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O. Introduction 

It is the purpose of this article to prove iterated logarithm laws for random 
subsequences ST(z) of partial sums S, of independent random variables and 
concomittantly to show how these may be exploited to obtain simple proofs of 
iterated logarithm laws for stopping rules, last times, etc., obtained by Chow 
and Hsiung (1976), and Chow, Hsiung and Yu (1980). The latter contains many 
other results not dealt with here. A similar juxtaposition is quite familiar in the 
case of central limit theorems, where Anscombe's result in 1952 has been 
readily available. 

If, under norming with k(n), T(n) converges almost surely, then random 
subsequences ST(~ are related to fixed subsequences Sk(n), and these, in turn, 
when the underlying random variables are independent and identically distrib- 
uted, may be handled via the work of Qualls (1977) on subsequences of Brown- 
ian motion. On the other hand, when the basic random variables are merely 
independent such aid is unavailable and an alternative approach is devised. 

The i.i.d, case is treated in Sect. 1, where applications to stopping rules are 
given. Section 2 is devoted to the independent case where the iterated loga- 
rithm law of Teicher (1974) is extended to random subsequences. In Sect. 3, 
similar results are proved for tail sums, thereby generalizing results of Chow 
and Teicher (1973). 

1. The i.i.d. Case 

As has been pointed out by Qualls (1977), in dealing with Brownian motion, if 
k, is a nondecreasing positive integer-valued sequence with k,,-~ oe, it may be 
necessary to define a thinner subsequence k',, via 

k;+ 1 = h~f{k,~: km>k;exp(c/logn)}, n>2, (1.1) 
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where k'~ = k l ;  k2=k2,  and c is any positive number.  It is not difficult to verify 
that  the convergence or divergence of the series (1.3) below is independent  of c, 
and for this reason c may be chosen at one's convenience. 

Theorem 1.1. Let {X, X11, n>= 1} be independent and identically distributed ran- 
dom variables with E X = 0 ,  E X 2 = I  and {T11, n_>l} be positive integer-valued 
random variables with TJk~ ~ 1 a.s. for some nondecreasing sequence k11 of posi- 
tive integers with k11--+ c~. Then 

X l + " ' + X r "  - 1  a.s., (1.2) l imsup ~ . 
11~ ~ (2 T111oglog T.)~ 

if and only if 

,,=l (logk'11) I-~ = oo, for all e>O, (1.3) 

~f 
space with t/(t)=r/*(t), and 

lira (2t log log t) -~ sup [~(z)-  t/(z)l = 0  
t~oo  v<=t 

According to Qualls (1977), for any ~ in (0,1) 

if and only if 

a . s .  

P[Sk >(2(1 -Ok .  loglogk.)~, i.o.] 

=P[r loglog k.) -~, i . o . ] = l ,  

(log log k.) (log k11) = o% 
I1=1 

(1.5) 

where {k',, n> 1} is the thinned subsequence of(1.1). 

Proof. Set S , = X  1 +... +X, ,  and let /3 be an arbi t rary number  in (0, 1). With 
probabil i ty one, for all large n, the r andom variables T, will be in [ (1- /3)k , ,  
(1 + 13)k,] =I11, say. Hence with probabil i ty one 

r Is~ - s k  I <,. Iss-sk  I lmsup " " ~ _ ~msup max " 
11~o~ ( 2 k . l o g l o g k . ) - -  11~oo s~i. (2k.loglogk11)- 

<2/3 �89 , a.s. 

according to a theorem of Lai  (1974). Thus, the hypotheses of the theorem 
entail 

lim IST" - -  Sk"[ = 0 a.s. (1.4) 
.-~ oo (2k11 log log k.)�89 

By Strassen's strong invariance principle (1964), if t/*(t) is the function obtained 
by linearly interpolat ing $11 at n, that  is, 

r/* (t) = ( [ t ]  + 1 - -  t) SEt ] + ( t -  [ t ] )  Sin+ 1, 

there are a Brownian mot ion  process ~(t) and a process t/(t) on a probabil i ty 
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hence if and only if (1.3) holds. Thus under (1.3), it follows from (1.4), (1.5), the 
Hartman-Wintner theorem and 

ST, 
(2 T. log log T.) ~ (1.6) 

{( Sk. ST -S~.  ~] {k. loglogk.]~ 
= 2k. log log k.) ~- ~ (2k. log log k.)=/ \T. log log T. ] ' 

that 

ST" = 1 a.s. (1.7) 
limsup.~ (2 T. log log T.) ~ 

Conversely, convergence of the series in (1.3) for some e > 0  elicits via (1.5) 
and (1.6) 

limsup . . . .  S~ r" < (1 - ~)~, a.s., 
,~ co tz 1~ log log T,)~ = 

and hence the negation of (1.2). 
The following corollary, due to Hartman (1941) in the special case where 

T , - k , ,  provides a criterion directly in terms of k,. 

Corollary 1.1. Let {X, Xn, n> l } be independent and identically distributed ran- 
dom variables with EX=O, E X 2 = I  and {T,, n > l }  be positive integer-valued 
random variables with Tn/k, ~ 1 a.s. for some nondecreasing sequence k n of posi- 
tive integers. I f  k,--+ oo and 

k.+ 1 = O(k.), (1.8) 
then (1.2) holds. 

Proof. Define n 1 =h i  =1, na=n~=2,  and for m > 2  

n~+l = in f{ j>n~:  k~>2k.~}, 
! t . nm + a = inf {j > n~. k; > k.;. exp (log 2/log m)}, 

and note that k'~=k.;, is the thinned subsequence of (1.1), and that 
k'~<h~=k,,.,. Moreover, in view of (1.8), for some M in (ht, oo) 

h~+a< M 
h~ = 2 h  m k ...... - 1 < M  

implying k~ < h~ < M" and hence 

1 
~_ l ( logk~) l_ i=oo ,  for all e>0. 

Since T'/k'~ ~ 1, a.s. where T,~ = T,m, it follows via (1.6) as in the proof of Theo- 
rem 1.1 that 

S T ~ S ,I~ 

limsupn~ (2 T n log log Tn) -~ > limsup,~ (2 T,~ log log T,~) ~ - 1 a.s., 

and the reverse inequality obtains via the Hartman-Winter theorem. 
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Next, the prior results will be applied to a positively drifting process U, 
and its corresponding first passage times N~, T;~, etc., defined in the paragraphs 
below. The statistical motivation underlying the consideration of these entities 
is spelled out in Chow, Hsiung and Yu (1980), and the interested reader is 
referred to this article. 

Throughout the rest of this section {X ,X , ,  n > l }  are independent and 
identically distributed random variables with EX = 1, E ( X -  1) 2 = 62 E ( 0 ,  0 0 ) ,  

and {R,, n > l }  are random variables with R,=o(1), a.s. as n ~  oo. Set 

n n 

S,= 2 Xi, U,=n 1S,+R,,  S;= ~ (Xi-1),  (1.9) 
i ~ l  i = 1  

and let {a,, n>=l} be a positive regularly varying sequence with index p>0.  
The properties of such sequences are expounded in Bojanic and Seneta (1973). 

A statement lira Q~ = +_ 6 is to be interpreted as lira Q, = 6 and lira Q, = - a .  
n ~ 3  n ~ o o  n ~ o o  

Theorem 1.2. I f  a, is eventually nondecreasing and 

n ~ (2 log log n)-- R ,=c  +o(1), a.s., (1.10) 
then 

lim n~ (21og log n)- ~ (1 - m a x a j  Uja,)+c= ++_6 a.s., (1.11) 
n ~ o o  j < n  

lira n~(21oglogn)-4(1-infaj  Uj/a,)+c= ++_6 a.s., (1.12) 

lira n}(21oglogn)-~(1-supa,  U/aj)+c= +_6 a.s., (1.13) 
n ~ o o  j>=n 

lira n&(21oglogn) -~(1- rain a , U / a j ) + c = + 6  a.s., (1.14) 
n ~ c ~  no < j < n  

where n 0 = i n f { k > l "  U,>O, for all n>k}. 

Only (1.11) will be proved since the proofs of the remaining portions of the 
theorem are similar. It is convenient to first verify 

Lemma 1.1. 1f for each n > 1, 

T =inf{k >_ 1: a k Uk=maxajUj}, 
j<n 

and if (1.10) holds, then as n ~ oo 

and 
T,/n --, 1 a.s., 

n}(log log n) ~ (1 - a(T,)/a(n)) ~ O, a .s . ,  

(1.15) 

where for notational convenience, a, is sometimes designated a(n). 

Proof. Let 0 < ~ < 1 .  Since a(c~n)/a(n)--,~ p and U,--,1 a.s. and a, does not de- 
crease eventually, necessarily maxajUfa,-- .a p a.s.. If 6 is in (1, c~-P), then with 

j <= ccn 

probability one, max ajUj<6~Pa, for all large n. But with probability one, 
1 < j < ~ n  
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O;>6aPT for all large n. Hence with probability one, for all large n 

~n ~ rn ~-~H. 

As c~A1, it follows that 7;/n-~l, a.s. Next, by the definition 
a(T~) UT. > a(n) U n. Hence eventually 

s';o s;, a( T,,) --~-a(n)-nT + a('I;) RT -a(n) R,> a(n)- a( T,) > O. 

However, with probability one 

a(r,)s 'r~ S' [ \S '  ~' S' S' - ' 
a(n) T, ~ = I + \  + o ( I ) ) ~ - - ? = o ( 1 ) 7 ~ 4  r~n S, 

= o(n -a': (log log n) 6) 

by (1.2) and (1.4). Moreover, by (1.10) 

[a(T,) 
n~(21~ l~ n)-~ t a  (t~)- RT' -Rn)  

=(1 +o(1))(c+o(1))-(c+o(1))=o(1) a.s., 

and so (1.15) follows from (1.16). 

Proof of Theorem 1.2. Clearly 

t -maxa~[Y)/a~=l--~-~- T~ +1 +RT. 
j<-n 
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of T n, 

(1.16) 

and 
a(Tn) 
a(n) Rr'=(c+~176176 a.s., 

whence (1.11) follows via Corollary 1.1 and Lemma 1.t. 
Suppose next that there is a positive, increasing function a ( ' )  on [o, oo) 

such that a(n)=a,, n>l,  is regularly varying with index # > 0 .  Then 
a(2x)/a(x)~2 p as x ~  oo, and one may define, for 2>0,  

a -  t (2) = inf {x > 0: a (x) = 2}. 

Furthermore, for 0 < n~ = o(a- ~ (2)), define 

Nx=inf{n>n~: anU,>=2}, T)=inf{n>na: 0<U,,<2-1an},  (1.17) 

N[= sup {n>nz: a n U,,<2}, T~I = sup {n>n~: Un>2-  la,}, (1.18) 

N~'= ~ I~,.v.<~.], T~'= ~ I[v.>~_~. r (1.19) 
n ~ n A  n ~ n A  

Theorem 1.3. (i) I f  for each n ~ 1, U n and a(.) are as spec~ied, then as 2-~ ~ ,  

N~/a- 1 (~0 ~ 1, TJa-~ (2) ~ 1, a.s., (t.20) 

tim SN, -  N~ = lira (~-T S T -  Tz - 
a-o~ (2NaloglogNa)~ ~ ( ~toglog Tx) ~ ___c~ a.s. (1.21) 
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xa'(x) 
(ii) Furthermore, if in addition a(x) is differentiable with lim a(x) - p  and 

n ~ (2 log log n)-~R, = c + o(1) a.s., then x~ 

lim P(N~-a-I(2))  lira p ( r ~ - a  1(4)) 
(2a-  1 (2) log log 2) �89 + c = = _ ~ ~ (2a_l(2)loglog2)_~ ~-c + a  a.s. (1.22) 

(iii) Moreover (1.20), (1.21) and (1.22) hold with Nx, T~ replaced by the corre- 
sponding random variables of(1.18) and (1.19). 

Proof. We shall only prove the results for Nx since the proofs for Tx, N~ and T I 
are similar. The results for N[' and 7 I' follow in view of the fact that N~ 
- 1 < N~' < N,~ and T~ - 1 < 1-i' < T~. By definition, 

UN _> 2 >aN~_ 1UN~-I, 
-- aN ~ aN~ 

and so U, ~ 1 a.s. and N z ~ oo a.s. imply that 

aN~/2 ---, 1 a.s., 

which, in turn, ensures the first half of (1.20). Suppose to the contrary that the 

set D = { lira N~/a-1 (2)> 1} had positive probability. Then for w E D, there exists 

3=  3(w) in (0, 1) and 2k=2k(W)/" oO with 6N~>a-~(2k) , for all k >  1 and hence 
a(3Nk)>2k, k > l .  Hence for w 6 0  

1 > lim 2k 2 k a(N~) 
= k~ o~ a(SN~) - ~im a(Nz~) a(6N~) = 6-~ > 1, 

which is a contradiction. Thus P [ D J = 0 .  Likewise the probability of the set 
{ li_mm N~/a- 1 (2) < 1} is zero, and the first half of (1.20) follows. Since a -  1(2 + 1) 

~a-1(2) ,  as it can be easily verified, (1.20) and Corollary 1.1 ensure (1.21). Next, 
we denote N x by N. For  some 57 between N and a-1(2), 

2 a~-N-~-NN a(a-la(N)(2))- a(N) =a__~i) (a-l(2)- N) a' (57) 

= (a- 1 (2) - N) N a / (x) 
14au~ ) a(N) - p ( l + o ( 1 ) ) ( a - l ( 2 ) - N ) .  

Hence, since S N - N = ( S N - 2 N / a ( N ) ) + ( 2 N / a ( N ) - N ) ,  it suffices by (1.20) and 
(1.21) to show that 

( S N - 2 N / a ( N ) ) ( 2 N l o g l o g N ) - } =  - c + o ( 1 )  a.s. 

To this end, note via the definition of N and the hypothesis of (ii) that 

Su-2N/a(N)>= - N R x =  - (c+o(1) ) (2Nlog logN)  ~, a.s. 
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On the other hand, since 

S N -  1 @ ( N  - 1) R N _  t < / ] . (N  - 1)/a(N - 1), 

See- 2N/a(N) < (See - See_ ~) - (N - 1) RN_ ~ + 2(N-- 1)/a(N - 1) = 2N/a(N) 

= Xee-  (c + o (1)) (2N log log N)~ + 2N ( 1 / a ( N -  1) - 1/a(N)) + o(1) 

= o (N }) - (c + o (1))(2 N log log N) -~ + 2 Na' (N)/(a (N) a (N - 1)) + o (1) 

= o(N ~) - (c + o(1)) (2N log log N) } + 0 (p)+ o(1) 

= - ( c + o ( l ) ) ( 2 N l o g l o g N ) } ) ,  a.s., 

completing the proof of the theorem. 
Theorems 1.2 and 1.3 have been proved in Chow, Hsiung and Yu (1980) for 

specific a n. The argument presented here is somewhat simpler. 
Central limit theorems for max aj UJG, etc., can be proved by the same 

j < n  

method as that of Theorem 1.2. It suffices to substitute Anscombe's result 
(1952) for Theorem 1.1 and to replace the condition on R~ by n~R,=c+o(1)  
a . s .  a s  n - +  o o .  

2. The Independent Case 

In this section, we shall assume that {X n, n__>l} is a sequence of independent 
n n 

random variables with EX~=O, 2 2 = ~ X ~ ,  s~ G E X , = a , , < o o ,  S, 2.= ~ 0-2 __+ oo, 2 
1 1 

=21oglogs  2, and that {k,, n > l }  is a subsequence of the positive integers with 
k , ~  oo. The  law of the iterated logarithm will be proved first for fixed sub- 
sequences Sk, of bounded random variables X,,  and then extended to random 
subsequences. A result of Teicher (1974) will be generalized. 

Lemma 2.1. Assume, for all large n, that there exist constants G=o(v21) such 
that for 0<]t]c,_<l and l <=j<n 

- v j  < 

exp ( 1 - ) [ G )  2s2} E e x P ( s ,  ) 

and that as n--+ 0% 

Then 

< exp { (1 + ]t]2c--~) t2 r W72~2 , (2.1) 
2sn J 

limsup Sk~ = 1 a.s. (2.3) 
n ~  o3 Skn Dkn 

Proof. If k~=n, Lemma 2.1 is due to Tomkins 0972). In general, put X'~ 
=Xk,_~+~+ +Xk.  and (a'~) 2 -  2 2 and , 2 , 2 . . .  (s,) = ( ~ )  + . . .  +(~'n) 2 - -  O'k~_ , § l "JV . . . "j- O'kn 

for each n > l ,  where ko=0.  Then (2.1) is satisfied by X'~ and hence Lemma 2.1 
follows from Tomkins' result (1972). 

Theorem 2.1. Assume that JXnl < M,  a.s., where M,  are constants satisfying 

M, = o (sj(log log G) ~)" (2.4) 

sk~+, ~ Sk. (2.2) 
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limsup Skn = 1 a.s. 
n~co SknVk~ 

Proof. By Lemma 2.1, it suffices to verify (2.1), which is a consequence of 
Kolmogorov's proof of the law of the iterated logarithm. See, for example, 
Chow and Teicher (1978). 

Lemma 2.2. Assume that for all large n, there exist costants c n = o(v~ 1) such that 
for 0<ltlcn__<l , l <__j<n, 

E e x p l t X j ~ < e x p { ( l + [ t l ~ ; " ) t z a 2 ~  
s. ) 2s~ j, (2.5) 

and that for any fi > O, there exists an e > 0 such that for all large n 

rn 

2 a2<fis~,, where p , = [ ( 1 - e ) k , ]  and r ,=[( l+e)k,] .  (2.6) 
Pn+ 1 

I f  (2.2) holds, then there is a subsequence mj of k, such that 

ISi-Sm~l 0 lim max . = a.s. (2.7) 
j ~ c o  (1 e)mj<=i<=(l+e)mj SmJAmj 

Proof. For any c > 1 and any j > 1, define 

nj = inf {n > 1" Sk~ > d}. 

Then putting mj=knj, we have smj_l<cJ<s,~; whence s , , j~c j. Let qj=r~j. For 
6 > O, by the martingale inequality 

P [  max (X, , j+1+. . .+Xi)>bS, ,ymj]  
mj < i <=qj 

< exp { -  t b yr. j s~jsqj} E exp {t (Xmj + 1 +.. .  + Xq)/Sqj} (2.8) 

<=expt_t~vmfim/sqj + + _ ~ j  ~ 1  o . i 2 } . t c q k  t 2 

Put t=~/3--1Vm Sq/S m . Since u m ~?)q and %=O(Vm) ) for all large j, then by 
J J ,J J J 

(2.6), the righthand side of (2.8) is 

__<exp-  ? v2 + (1 + 0(1)) ~-~-~2 ~ 
ZO Smj mj+ 

} 
by choosing fi = 32/~ in (2.6). Hence, taking ;; > 3, we have 

~ P [  max (Xmj+~+...+X3>SS,~jVmj]<Oe 
j = l  mj<i<=qj 
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and the Borel-Cantell i  L e m m a  ensures 

limsup max (Xmj +I + . . -  q-Xi)/SmjVraj=O 8.S. 
j~oo mj<i<=qf 

Replacing Xj  by - X j  in the above proof, we can conclude 

lira max IX,,j+,+...+XiJ/S~jVmj=O a.s. 
j~oo mj<i~qj 

Similarly 

(2.9) 

lim max [X~+ ... +Xm~[/S~jv~=O a.s. (2.10) 
j~oo (1--~)mj<i<m d 

(2.9) and (2.10) together imply the desired result (2.7). 

Theorem 2.2. Assume that (2.1), (2.2) and (2.6) hold. I f  {T,, n> 1} is a sequence of 
positive integer-valued random variables with 

then 

- - - + 1  a.s. as n-+oo,  (2.11) 
k, 

l imsup Sr" =l imsup  St"  =1  a.s. (2,12) 
n~ o~ STn VTn n~ oa SknVkn 

Proof For  almost all co, for all e > 0 and for sufficiently large n 

(1 - e )  k , <  rn(co) < (1 + e) k,. 

Therefore  2 2 STJSkn --+ 1 a.s. as n --+ oo. Hence  

S T S T (STnVTn] l imsup . n = l imsup  "~ 
n~ao SknVkn n-~oo STnVTn \SknVkn ] 

=l imsup  Srn a.s. 
n~oo STnl.)Tn 

Since Sk~+, ~sk, implies G+ 1 ~s~, by Tomkins '  result (1972) 

limsup Srn = l imsup  Sr~ <1  a.s., 
n ~ o  SknVkn n~oo STnVTn 

and so it suffices to show that  

(2.13) 

S T 
l imsup " > 1 a.s. 

n ~ co Skn Vkn 

Let  n~ and mj be defined as in L e m m a  2.2, then 

= - 

Sm d Vmj Smj Vm d Smj Vm~ 
(2.14) 
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By Lem ma  2.2 and (2.13), 

lim ISr";-SmJ=O a.s. 
j ~ ~x~ Smj Vmj 

For  the first term on the right hand  side of (2.14), put  

2 _  2 e 2 _ 2 1 o g l o g  2 Y J  - -  S m j  - -  Sm j  - 1 ' W j  - -  y j ,  

. 2  s 2 '1 2 2 = o ( 1 )  and note that ya ~ mjt - c - 2 )  and wj ~v,~j. Let  c)=%j~/y j .  Then c~ 
and 0 < t c ) < l  for all large j. Let  u=ts,,jyj, and replace t by u in (2.1), ob- 
taining 

exp {(1 - UC,n ) ~ - - ~  < E exp {uXi/smj } 

and hence 

e p{(1 
As in the derivation of Kolmogorov ' s  exponential  bound,  for 7 >0,  if b = b(7) is 
sufficiently large, and then c= c(7) is sufficiently small in (2.15), then 

P [Smj - S,,j_ 1 > by j] > exp { - (1 + 7) b2/2}. (2.36) 

Let  0 < 6 < 1 ;  choose 7 = ( 1 - ~ ) - 2 - 1 1  b j = ( 1 - 6 ) w j  and note  that  c)=0(%), 
bF}=O(cmjWj)=O(cmjv~)=o(1 ). Therefore  for all large j, and by (2.16) 

P [S~j - Smj_, > (1 - ~) w~yj] > exp { - (1 - 5) 2 w 2 (1 + 7)/2} 

= exp { - log log y~ } = (log y f ) - i  

- (log s~j(1 - c -  2))- 1 _~ (2j log c - log (1 - c -  2))- 1 

implying that  

~ P[S~-S, , ,_  1 >(1 -c~)wjyj] = oo. 
j = l  

By the Borel-Cantelli  Lemma,  

P [ S , ~ - s ~ , _  1 > ( 1 - a ) w y j ,  i.o.] = I. 
Hence 

limsup -Sin.*- Sin.*-* >(1 - 6) ( l - e -  2) ~ a.s. (2.17) 
j +  m Smj 7)mj 

Replacing Xj by - X j  in (2.3), we have 

liminf Sk" > - 1 
n ~ oo Skn ~kn 

A f o r t i o r i  

a.s. ,  

liminf - -  Smj_~_>  _ 1 
j r  m Smj 1 l )mj -  1 

a.s . ,  
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whence 

liminf S~, ~-> 1 .- = - -  a.s. (2.18) 
j ~  Srnjl)mj C 

By (2.17) and (2.18), with probability one 

limsup Sm.c_>limsu p S, , i -S~ez~+liminf S~.~ 
j~  eo Smj Vmj j~  co Smj Vmj j~  oa Smj Prod 

==_(i -6) (1  - c - 2 ) ~ - c  -1. 

Choose c large and 6 small; then it follows the first term on the righthand 
side of (2.14) has limsup equal to one; and the result follows immediately. 

Corollary 2.1. Assume IS~l <M= a.s., where M, are constants satisfying (2.4) and 
assume that (2.2) and (2.6) hold. I f  {T,, n >  1} is a sequence of positive integer- 
valued random variables satisfying (2.11), then 

limsup ST" =limsup --STy' =1 a.s. 
n~o9 STnUTn n~ocr SknVkn 

Proof The result follows directly from Theorem 2.2 and the proof of Theorem 
2.1. 

Theorem 2.3. Assume (2.2), (2.6) and that {T,~, n > l }  is a sequence of positive 
integer-valued random variables satisfying (2.11). Assume that for some 6 > 0 and 
for all e > 0 

Then 

• P[lX, l>cSs,(loglog 2 so) 3<~ 
n=l 

~s23/togIogs2]-- (Sn),  
j = l  

2 2 EX21[esZ~/loglogs,~ ~ <- x~ 2 -<- a2s~toglo~s~ z] < Go. 
. = ,  s , ,  log log s .  - - 

limsup Sr._=limsup_.~r "S  = t  a.s. 
n~ oo STnVTn n~  c~ Skn Vkn 

(2.1.9) 

(2.20) 

(2.21) 

Proof The argument follows the general pattern, but not all the strands of 
Teicher's Theorem (1974). Define truncation constants b,=o(sn/(loglogs~) ~) 
exactly as in that theorem and set 

X'n= XnI[Ix~I <=b.], 

X~," = Xn I[i.v~F > os~0og log s,~r 

x2=x, , -x;-x ' ." ,  

and let S',, S~' and S~" be the corresponding partial sums. As has been demon- 
strated in the course of the proof of that theorem 
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S ' - E S ' ~ = o ( s ,  loglogs2)~), a.s.; 

S"' - ES~' = o(s,(log log s2) ~), a.s. 
(2.22) 

whence (2.22) likewise holds with n replaced by T,. On the other hand, Corol- 
lary 2.1 ensures that the conclusion holds with ST, replaced by S ' r - -ES 'T .  The 
conclusion follows directly. 

3. Tail Sums of Independent Random Variables 

This section treats the random tail sums of independent random variables. 
Throughout this section we shall assume that {X~, n>  1} is a sequence of inde- 

pendent random variables with E X . =  O, 2 2 EX ,  = a, >0, and a 2 < ~ .  For each 
n>  1, put 1 

2 ~ O'j U n ~" ~ X j ,  Un = 2 and v, = 2 log log u~- 2. 
j~n j=n 

We also assume that {k,, n>  1} is a subsequence of the positive integers with 
kn "-+ OO. 

Lemma 3.1. Assume, for all large n and j>=n, that there exist constants c, 
=o(v~ -1) such that for o<[t]c <=1 

I t 2 _2"~ 
exp (1 -I t [  %) ~.~-~ < E  exp { tX/u ,}  

2u.J 

and assume that as n-+c~ 

Then 

< exp 1 + ~ , 
2u,  J 

(3.1) 

limsup Uk" = 1 a.s. (3.3) 

Proof. If k,=n,  then Lemma 3.1 is proved in Chow and Teicher (1973). In 

(an) =ak._l+ l +. . .  +ak . general, put X', = Xk,_~+ 1 + . . .  + Xk, and , 2 2 2 and (u',) 2 

= ~ (a~) 2 for each n>=l, where ko=0. Then (3.1) is satisfied by X', and hence 
j=n 

Lemma 3.1 follows from Chow and Teicher (1973). 

Theorem 3.1. Assume [X,[ <= M,  a.s., where M,  are constants satisfying 

1 
c, - - -  max M s = o((log log u2 2)- ~). (3.4) 

U n j>=n 

Assume (3.2) holds. Then 

limsup U k ~  = 1 a.s. 
n~ ~ Uk. Vkn 

kn+ i 

2 a~=o(u~.). (3.2) 
kn+ 1 
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Proof. As shown in Chow and Teicher (1973), condition (3.1) is satisfied. Hence 
the result follows from Lemma 3.1. 

Corollary 3.1. Let {Y, Y,, n > l }  be independent and identically distributed ran- 
dom variables with EY=O and EYe= 1 and {G, n=> 1} be constants satisfying 

and 

Then 

an 2 
< - - ,  a n < oO 

2 n 1 
aj  

n 

f o r  s o m e  c o n s t a n t  C,  (3.5) 

2 (3.6) aj  = o  a . 
kn+ 1 n 

oo 

Ea;E 
limsup k, = 1 a.s. (3.7) 

. ~  o~ 2 a j2 log log a 

k~ 

Proof. The argument follows that in Chow and Teicher (1973) by applying 
Theorem 3.1. 

Remark. Admissible sequences for a, are G =  _+n ~, f l < - � 8 9  an= __+nZ~(log n) ~, 
fil < - � 89  or f l z< - � 8 9  When kn=n, the above results have been obtained in 
Chow and Teicher (1973). 

Lemma 3.2. Assume that for all large n and j>-_n, there exist constants G 
=o(v,  -1) such that for 0 < ] t [ G < l ,  

Eexp{tXjun}<exp{(l+Jt~J~r tza2~ (3.8) 

Assume (3.2) holds and that for any fl>O, there exists an e>O such that for all 
large n 

Yn 

2<flu~2, where G = [ ( 1 - 0 k n ]  and rn=E(l +e)kn]. 
pn+ I 

Then there is a subsequence mj of k, such that 

lira max [U i -  U,,j] = 0  a.s. 
j ~  (1--e)mj<=i<=(l+e)mj UmjVmj 

Proof. For any c >  1 and any j=> 1, define 

nj = inf {n => 1 : uk. < c-J}. 

Then putting m~=k,j, we have Um<c-J<--Umj_~, whence unj~ 
= [(1 + ~) k,] and qJ = rn~' 

(3.9) 

(3.1o) 

(3.11) 

c -~. Letting r n 
For 6>0,  by the martingale inequality and (3.8), 
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P [  max (Xm.,+ 1 +"" + Xi)>6UmsV,~fl 
mj <i <~qj 

< exp { - t~vmj } E exp {t(Xmj + 1 +.-- + Xqj)/Umfl 

<exp {- t6vm~+ ( 1 +--2-t%• t2 '~qJ 1 ~ �9 
�9 2Um~ "V+ 

(3.12) 

Let t=~ ~Vm . Then since c~j = O(Vmjl), (3.12) becomes 

<exp - ?v~s+( l+o (1 ) )  2 2 ~ a 
2 6 Umj m~+ 1 

< e x p {  , 2 o 2 7,6"[ 
= _--yVma+FVms 623 

U-2 

1 1 
- ( log  Umj--2 ) 2~(1-,) ~~j2 ~(1 - ')(log C) 2~(1 -")' 

where ~l=yfi/62. If 7,/7 are such that 27(1-~/)> 1, then 

~ P [  max (X~j+l+...+Xi)>Su,vVmj]<oo. 
j=l mj<i~qj 

By the Borel-Cantelli Lemma, 

P [  max (X,v + 1 + ..-+Xi)/UmjVms>& i.o.] =0  
mj<i~qj 

implying 
limsup max (Xmj+l+...+Xi)/UmjVmj=O a.s. 

j~oo mj<i<=qd 

Replacing Xj by - X j  in the above argument, we get 

lim max IXmj+l+...+Xii/UmV,,j=O 
j~oo mj<i<=qj 

Similarly 

a.s. 

lira max I Xi +... + Xmfl/Umj Vmj = 0 a.s. 
j~oo (1--e)mj <--i <=mj 

Hence the result (3.10) follows immediately. 

Theorem 3.2. Assume that (3.1), (3.2) and (3.9) hold. I f  {T n, n > l }  is a sequence 
of positive integer-valued random variables such that 

T,__, 1 a.s. as n ~oo,  (3.13) 
then k. 

limsup - UTn-=limsnp Urn = 1 a.s. (3.14) 
n-~oc UTnVTn n~oo UknDkn 
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Proof For  almost all co, for e > 0 and for all sufficiently large n, 

(1 - e )  k ,< T~(o) < (i + 0 k,,. 

Therefore 2 UT./Uk. --* 1 a.s. as n ~ oo. Hence 

UT, _ t imsup  UTn [U T 1-) T \ ~TTn Iimsup - -  / . . . .  } = l imsup  
n~co UknVlr n n~ao tXTnOT~ ~ \ UknL~kn ] n~oo UTnVTn 

a.s. 

Since (3.2) implies G = o ( G )  and by Chow and Teicher (1973) 

limsup Urn _ = l i m s u p  Ur" < t a . s . ,  

n~ co Ukn Vkn n~ oo UTn L~Tn 

it suffices to show that 

limsup Ur, > 1 a.s. 

Define nj as in L e m m a  3.2. Then again setting rnj= k,j, 

- 

Umj ~)mj ~'md Dmj ~'~mj - -  ~)mj 
(3.15) 

By Lemma 3.2, the second term on the r ighthand side of (3.15) will go to zero 
a.s., and for the first term, put 

2 _ u  z wf = 2  log log y72, Yf =Umj ,nj§ 

-2~u2  q c -2 '  ~-~v 2 If cj .......... , then c)=o(1) and and note that yj ~jt - ) and w~ ~j. 
Yj 

tt~m 7 
0 < t c } < l  for all largej .  Set z = -  :, and replace t by z in (3.1) obtaining 

y1 

t 2 
exp { ( l - t c ) ) ~ - }  < E  exp {t(Umj-Umj+~)/yj}. (3.16) 

As in the derivation of Kolmogorov 's  exponential bound, for 7>0,  if b=b(7)  us 
sufficiently large and then c=c(7)  is sufficiently small in (3.16), then 

PlUm j -  U,v+~ >b) ) ]  >exp  {-b2(1  +7)/2}. (3.17) 

Let 0 < ~ < 1 ;  choose 7 = ( 1 - 3 ) - 2 - 1 ,  b j = ( 1 - f ) w j  and note that  c)=O(c,,j), 
bj c} = O (%j w j) = O (cm~ v,,~) = o (1); therefore for large j and by (3.17) 

P [[J~i - L~+~ > by.i] > exp { - (1 - ~)Zw2(1 + 7)/2} 

= exp { - log log yj- 2 } ~.. (log v~ 2 (1 - c -  z)- a)- 1 

(log c 2j - log (1 - c -  2))- 1 _ (2j log e - log (1 - c -  2))- 1 
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implying 

P[Umj-  U,.,+ 1 >by j ]  = 0% 
j = l  

and by the Borel-Cantelli Lemma, 

Hence 
PEU,, , -  Urn,+ 1 >(1-6)wjy j ,  i.o.] =1. 

limsup U,.j-  Ums+l >(1  - -6)(1  2 • - - C  )~ a . s .  
j ~  oo ~'~rnj Vmj 

Replacing Xj by - X j  in (3.1) and by Chow and Teicher (1973) 

Afort iori  

whence 

G liminf -- " > - 1 
n ~ m Ukn Vkn 

a l s .  

liminf Um~+l = l i m i n f  U~.i + 1  > _ i  
j~oo  C - 1  UmjVmj j--+oo Uttlj+lVytlj+I 

a .s . ,  

liminf U,.~+, > 1 - - - -  a . s .  
j--* ct~ Umj Vmj C 

By (3.18) and (3.19), with probability one 

limsup Umj =>limsup U,, j-  U,.j+ 1 +liminf U~i+l 
j ~  aO Umj Vmj j ~  (30 Ugnj Vmj j ~  m Umj 1-)mj 

>(1 -O)(1 - c - 2 ) ~ - c  - i .  

Choose c large and 6 small; then 

(3.18) 

(3.19) 

limsup Um~ > 1 a.s., 
j ~  oo Umj Vmj 

and the result follows. 

Corollary 3.2. Assume that [X,I~M,  a.s. where M,  are constant satisfying (3.4) 
and that (3.2) and (3.9) hold. I f  {T,, n> 1} is a sequence of positive integer-valued 
random variables satisfying (3.13), then 

G~ U~ 
limsup = limsup - ' " - =  1 a.s. 

n~oo UTnVTn n~oo bl k V k n n 

Proof The result follows directly from Theorem 3.2 and the proof of Theo- 
rem 3.1. 

Corollary 3.3. Let {Y, Y,, n > l }  be independent and identically distributed ran- 
dom variables E Y = O  and E y 2 - 1  and { a , , n > l }  be constants satisfying (3.5) 
and (3.6). Assume that for any 8>0,  there exists an e>0  such that for all large n 

r n oo 

2 ay<= Z 4, 
Pn + 1 kn 

where p, = [(1 - e) k,], r, = [(1 + e) k,]. (3.20) 
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I f  { T,, n > l }  is a sequence of positive integer-valued random variables satisfying 
(3.13), then 

~ a j Y j  

l i m s u p  r ,  
n ~ c o  

r n  n 

oo 

Zaj  
= l i m s u p  rn - 1 a.s. 

~ o  2 a ~ l o g l o g  a 
kn 

Proof T h e  a r g u m e n t  fo l lows  tha t  in C h o w  and  T e i c h e r  (1973). By C o r o l l a r y  

3.1, T h e o r e m  3.2 a n d  L e m m a  3.2, the  resu l t  fol lows.  
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