Proposition 5.6 holds under the hypothesis of Theorem 4.

By checking the proof of Proposition 5.6 one sees that it is only necessary
to demonstrate the validity of (5.9) (i). Fix a subset J<{1,...,q}. In what
follows we drop the dependence on J from our notation. Let X, and X, be as
defined in (3.5). Put

® i A A
Xo=h,* ZH G Lo <121 < om — EGn Loy <120l £ sy
ne Hyn

ik h—% ¢ _E($
Xpx=ha* 3 (%, Ligan <12nt vty — ECn Ligay < 2y <y omy))

neHpm

(10.11) and X=X} + X5+ X5
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Then, using Lemma 10.2,

(10.12) Y. PX,,—~ X} > 5 p,) < 0.

Further, by the same argument used to establish (10.5),

(10.13) S P(X%>1p,) < 0.
Finally,
P(X3*>5p) <P (ln; %o Lipo <121 =@}
>5Pmhn— 2 E£,] Lipqm <iusyamy):

neHm

while

PER | A
lima,' > E(%, Lig <12l < )

m neHpy,

<tim a;,  (B(Lc, D)~ b EI%2=0.

Hence, in the same way that we verified (10.6),

(10.14) 3 P(X3¥>4p,) <c0.

Combining (10.11)~(10.14) and Lemma 10.2 we obtain (5.9} (i). 1[I
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