Iterated Logarithm Laws with Random Subsequences

Y.S.Chow ${ }^{1 \star}$, H. Teicher ${ }^{2}$, C.Z. Wei ${ }^{1}$, and K.F. Yu ${ }^{3}$
${ }^{1}$ Department of Mathematical Statistics, Columbia University, New York, New York 10027, USA
${ }^{2}$ Department of Statistics, Rutgers University, New Brunswick, New Jersey 08903, USA
${ }^{3}$ Department of Statistics, Yale University, Box 2179 - Yale Station, New Haven, Connecticut 06520, USA

0. Introduction

It is the purpose of this article to prove iterated logarithm laws for random subsequences $S_{T(n)}$ of partial sums S_{n} of independent random variables and concomittantly to show how these may be exploited to obtain simple proofs of iterated logarithm laws for stopping rules, last times, etc., obtained by Chow and Hsiung (1976), and Chow, Hsiung and Yu (1980). The latter contains many other results not dealt with here. A similar juxtaposition is quite familiar in the case of central limit theorems, where Anscombe's result in 1952 has been readily available.

If, under norming with $k(n), T(n)$ converges almost surely, then random subsequences $S_{T(n)}$ are related to fixed subsequences $S_{k(n)}$, and these, in turn, when the underlying random variables are independent and identically distributed, may be handled via the work of Qualls (1977) on subsequences of Brownian motion. On the other hand, when the basic random variables are merely independent such aid is unavailable and an alternative approach is devised.

The i.i.d. case is treated in Sect. 1, where applications to stopping rules are given. Section 2 is devoted to the independent case where the iterated logarithm law of Teicher (1974) is extended to random subsequences. In Sect. 3, similar results are proved for tail sums, thereby generalizing results of Chow and Teicher (1973).

1. The i.i.d. Case

As has been pointed out by Qualls (1977), in dealing with Brownian motion, if k_{n} is a nondecreasing positive integer-valued sequence with $k_{n} \rightarrow \infty$, it may be necessary to define a thinner subsequence k_{n}^{\prime} via

$$
\begin{equation*}
k_{n+1}^{\prime}=\inf \left\{k_{m}: k_{m} \geqq k_{n}^{\prime} \exp (c / \log n)\right\}, \quad n \geqq 2, \tag{1.1}
\end{equation*}
$$

[^0]where $k_{1}^{\prime}=k_{1} ; k_{2}^{\prime}=k_{2}$, and c is any positive number. It is not difficult to verify that the convergence or divergence of the series (1.3) below is independent of c, and for this reason c may be chosen at one's convenience.

Theorem 1.1. Let $\left\{X, X_{n}, n \geqq 1\right\}$ be independent and identically distributed random variables with $E X=0, E X^{2}=1$ and $\left\{T_{n}, n \geqq 1\right\}$ be positive integer-valued random variables with $T_{n} / k_{n} \rightarrow 1$ a.s. for some nondecreasing sequence k_{n} of positive integers with $k_{n} \rightarrow \infty$. Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{X_{1}+\ldots+X_{T_{n}}}{\left(2 T_{n} \log \log T_{n}\right)^{\frac{1}{2}}}=1 \quad \text { a.s., } \tag{1.2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\left(\log k_{n}^{\prime}\right)^{1-\varepsilon}}=\infty, \quad \text { for all } \varepsilon>0 \tag{1.3}
\end{equation*}
$$

where $\left\{k_{n}^{\prime}, n \geqq 1\right\}$ is the thinned subsequence of (1.1).
Proof. Set $S_{n}=X_{1}+\ldots+X_{n}$, and let β be an arbitrary number in $(0,1)$. With probability one, for all large n, the random variables T_{n} will be in $\left[(1-\beta) k_{n}\right.$, $\left.(1+\beta) k_{n}\right]=I_{n}$, say. Hence with probability one

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{\left|S_{T_{n}}-S_{k_{n}}\right|}{\left(2 k_{n} \log \log k_{n}\right)^{\frac{1}{2}}} & \leqq \limsup _{n \rightarrow \infty} \max _{j \in I_{n}} \frac{\left|S_{j}-S_{k_{n}}\right|}{\left(2 k_{n} \log \log k_{n}\right)^{\frac{1}{2}}} \\
& \leqq 2 \beta^{\frac{1}{2}}, \quad \text { a.s. }
\end{aligned}
$$

according to a theorem of Lai (1974). Thus, the hypotheses of the theorem entail

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|S_{T_{n}}-S_{k_{n}}\right|}{\left(2 k_{n} \log \log k_{n}\right)^{\frac{1}{2}}}=0 \quad \text { a.s. } \tag{1.4}
\end{equation*}
$$

By Strassen's strong invariance principle (1964), if $\eta^{*}(t)$ is the function obtained by linearly interpolating S_{n} at n, that is,

$$
\eta^{*}(t)=([t]+1-t) S_{[t]}+(t-[t]) S_{[t]+1},
$$

there are a Brownian motion process $\xi(t)$ and a process $\eta(t)$ on a probability space with $\eta(t) \stackrel{\mathscr{L}}{=} \eta^{*}(t)$, and

$$
\lim _{t \rightarrow \infty}(2 t \log \log t)^{-\frac{1}{2}} \sup _{\tau \leq t}|\xi(\tau)-\eta(\tau)|=0 \quad \text { a.s. }
$$

According to Qualls (1977), for any ε in $(0,1)$

$$
\begin{align*}
P\left[S_{k_{n}}\right. & \left.>\left(2(1-\varepsilon) k_{n} \log \log k_{n}\right)^{\frac{1}{2}}, \text { i.o. }\right] \tag{1.5}\\
& =P\left[\xi\left(k_{n}\right)>\left(2(1-\varepsilon) k_{n} \log \log k_{n}\right)^{\frac{1}{2}}, \text { i.o. }\right]=1,
\end{align*}
$$

if and only if

$$
\sum_{n=1}^{\infty}\left(\log \log k_{n}^{\prime}\right)^{-\frac{1}{2}}\left(\log k_{n}^{\prime}\right)^{x-1}=\infty
$$

hence if and only if (1.3) holds. Thus under (1.3), it follows from (1.4), (1.5), the Hartman-Wintner theorem and

$$
\begin{align*}
& \frac{S_{T_{n}}}{\left(2 T_{n} \log \log T_{n}\right)^{\frac{1}{2}}} \tag{1.6}\\
& \quad=\left(\frac{S_{k_{n}}}{\left(2 k_{n} \log \log k_{n}\right)^{\frac{1}{2}}}+\frac{S_{T_{n}}-S_{k_{n}}}{\left(2 k_{n} \log \log k_{n}\right)^{\frac{1}{2}}}\right)\left(\frac{k_{n} \log \log k_{n}}{T_{n} \log \log T_{n}}\right)^{\frac{1}{2}}
\end{align*}
$$

that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{\left(2 T_{n} \log \log T_{n}\right)^{\frac{1}{2}}}=1 \quad \text { a.s. } \tag{1.7}
\end{equation*}
$$

Conversely, convergence of the series in (1.3) for some $\varepsilon>0$ elicits via (1.5) and (1.6)

$$
\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{\left(2 T_{n} \log \log T_{n}\right)^{\frac{1}{2}}} \leqq(1-\varepsilon)^{\frac{1}{2}}, \quad \text { a.s. }
$$

and hence the negation of (1.2).
The following corollary, due to Hartman (1941) in the special case where $T_{n} \equiv k_{n}$, provides a criterion directly in terms of k_{n}.
Corollary 1.1. Let $\left\{X, X_{n}, n \geqq 1\right\}$ be independent and identically distributed random variables with $E X=0, E X^{2}=1$ and $\left\{T_{n}, n \geqq 1\right\}$ be positive integer-valued random variables with $T_{n} / k_{n} \rightarrow 1$ a.s. for some nondecreasing sequence k_{n} of positive integers. If $k_{n} \rightarrow \infty$ and

$$
\begin{equation*}
k_{n+1}=O\left(k_{n}\right), \tag{1.8}
\end{equation*}
$$

then (1.2) holds.
Proof. Define $n_{1}=n_{1}^{\prime}=1, n_{2}=n_{2}^{\prime}=2$, and for $m \geqq 2$

$$
\begin{aligned}
& n_{m+1}=\inf \left\{j>n_{m}: k_{j} \geqq 2 k_{n_{m}}\right\}, \\
& n_{m+1}^{\prime}=\inf \left\{j>n_{m}^{\prime}: k_{j} \geqq k_{n_{m}^{\prime}} \exp (\log 2 / \log m)\right\},
\end{aligned}
$$

and note that $k_{m}^{\prime}=k_{n_{m}^{\prime}}$ is the thinned subsequence of (1.1), and that $k_{m}^{\prime} \leqq h_{m} \equiv k_{n_{m}}$. Moreover, in view of (1.8), for some M in $\left(h_{1}, \infty\right)$

$$
\frac{h_{m+1}}{h_{m}} \leqq \frac{M}{2 h_{m}} k_{n_{m+1}-1} \leqq M
$$

implying $k_{m}^{\prime} \leqq h_{m} \leqq M^{m}$ and hence

$$
\sum_{m=1}^{\infty} \frac{1}{\left(\log k_{m}^{\prime}\right)^{1-\varepsilon}}=\infty, \quad \text { for all } \varepsilon>0
$$

Since $T_{m}^{\prime} / k_{m}^{\prime} \rightarrow 1$, a.s. where $T_{m}^{\prime}=T_{n_{m}}$, it follows via (1.6) as in the proof of Theorem 1.1 that

$$
\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{\left(2 T_{n} \log \log T_{n}\right)^{\frac{1}{2}}} \geqq \limsup _{n \rightarrow \infty} \frac{S_{T_{m}^{\prime}}}{\left(2 T_{m}^{\prime} \log \log T_{m}^{\prime}\right)^{\frac{1}{2}}}=1 \quad \text { a.s., }
$$

and the reverse inequality obtains via the Hartman-Winter theorem.

Next, the prior results will be applied to a positively drifting process U_{n} and its corresponding first passage times N_{λ}, T_{λ}, etc., defined in the paragraphs below. The statistical motivation underlying the consideration of these entities is spelled out in Chow, Hsiung and Yu (1980), and the interested reader is referred to this article.

Throughout the rest of this section $\left\{X, X_{n}, n \geqq 1\right\}$ are independent and identically distributed random variables with $E X=1, E(X-1)^{2}=\sigma^{2} \in(0, \infty)$, and $\left\{R_{n}, n \geqq 1\right\}$ are random variables with $R_{n}=o(1)$, a.s. as $n \rightarrow \infty$. Set

$$
\begin{equation*}
S_{n}=\sum_{i=1}^{n} X_{i}, \quad U_{n}=n^{-1} S_{n}+R_{n}, \quad S_{n}^{\prime}=\sum_{i=1}^{n}\left(X_{i}-1\right) \tag{1.9}
\end{equation*}
$$

and let $\left\{a_{n}, n \geqq 1\right\}$ be a positive regularly varying sequence with index $\rho>0$. The properties of such sequences are expounded in Bojanic and Seneta (1973).
A statement $\varlimsup_{n \rightarrow \infty} Q_{n}= \pm \sigma$ is to be interpreted as $\varlimsup_{n \rightarrow \infty} Q_{n}=\sigma$ and $\varliminf_{n \rightarrow \infty}^{\varliminf_{n}} Q_{n}=-\sigma$.
Theorem 1.2. If a_{n} is eventually nondecreasing and

$$
\begin{equation*}
n^{\frac{1}{2}}(2 \log \log n)^{-\frac{1}{2}} R_{n}=c+o(1), \quad \text { a.s. } \tag{1.10}
\end{equation*}
$$

then

$$
\begin{array}{ll}
\varliminf_{n \rightarrow \infty} & n^{\frac{1}{2}}(2 \log \log n)^{-\frac{1}{2}}\left(1-\max _{j \leqq n} a_{j} U_{j} / a_{n}\right)+c= \pm \sigma \\
\varliminf_{n \rightarrow \infty} & \text { a.s., } \\
n^{\frac{1}{2}}(2 \log \log n)^{-\frac{1}{2}}\left(1-\inf _{j \geqq n} a_{j} U_{j} / a_{n}\right)+c= \pm \sigma & \text { a.s., } \\
\varliminf_{n \rightarrow \infty} n^{\frac{1}{2}}(2 \log \log n)^{-\frac{1}{2}}\left(1-\sup _{j \geqq n} a_{n} U_{j} / a_{j}\right)+c= \pm \sigma & \text { a.s., } \tag{1.14}\\
\varlimsup_{n \rightarrow \infty} n^{\frac{1}{2}}(2 \log \log n)^{-\frac{1}{2}}\left(1-\min _{n_{0} \leqq j \leqq n} a_{n} U_{j} / a_{j}\right)+c= \pm \sigma & \text { a.s., }
\end{array}
$$

where $n_{0}=\inf \left\{k \geqq 1: U_{n}>0\right.$, for all $\left.n \geqq k\right\}$.
Only (1.11) will be proved since the proofs of the remaining portions of the theorem are similar. It is convenient to first verify
Lemma 1.1. If for each $n \geqq 1$,

$$
T_{n}=\inf \left\{k \geqq 1: a_{k} U_{k}=\max _{j \leqq n} a_{j} U_{j}\right\}
$$

and if (1.10) holds, then as $n \rightarrow \infty$

$$
\begin{equation*}
T_{n} / n \rightarrow 1 \quad \text { a.s., } \tag{1.15}
\end{equation*}
$$

and

$$
n^{\frac{1}{2}}(\log \log n)^{-\frac{1}{2}}\left(1-a\left(T_{n}\right) / a(n)\right) \rightarrow 0, \quad \text { a.s. }
$$

where for notational convenience, a_{n} is sometimes designated $a(n)$.
Proof. Let $0<\alpha<1$. Since $a(\alpha n) / a(n) \rightarrow \alpha^{\rho}$ and $U_{n} \rightarrow 1$ a.s. and a_{n} does not decrease eventually, necessarily $\max _{j \leq x n} a_{j} U_{j} / a_{n} \rightarrow \alpha^{\rho}$ a.s. . If δ is in ($1, \alpha^{-\rho}$), then with probability one, $\max _{1 \leqq j \leqq \alpha n} a_{j} U_{j} \leqq \delta \alpha^{j \leq \alpha n} a_{n}$ for all large n. But with probability one,
$U_{n} \geq \delta \chi^{\rho} T$ for all large n. Hence with probability one, for all large n

$$
\alpha n \leqq T_{n} \leqq n .
$$

As $\alpha, \nearrow 1$, it follows that $T_{n} / n \rightarrow 1$, a.s. Next, by the definition of T_{n}, $a\left(T_{n}\right) U_{T_{n}} \geqq a(n) U_{n}$. Hence eventually

$$
\begin{equation*}
a\left(T_{n}\right) \frac{S_{T_{n}}^{\prime}}{T_{n}}-a(n) \frac{S_{n}^{\prime}}{n}+a\left(T_{n}\right) R_{T_{n}}-a(n) R_{n} \geqq a(n)-a\left(T_{n}\right) \geqq 0 \tag{1.16}
\end{equation*}
$$

However, with probability one

$$
\begin{aligned}
\frac{a\left(T_{n}\right)}{a(n)} \frac{S_{T_{n}}^{\prime}}{T_{n}}-\frac{S_{n}^{\prime}}{n} & =(1++o(1)) \frac{S_{T_{n}}^{\prime}}{n}-\frac{S_{n}^{\prime}}{n}=o(1) \frac{S_{T_{n}}^{\prime}}{n}+\frac{S_{T_{n}}^{\prime}-S_{n}^{\prime}}{n} \\
& =o\left(n^{-\frac{1}{2}}(\log \log n)^{\frac{1}{2}}\right)
\end{aligned}
$$

by (1.2) and (1.4). Moreover, by (1.10)

$$
\begin{aligned}
& n^{\frac{1}{2}}(2 \log \log n)^{-\frac{1}{2}}\left(\frac{a\left(T_{n}\right)}{a(n)} R_{T_{n}}-R_{n}\right) \\
& \quad=(1+o(1))(c+o(1))-(c+o(1))=o(1) \quad \text { a.s. }
\end{aligned}
$$

and so (1.15) follows from (1.16).
Proof of Theorem 1.2. Clearly

$$
1-\max _{j \leqq n} a_{j} U_{j} / a_{n}=1-\frac{a\left(T_{n}\right)}{a(n)}\left(\frac{S_{T_{n}}^{\prime}}{T_{n}}+1+R_{T_{n}}\right)
$$

and

$$
\frac{a\left(T_{n}\right)}{a(n)} R_{T_{n}}=(c+o(1))\left(n^{-\frac{1}{2}}(\log \log n)^{-\frac{1}{2}}\right) \quad \text { a.s. }
$$

whence (1.11) follows via Corollary 1.1 and Lemma 1.1.
Suppose next that there is a positive, increasing function $a(\cdot)$ on $[0, \infty)$ such that $a(n)=a_{n}, n \geqq 1$, is regularly varying with index $\rho>0$. Then $a(\lambda x) / a(x) \rightarrow \lambda^{\rho}$ as $x \rightarrow \infty$, and one may define, for $\lambda>0$,

$$
a^{-1}(\lambda)=\inf \{x>0: a(x)=\lambda\}
$$

Furthermore, for $0<n_{\lambda}=o\left(a^{-1}(\lambda)\right)$, define

$$
\begin{align*}
& N_{\lambda}=\inf \left\{n \geqq n_{\lambda}: a_{n} U_{n} \geqq \lambda\right\}, T_{\lambda}=\inf \left\{n \geqq n_{\lambda}: 0<U_{n} \leqq \lambda^{-1} a_{n}\right\}, \tag{1.17}\\
& N_{\lambda}^{\prime}=\sup \left\{n \geqq n_{\lambda}: a_{n} U_{n}<\lambda\right\}, T_{\lambda}^{\prime}=\sup \left\{n \geqq n_{\lambda}: U_{n}>\lambda^{-1} a_{n}\right\}, \tag{1.18}\\
& N_{\lambda}^{\prime \prime}=\sum_{n \cong n_{\lambda}}^{\infty} I_{\left[a_{n} U_{n}<\lambda\right]}, \quad T_{\lambda}^{\prime \prime}=\sum_{n=n_{\lambda}}^{\infty} I_{\left[U_{n}>\lambda^{-1} a_{n}\right]} . \tag{1.19}
\end{align*}
$$

Theorem 1.3. (i) If for each $n \geqq 1, U_{n}$ and $a(\cdot)$ are as specified, then as $\lambda \rightarrow \infty$,

$$
\begin{gather*}
N_{\lambda} / a^{-1}(\lambda) \rightarrow 1, \quad T_{\lambda} / a^{-1}(\lambda) \rightarrow 1, \quad \text { a.s., } \tag{1.20}\\
\varliminf_{\lambda \rightarrow \infty} \frac{S_{N_{\lambda}}-N_{\lambda}}{\left(2 N_{\lambda} \log \log N_{\lambda}\right)^{\frac{2}{2}}}=\varlimsup_{\lambda \rightarrow \infty} \frac{S_{T}-T_{\lambda}}{\left(2 T_{\lambda} \log \log T_{\lambda}\right)^{\frac{1}{2}}}= \pm \sigma \quad \text { a.s. } \tag{1.21}
\end{gather*}
$$

(ii) Furthermore, if in addition $a(x)$ is differentiable with $\lim _{x \rightarrow \infty} \frac{x a^{\prime}(x)}{a(x)}=\rho$ and $n^{\frac{1}{2}}(2 \log \log n)^{-\frac{1}{2}} R_{n}=c+o(1)$ a.s., then

$$
\begin{equation*}
\varlimsup_{\lambda \rightarrow \infty} \frac{\rho\left(N_{\lambda}-a^{-1}(\lambda)\right)}{\left(2 a^{-1}(\lambda) \log \log \lambda\right)^{\frac{1}{2}}}+c=\varlimsup_{\lambda \rightarrow \infty} \frac{\rho\left(T_{\lambda}-a^{-1}(\lambda)\right)}{\left(2 a^{-1}(\lambda) \log \log \lambda\right)^{\frac{1}{2}}}+c= \pm \sigma \tag{1.22}
\end{equation*}
$$

(iii) Moreover (1.20), (1.21) and (1.22) hold with N_{λ}, T_{λ} replaced by the corresponding random variables of (1.18) and (1.19).
Proof. We shall only prove the results for N_{λ} since the proofs for $T_{\lambda}, N_{\lambda}^{\prime}$ and T_{λ}^{\prime} are similar. The results for $N_{\lambda}^{\prime \prime}$ and $T_{\lambda}^{\prime \prime}$ follow in view of the fact that N_{λ} $-1 \leqq N_{\lambda}^{\prime \prime} \leqq N_{\lambda}^{\prime}$ and $T_{\lambda}-1 \leqq T_{\lambda}^{\prime \prime} \leqq T_{\lambda}^{\prime}$. By definition,

$$
U_{N_{\lambda}} \geqq \frac{\lambda}{a_{N_{\lambda}}}>\frac{a_{N_{\lambda}-1}}{a_{N_{\lambda}}} U_{N_{\lambda}-1},
$$

and so $U_{n} \rightarrow 1$ a.s. and $N_{\lambda} \rightarrow \infty$ a.s. imply that

$$
a_{N_{\lambda}} / \lambda \rightarrow 1 \quad \text { a.s. }
$$

which, in turn, ensures the first half of (1.20). Suppose to the contrary that the set $D=\left\{\overline{\lim }_{\lambda \rightarrow \infty} N_{\lambda} / a^{-1}(\lambda)>1\right\}$ had positive probability. Then for $w \in D$, there exists $\delta=\delta(w)$ in $(0,1)$ and $\lambda_{k}=\lambda_{k}(w) \nearrow \infty$ with $\delta N_{\lambda_{k}} \geqq a^{-1}\left(\lambda_{k}\right)$, for all $k \geqq 1$ and hence $a\left(\delta N_{k}\right) \geqq \lambda_{k}, k \geqq 1$. Hence for $w \in D$

$$
1 \geqq \varlimsup_{k \rightarrow \infty} \frac{\lambda_{k}}{a\left(\delta N_{\lambda_{k}}\right)}=\lim _{k \rightarrow \infty} \frac{\lambda_{k}}{a\left(N_{\lambda_{k}}\right)} \frac{a\left(N_{\lambda_{k}}\right)}{a\left(\delta N_{\lambda_{k}}\right)}=\delta^{-\rho}>1,
$$

which is a contradiction. Thus $P[D]=0$. Likewise the probability of the set $\left\{\lim _{\lambda \rightarrow \infty} N_{\lambda} / a^{-1}(\lambda)<1\right\}$ is zero, and the first half of (1.20) follows. Since $a^{-1}(\lambda+1)$ $\stackrel{\lambda \rightarrow a^{-1}}{\sim}(\lambda)$, as it can be easily verified, (1.20) and Corollary 1.1 ensure (1.21). Next, we denote N_{λ} by N. For some \bar{N} between N and $a^{-1}(\lambda)$,

$$
\begin{aligned}
\lambda \frac{N}{a(N)}-N & =N \frac{a\left(a^{-1}(\lambda)\right)-a(N)}{a(N)}=\frac{N}{a(N)}\left(a^{-1}(\lambda)-N\right) a^{\prime}(\bar{N}) \\
& =\left(a^{-1}(\lambda)-N\right) \frac{N a(\bar{N})}{\bar{N} a(N)} \frac{\bar{N} a^{\prime}(\bar{N})}{a(N)}=\rho(1+o(1))\left(a^{-1}(\lambda)-N\right)
\end{aligned}
$$

Hence, since $S_{N}-N=\left(S_{N}-\lambda N / a(N)\right)+(\lambda N / a(N)-N)$, it suffices by (1.20) and (1.21) to show that

$$
\left(S_{N}-\lambda N / a(N)\right)(2 N \log \log N)^{-\frac{1}{2}}=-c+o(1) \quad \text { a.s. }
$$

To this end, note via the definition of N and the hypothesis of (ii) that

$$
S_{N}-\lambda N / a(N) \geqq-N R_{N}=-(c+o(1))(2 N \log \log N)^{\frac{1}{2}}, \quad \text { a.s. }
$$

On the other hand, since

$$
\begin{aligned}
& S_{N-1}+(N-1) R_{N-1}<\lambda(N-1) / a(N-1), \\
& S_{N}-\lambda N / a(N)<\left(S_{N}-S_{N-1}\right)-(N-1) R_{N-1}+\lambda(N-1) / a(N-1)-\lambda N / a(N) \\
& \quad=X_{N}-(c+o(1))(2 N \log \log N)^{\frac{1}{2}}+\lambda N(1 / a(N-1)-1 / a(N))+o(1) \\
& \quad=o\left(N^{\frac{1}{2}}\right)-(c+o(1))(2 N \log \log N)^{\frac{1}{2}}+\lambda N a^{\prime}(\bar{N}) /(a(N) a(N-1))+o(1) \\
& \quad=o\left(N^{\frac{1}{2}}\right)-(c+o(1))(2 N \log \log N)^{\frac{1}{2}}+O(\rho)+o(1) \\
& \left.\quad=-(c+o(1))(2 N \log \log N)^{\frac{1}{2}}\right), \quad \text { a.s., }
\end{aligned}
$$

completing the proof of the theorem.
Theorems 1.2 and 1.3 have been proved in Chow, Hsiung and Yu (1980) for specific a_{n}. The argument presented here is somewhat simpler.

Central limit theorems for $\max a_{j} U_{j} / a_{n}$, etc., can be proved by the same method as that of Theorem 1.2. It suffices to substitute Anscombe's result (1952) for Theorem 1.1 and to replace the condition on R_{n} by $n^{\frac{1}{2}} R_{n}=c+o(1)$ a.s. as $n \rightarrow \infty$.

2. The Independent Case

In this section, we shall assume that $\left\{X_{n}, n \geqq 1\right\}$ is a sequence of independent random variables with $E X_{n}=0, E X_{n}^{2}=\sigma_{n}^{2}<\infty, S_{n}=\sum_{1}^{n} X_{j}, s_{n}^{2}=\sum_{1}^{n} \sigma_{j}^{2} \rightarrow \infty, v_{n}^{2}$ $=2 \log \log s_{n}^{2}$, and that $\left\{k_{n}, n \geqq 1\right\}$ is a subsequence of the positive integers with $k_{n} \rightarrow \infty$. The law of the iterated logarithm will be proved first for fixed subsequences $S_{k_{n}}$ of bounded random variables X_{n}, and then extended to random subsequences. A result of Teicher (1974) will be generalized.
Lemma 2.1. Assume, for all large n, that there exist constants $c_{n}=o\left(v_{n}^{-1}\right)$ such that for $0<|t| c_{n} \leqq 1$ and $1 \leqq j \leqq n$

$$
\begin{equation*}
\exp \left\{\left(1-|t| c_{n}\right) \frac{t^{2} \sigma_{j}^{2}}{2 s_{n}^{2}}\right\}<E \exp \left\{\frac{t X_{j}}{s_{n}}\right\}<\exp \left\{\left(1+\frac{|t| c_{n}}{2}\right) \frac{t^{2} \sigma_{j}^{2}}{2 s_{n}^{2}}\right\} \tag{2.1}
\end{equation*}
$$

and that as $n \rightarrow \infty$,

$$
\begin{equation*}
s_{k_{n}+1} \sim s_{k_{n}} . \tag{2.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{S_{k_{n}}}{S_{k_{n}} v_{k_{n}}}=1 \quad \text { a.s. } \tag{2.3}
\end{equation*}
$$

Proof. If $k_{n}=n$, Lemma 2.1 is due to Tomkins (1972). In general, put X_{n}^{\prime} $=X_{k_{n-1}+1}+\ldots+X_{k_{n}}$ and $\left(\sigma_{n}^{\prime}\right)^{2}=\sigma_{k_{n-1}+1}^{2}+\ldots+\sigma_{k_{n}}^{2}$ and $\left(s_{n}^{\prime}\right)^{2}=\left(\sigma_{1}^{\prime}\right)^{2}+\ldots+\left(\sigma_{n}^{\prime}\right)^{2}$ for each $n \geqq 1$, where $k_{0}=0$. Then (2.1) is satisfied by X_{n}^{\prime} and hence Lemma 2.1 follows from Tomkins' result (1972).

Theorem 2.1. Assume that $\left|X_{n}\right| \leqq M_{n}$ a.s., where M_{n} are constants satisfying

$$
\begin{equation*}
M_{n}=o\left(s_{n} /\left(\log \log s_{n}\right)^{\frac{1}{2}}\right) \tag{2.4}
\end{equation*}
$$

If (2.2) holds, then

$$
\limsup _{n \rightarrow \infty} \frac{S_{k_{n}}}{s_{k_{n}} v_{k_{n}}}=1 \quad \text { a.s. }
$$

Proof. By Lemma 2.1, it suffices to verify (2.1), which is a consequence of Kolmogorov's proof of the law of the iterated logarithm. See, for example, Chow and Teicher (1978).
Lemma 2.2. Assume that for all large n, there exist costants $c_{n}=o\left(v_{n}^{-1}\right)$ such that for $0<|t| c_{n} \leqq 1,1 \leqq j \leqq n$,

$$
\begin{equation*}
E \exp \left\{\frac{t X_{j}}{s_{n}}\right\}<\exp \left\{\left(1+\frac{|t| c_{n}}{2}\right) \frac{t^{2} \sigma_{j}^{2}}{2 s_{n}^{2}}\right\} \tag{2.5}
\end{equation*}
$$

and that for any $\beta>0$, there exists an $\varepsilon>0$ such that for all large n

$$
\begin{equation*}
\sum_{p_{n}+1}^{r_{n}} \sigma_{j}^{2} \leqq \beta s_{k_{n}}^{2}, \quad \text { where } p_{n}=\left[(1-\varepsilon) k_{n}\right] \text { and } r_{n}=\left[(1+\varepsilon) k_{n}\right] \text {. } \tag{2.6}
\end{equation*}
$$

If (2.2) holds, then there is a subsequence m_{j} of k_{n} such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \max _{(1-\varepsilon) m_{j} \leqq i \leqq(1+\varepsilon) m_{j}} \frac{\left|S_{i}-S_{m_{i}}\right|}{S_{m_{j}} v_{m_{j}}}=0 \quad \text { a.s. } \tag{2.7}
\end{equation*}
$$

Proof. For any $c>1$ and any $j \geqq 1$, define

$$
n_{j}=\inf \left\{n \geqq 1: s_{k_{n}}>c^{j}\right\}
$$

Then putting $m_{j}=k_{n_{j}}$, we have $s_{m_{j-1}} \leqq c^{j}<s_{m_{j}}$, whence $s_{m_{j}} \sim c^{j}$. Let $q_{j}=r_{n_{j}}$. For $\delta>0$, by the martingale inequality

$$
\begin{align*}
& P\left[\max _{m_{j}<i \leqq q_{j}}\left(X_{m_{j}+1}+\ldots+X_{i}\right)>\delta s_{m_{j}} v_{m_{j}}\right] \\
& \leqq \exp \left\{-t \delta v_{m_{j}} s_{m_{j}} / s_{q_{j}}\right\} E \exp \left\{t\left(X_{m_{j}+1}+\ldots+X_{q_{j}}\right) / s_{q_{j}}\right\} \tag{2.8}\\
& \leqq \exp \left\{-t \delta v_{m_{j}} s_{m_{j}} / s_{q_{j}}+\left(1+\frac{t c_{q_{j}}}{2}\right) \frac{t^{2}}{2 s_{q_{j}}^{2}} \sum_{m_{j}+1}^{q_{j}} \sigma_{i}^{2}\right\} .
\end{align*}
$$

Put $t=\gamma \delta^{-1} v_{m_{j}} s_{q_{j}} / s_{m_{j}}$. Since $v_{m_{j}} \sim v_{q_{j}}$ and $c_{q_{j}}=o\left(v_{m_{j}}^{-1}\right)$ for all large j, then by (2.6), the righthand side of (2.8) is

$$
\begin{aligned}
& \leqq \exp \left\{-\gamma v_{m_{j}}^{2}+(1+o(1)) \frac{\gamma^{2} v_{m_{j}}^{2}}{2 \delta^{2} s_{m_{j}}^{2}} \sum_{m_{j}+1}^{q_{j}} \sigma_{i}^{2}\right\} \\
& \leqq \exp \left\{-\frac{\gamma}{3} \log \log s_{m_{j}}^{2}\right\}
\end{aligned}
$$

by choosing $\beta=\delta^{2} / \gamma$ in (2.6). Hence, taking $\gamma>3$, we have

$$
\sum_{j=1}^{\infty} P\left[\max _{m_{j}<i \leqq q_{j}}\left(X_{m_{j}+1}+\ldots+X_{i}\right)>\delta s_{m_{j}} v_{m_{j}}\right]<\infty
$$

and the Borel-Cantelli Lemma ensures

$$
\limsup _{j \rightarrow \infty} \max _{m_{j}<i \leqq q_{j}}\left(X_{m_{j}+1}+\ldots+X_{i}\right) / s_{m_{j}} v_{m_{j}}=0 \quad \text { a.s. }
$$

Replacing X_{j} by $-X_{j}$ in the above proof, we can conclude

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \max _{m_{j}<i \leqq q_{j}}\left|X_{m_{j}+1}+\ldots+X_{i}\right| / s_{m_{j}} v_{m_{j}}=0 \quad \text { a.s. } \tag{2.9}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \max _{(1-\varepsilon) m_{j}<i \leqq m_{j}}\left|X_{i}+\ldots+X_{m_{j}}\right| / s_{m_{j}} v_{m_{j}}=0 \quad \text { a.s. } \tag{2.10}
\end{equation*}
$$

(2.9) and (2.10) together imply the desired result (2.7).

Theorem 2.2. Assume that (2.1), (2.2) and (2.6) hold. If $\left\{T_{n}, n \geqq 1\right\}$ is a sequence of positive integer-valued random variables with

$$
\begin{equation*}
\frac{T_{n}}{k_{n}} \rightarrow 1 \text { a.s. } \quad \text { as } n \rightarrow \infty, \tag{2.11}
\end{equation*}
$$

then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{S_{T_{n}} v_{T_{n}}}=\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{S_{k_{n}} v_{k_{n}}}=1 \quad \text { a.s. } \tag{2.12}
\end{equation*}
$$

Proof. For almost all ω, for all $\varepsilon>0$ and for sufficiently large n

$$
\begin{equation*}
(1-\varepsilon) k_{n}<T_{n}(\omega)<(1+\varepsilon) k_{n} . \tag{2.13}
\end{equation*}
$$

Therefore $s_{T_{n}}^{2} / s_{k_{n}}^{2} \rightarrow 1$ a.s. as $n \rightarrow \infty$. Hence

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{s_{k_{n}} v_{k_{n}}} & =\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{s_{T_{n}} v_{T_{n}}}\left(\frac{s_{T_{n}} v_{T_{n}}}{s_{k_{n}} v_{k_{n}}}\right) \\
& =\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{s_{T_{n}} v_{T_{n}}} \quad \text { a.s. }
\end{aligned}
$$

Since $s_{k_{n+1}} \sim s_{k_{n}}$ implies $s_{n+1} \sim s_{n}$, by Tomkins' result (1972)

$$
\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{s_{k_{n}} v_{k_{n}}}=\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{S_{T_{n}} v_{T_{n}}} \leqq 1 \quad \text { a.s., }
$$

and so it suffices to show that

$$
\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{s_{k_{n}} v_{k_{n}}} \geqq 1 \quad \text { a.s. }
$$

Let n_{j} and m_{j} be defined as in Lemma 2.2, then

$$
\begin{equation*}
\frac{S_{T_{n_{j}}}}{S_{m_{j}} v_{m_{j}}}=\frac{S_{m_{j}}}{S_{m_{j}} v_{m_{j}}}+\frac{S_{T_{n_{j}}}-S_{m_{j}}}{S_{m_{j}} v_{m_{j}}} \tag{2.14}
\end{equation*}
$$

By Lemma 2.2 and (2.13),

$$
\lim _{j \rightarrow \infty} \frac{\left|S_{T_{n_{j}}}-S_{m_{j}}\right|}{S_{m_{j}} v_{m_{j}}}=0 \quad \text { a.s. }
$$

For the first term on the right hand side of (2.14), put

$$
y_{j}^{2}=s_{m_{j}}^{2}-s_{m_{j-1}}^{2}, \quad w_{j}^{2}=2 \log \log y_{j}^{2}
$$

and note that $y_{j}^{2} \sim s_{m_{j}}^{2}\left(1-c^{-2}\right)$ and $w_{j}^{2} \sim v_{m_{j}}^{2}$. Let $c_{j}^{\prime}=c_{m_{j}} s_{m_{j}} / y_{j}$. Then $c_{j}^{\prime}=o(1)$ and $0<t c_{j}^{\prime} \leqq 1$ for all large j. Let $u=t s_{m_{j}} / y_{j}$, and replace t by u in (2.1), obtaining

$$
\exp \left\{\left(1-u c_{m_{j}}\right) \frac{u^{2} \sigma_{i}^{2}}{2 s_{m_{j}}^{2}}\right\}<E \exp \left\{u X_{i} / s_{m_{j}}\right\}
$$

and hence

$$
\begin{equation*}
\exp \left\{\left(1-t c_{j}^{\prime}\right) \frac{t^{2}}{2}\right\}<E \exp \left\{t\left(S_{m_{j}}-S_{m_{j-1}}\right) / y_{j}\right\} \tag{2.15}
\end{equation*}
$$

As in the derivation of Kolmogorov's exponential bound, for $\gamma>0$, if $b=b(\gamma)$ is sufficiently large, and then $c=c(\gamma)$ is sufficiently small in (2.15), then

$$
\begin{equation*}
P\left[S_{m_{j}}-S_{m_{j-1}}>b y_{j}\right]>\exp \left\{-(1+\gamma) b^{2} / 2\right\} \tag{2.16}
\end{equation*}
$$

Let $0<\delta<1$; choose $\gamma=(1-\delta)^{-2}-1, b_{j}=(1-\delta) w_{j}$ and note that $c_{j}^{\prime}=O\left(c_{m_{j}}\right)$, $b_{j} c_{j}^{\prime}=O\left(c_{m_{j}} w_{j}\right)=O\left(c_{m_{j}} v_{m_{j}}\right)=o(1)$. Therefore for all large j, and by (2.16)

$$
\begin{aligned}
& P\left[S_{m_{j}}-S_{m_{j-1}}>(1-\delta) w_{j} y_{j}\right]>\exp \left\{-(1-\delta)^{2} w_{j}^{2}(1+\gamma) / 2\right\} \\
& \quad=\exp \left\{-\log \log y_{j}^{2}\right\}=\left(\log y_{j}^{2}\right)^{-1} \\
& \quad \simeq\left(\log s_{m_{j}}^{2}\left(1-c^{-2}\right)\right)^{-1} \simeq\left(2 j \log c-\log \left(1-c^{-2}\right)\right)^{-1}
\end{aligned}
$$

implying that

$$
\sum_{j=1}^{\infty} P\left[S_{m_{j}}-S_{m_{j-1}}>(1-\delta) w_{j} y_{j}\right]=\infty
$$

By the Borel-Cantelli Lemma,

$$
P\left[S_{m_{j}}-S_{m_{j-1}}>(1-\delta) w_{j} y_{j}, \text { i.o. }\right]=1
$$

Hence

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} \frac{S_{m_{j}}-S_{m_{j-1}}}{s_{m_{j}} v_{m_{j}}} \geqq(1-\delta)\left(1-c^{-2}\right)^{\frac{1}{2}} \quad \text { a.s. } \tag{2.17}
\end{equation*}
$$

Replacing X_{j} by $-X_{j}$ in (2.3), we have

$$
\liminf _{n \rightarrow \infty} \frac{S_{k_{n}}}{s_{k_{n}} v_{k_{n}}} \geqq-1 \quad \text { a.s., }
$$

A fortiori

$$
\liminf _{j \rightarrow \infty} \frac{S_{m_{j-1}}}{s_{m_{j-1}}} v_{m_{j-1}} \geqq-1 \quad \text { a.s., }
$$

whence

$$
\begin{equation*}
\liminf _{j \rightarrow \infty} \frac{S_{m_{j-1}}}{S_{m_{j}} v_{m_{j}}} \geqq-\frac{1}{c} \quad \text { a.s. } \tag{2.18}
\end{equation*}
$$

By (2.17) and (2.18), with probability one

$$
\begin{gathered}
\limsup _{j \rightarrow \infty} \frac{S_{m_{j}}}{S_{m_{j}} v_{m_{j}}} \geqq \limsup _{j \rightarrow \infty} \frac{S_{m_{j}}-S_{m_{j-1}}}{s_{m_{j}} v_{m_{j}}}+\liminf _{j \rightarrow \infty} \frac{S_{m_{j-1}}}{S_{m_{j}} v_{m_{j}}} \\
\geqq(1-\delta)\left(1-c^{-2}\right)^{\frac{1}{2}}-c^{-1}
\end{gathered}
$$

Choose c large and δ small; then it follows the first term on the righthand side of (2.14) has limsup equal to one; and the result follows immediately.
Corollary 2.1. Assume $\left|X_{n}\right| \leqq M_{n}$ a.s., where M_{n} are constants satisfying (2.4) and assume that (2.2) and (2.6) hold. If $\left\{T_{n}, n \geqq 1\right\}$ is a sequence of positive integer. valued random variables satisfying (2.11), then

$$
\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{S_{T_{n}} v_{T_{n}}}=\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{s_{k_{n}} v_{k_{n}}}=1 \quad \text { a.s. }
$$

Proof. The result follows directly from Theorem 2.2 and the proof of Theorem 2.1.

Theorem 2.3. Assume (2.2), (2.6) and that $\left\{T_{n}, n \geqq 1\right\}$ is a sequence of positive integer-valued random variables satisfying (2.11). Assume that for some $\delta>0$ and for all $\varepsilon>0$

$$
\begin{align*}
& \sum_{n=1}^{\infty} P\left[\left|X_{n}\right|>\delta s_{n}\left(\log \log s_{n}^{2}\right)^{\frac{1}{2}}\right]<\infty \tag{2.19}\\
& \sum_{j=1}^{n} E X_{j}^{2} I_{\left[X_{3}^{2}>\delta s_{j}^{2} / \log \log s_{5}^{2}\right]}=o\left(s_{n}^{2}\right) \tag{2.20}\\
& \sum_{n=1}^{\infty} \frac{1}{s_{n}^{2} \log \log s_{n}^{2}} E X_{n}^{2} I_{\left[e s s_{n}^{2} \log \log s_{n}^{2} \leqq X_{n}^{2} \leqq \delta \delta_{5 n}^{2} \log \log s_{n}^{2}\right]}<\infty . \tag{2.21}
\end{align*}
$$

Then

$$
\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{s_{T_{n}} v_{T_{n}}}=\limsup _{n \rightarrow \infty} \frac{S_{T_{n}}}{s_{k_{n}} v_{k_{n}}}=1 \quad \text { a.s. }
$$

Proof. The argument follows the general pattern, but not all the strands of Teicher's Theorem (1974). Define truncation constants $b_{n}=o\left(s_{n} /\left(\log \log s_{n}^{2}\right)^{\frac{1}{2}}\right)$ exactly as in that theorem and set

$$
\begin{aligned}
X_{n}^{\prime} & =X_{n} I_{\left[\left|X_{n}\right| \leqq b_{n}\right]}, \\
X_{n}^{\prime \prime \prime} & =X_{n} I_{\left[\left|X_{n}\right|>\delta s_{n}\left(\log \log s_{n}^{2}\right)^{\prime 2}\right]}, \\
X_{n}^{\prime \prime} & =X_{n}-X_{n}^{\prime}-X_{n}^{\prime \prime \prime},
\end{aligned}
$$

and let $S_{n}^{\prime}, S_{n}^{\prime \prime}$ and $S_{n}^{\prime \prime \prime}$ be the corresponding partial sums. As has been demonstrated in the course of the proof of that theorem

$$
\begin{align*}
& S_{n}^{\prime \prime}-E S_{n}^{\prime \prime}=o\left(s_{n} \log \log s_{n}^{2) \frac{1}{2}}\right) . \quad \text { a.s.; } \tag{2.22}\\
& S_{n}^{\prime \prime \prime}-E S_{n}^{\prime \prime \prime}=o\left(s_{n}\left(\log \log s_{n}^{2}\right)^{\frac{1}{2}}\right), \quad \text { a.s. }
\end{align*}
$$

whence (2.22) likewise holds with n replaced by T_{n}. On the other hand, Corollary 2.1 ensures that the conclusion holds with $S_{T_{n}}$ replaced by $S_{T_{n}}^{\prime}-E S_{T_{n}}^{\prime}$. The conclusion follows directly.

3. Tail Sums of Independent Random Variables

This section treats the random tail sums of independent random variables. Throughout this section we shall assume that $\left\{X_{n}, n \geqq 1\right\}$ is a sequence of independent random variables with $E X_{n}=0, E X_{n}^{2}=\sigma_{n}^{2}>0$, and $\sum_{1}^{\infty} \sigma_{n}^{2}<\infty$. For each
$n \geq 1$, put $n \geqq 1$, put

$$
U_{n}=\sum_{j=n}^{\infty} X_{j}, \quad u_{n}^{2}=\sum_{j=n}^{\infty} \sigma_{j}^{2} \quad \text { and } \quad v_{n}=2 \log \log u_{n}^{-2}
$$

We also assume that $\left\{k_{n}, n \geqq 1\right\}$ is a subsequence of the positive integers with $k_{n} \rightarrow \infty$.
Lemma 3.1. Assume, for all large n and $j \geqq n$, that there exist constants c_{n} $=o\left(v_{n}^{-1}\right)$ such that for $o<|t| c_{n} \leqq 1$

$$
\begin{equation*}
\exp \left\{\left(1-|t| c_{n}\right) \frac{t^{2} \sigma_{j}^{2}}{2 u_{n}^{2}}\right\}<E \exp \left\{t X_{j} / u_{n}\right\}<\exp \left\{\left(1+\frac{|t| c_{n}}{2}\right) \frac{t^{2} \sigma_{j}^{2}}{2 u_{n}^{2}}\right\} \tag{3.1}
\end{equation*}
$$

and assume that as $n \rightarrow \infty$

$$
\begin{equation*}
\sum_{k_{n}+1}^{k_{n+1}} \sigma_{j}^{2}=o\left(u_{k_{n}}^{2}\right) . \tag{3.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{U_{k_{n}}}{u_{k_{n}} v_{k_{n}}}=1 \quad \text { a.s. } \tag{3.3}
\end{equation*}
$$

Proof. If $k_{n}=n$, then Lemma 3.1 is proved in Chow and Teicher (1973). In general, put $X_{n}^{\prime}=X_{k_{n-1}+1}+\ldots+X_{k_{n}}$ and $\left(\sigma_{n}^{\prime}\right)^{2}=\sigma_{k_{n-1+1}}^{2}+\ldots+\sigma_{k_{n}}^{2}$ and $\left(u_{n}^{\prime}\right)^{2}$ $=\sum_{j=n}^{\infty}\left(\sigma_{j}^{\prime}\right)^{2}$ for each $n \geqq 1$, where $k_{0}=0$. Then (3.1) is satisfied by X_{n}^{\prime} and hence Lemma 3.1 follows from Chow and Teicher (1973).

Theorem 3.1. Assume $\left|X_{n}\right| \leqq M_{n}$ a.s., where M_{n} are constants satisfying

$$
\begin{equation*}
c_{n} \equiv \frac{1}{u_{n}} \max _{j \geqq n} M_{j}=o\left(\left(\log \log u_{n}^{-} 2\right)^{-\frac{1}{2}}\right) . \tag{3.4}
\end{equation*}
$$

Assume (3.2) holds. Then

$$
\limsup _{n \rightarrow \infty} \frac{U_{k_{n}}}{u_{k_{n}} v_{k_{n}}}=1 \quad \text { a.s. }
$$

Proof. As shown in Chow and Teicher (1973), condition (3.1) is satisfied. Hence the result follows from Lemma 3.1.

Corollary 3.1. Let $\left\{Y, Y_{n}, n \geqq 1\right\}$ be independent and identically distributed random variables with $E Y=0$ and $E Y^{2}=1$ and $\left\{a_{n}, n \geqq 1\right\}$ be constants satisfying

$$
\begin{equation*}
\frac{a_{n}^{2}}{\sum_{n}^{\infty} a_{j}^{2}} \leqq \frac{C}{n}, \quad \sum_{1}^{\infty} a_{n}^{2}<\infty \quad \text { for some constant } C \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k_{n}+1}^{k_{n+1}} a_{j}^{2}=o\left(\sum_{k_{n}}^{\infty} a_{j}^{2}\right) \tag{3.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\sum_{k_{n}}^{\infty} a_{j} Y_{j}}{\left(2 \sum_{k_{n}}^{\infty} a_{j}^{2} \log \log \left(\sum_{k_{n}}^{\infty} a_{j}^{2}\right)^{-1}\right)^{\frac{1}{2}}}=1 \quad \text { a.s. } \tag{3.7}
\end{equation*}
$$

Proof. The argument follows that in Chow and Teicher (1973) by applying Theorem 3.1.
Remark. Admissible sequences for a_{n} are $\left.a_{n}= \pm n^{\beta}, \beta<-\frac{1}{2} ; a_{n}= \pm n^{\beta_{1}}(\log)^{n}\right)^{\beta_{2}}$, $\beta_{1}<-\frac{1}{2}$ or $\beta_{2}<-\frac{1}{2}=\beta_{1}$. When $k_{n}=n$, the above results have been obtained in Chow and Teicher (1973).

Lemma 3.2. Assume that for all large n and $j \geqq n$, there exist constants c_{n} $=o\left(v_{n}^{-1}\right)$ such that for $0<|t| c_{n} \leqq 1$,

$$
\begin{equation*}
E \exp \left\{t X_{j} / u_{n}\right\}<\exp \left\{\left(1+\frac{|t| c_{n}}{2}\right) \frac{t^{2} \sigma_{j}^{2}}{2 u_{n}^{2}}\right\} \tag{3.8}
\end{equation*}
$$

Assume (3.2) holds and that for any $\beta>0$, there exists an $\varepsilon>0$ such that for all large n

$$
\begin{equation*}
\sum_{p_{n}+1}^{r_{n}} \sigma_{j}^{2} \leqq \beta u_{k_{n}}^{2}, \quad \text { where } p_{n}=\left[(1-\varepsilon) k_{n}\right] \text { and } r_{n}=\left[(1+\varepsilon) k_{n}\right] \text {. } \tag{3.9}
\end{equation*}
$$

Then there is a subsequence m_{j} of k_{n} such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \max _{(1-\varepsilon) m_{j} \leqq i \leqq(1+\varepsilon) m_{j}} \frac{\left|U_{i}-U_{m_{j}}\right|}{u_{m_{j}} v_{m_{j}}}=0 \quad \text { a.s. } \tag{3.10}
\end{equation*}
$$

Proof. For any $c>1$ and any $j \geqq 1$, define

$$
\begin{equation*}
n_{j}=\inf \left\{n \geqq 1: u_{k_{n}}<c^{-j}\right\} \tag{3.11}
\end{equation*}
$$

Then putting $m_{j}=k_{n_{j}}$, we have $u_{m_{j}}<c^{-j} \leqq u_{m_{j-1}}$, whence $u_{n_{j}} \sim c^{-j}$. Letting r_{n} $=\left[(1+\varepsilon) k_{n}\right]$ and $q_{j}=r_{n_{j}}$. For $\delta>0$, by the martingale inequality and (3.8),

$$
\begin{align*}
& P\left[\max _{m_{j}<i \leqq q_{j}}\left(X_{m_{j}+1}+\ldots+X_{i}\right)>\delta u_{m_{j}} v_{m_{j}}\right] \\
& \quad \leqq \exp \left\{-t \delta v_{m_{j}}\right\} E \exp \left\{t\left(X_{m_{j}+1}+\ldots+X_{q_{j}}\right) / u_{m_{j}}\right\} \\
& \quad \leqq \exp \left\{-t \delta v_{m_{j}}+\left(1+\frac{t c_{m_{j}}}{2}\right) \frac{t^{2}}{2 u_{m_{j}}^{2}} \sum_{m_{j}+1}^{q_{j}} \sigma_{i}^{2}\right\} . \tag{3.12}
\end{align*}
$$

Let $t=\gamma \delta^{-1} v_{m_{j}}$. Then since $c_{m_{j}}=o\left(v_{m_{j}}^{-1}\right)$, (3.12) becomes

$$
\begin{aligned}
& \leqq \exp \left\{-\gamma v_{m_{j}}^{2}+(1+o(1)) \frac{\gamma^{2} v_{m_{j}}^{2}}{2 \delta^{2} u_{m_{j}}^{2}} \sum_{m_{j}+1}^{q_{j}} \sigma_{i}^{2}\right\} \\
& \leqq \exp \left\{-\gamma v_{m_{j}}^{2}+\gamma v_{m_{j}}^{2} \frac{\gamma \beta}{\delta^{2}}\right\} \\
& =\exp \left\{-2 \gamma\left(1-\frac{\gamma \beta}{\delta^{2}}\right) \log \log u_{m_{j}}^{-2}\right\} \\
& =\frac{1}{\left(\log u_{m_{j}}^{-2}\right)^{2 \gamma(1-\eta)}} \sim \frac{1}{2 j^{2 \gamma(1-\eta)}(\log c)^{2 \gamma(1-\eta)}}
\end{aligned}
$$

where $\eta=\gamma \beta / \delta^{2}$. If γ, η are such that $2 \gamma(1-\eta)>1$, then

$$
\sum_{j=1}^{\infty} P\left[\max _{m_{j}<i \leq q_{j}}\left(X_{m_{j}+1}+\ldots+X_{i}\right)>\delta u_{m_{j}} v_{m_{j}}\right]<\infty
$$

By the Borel-Cantelli Lemma,

$$
P\left[\max _{m_{j}<i \leqq q_{j}}\left(X_{m_{j}+1}+\ldots+X_{i}\right) / u_{m_{j}} v_{m_{j}}>\delta, \text { i.o. }\right]=0
$$

implying

$$
\limsup _{j \rightarrow \infty} \max _{m_{j}<i \leqq q_{j}}\left(X_{m_{j}+1}+\ldots+X_{i}\right) / u_{m_{j}} v_{m_{j}}=0 \quad \text { a.s. }
$$

Replacing X_{j} by $-X_{j}$ in the above argument, we get

$$
\lim _{j \rightarrow \infty} \max _{m j<i \leqq q_{j}}\left|X_{m_{j}+1}+\ldots+X_{i}\right| / u_{m_{j}} v_{m_{j}}=0 \quad \text { a.s. }
$$

Similarly

$$
\lim _{j \rightarrow \infty} \max _{(1-\varepsilon) m_{j} \leqq i \leqq m_{j}}\left|X_{i}+\ldots+X_{m_{j}}\right| / u_{m_{j}} v_{m_{j}}=0 \quad \text { a.s. }
$$

Hence the result (3.10) follows immediately.
Theorem 3.2. Assume that (3.1), (3.2) and (3.9) hold. If $\left\{T_{n}, n \geqq 1\right\}$ is a sequence of positive integer-valued random variables such that
then

$$
\begin{equation*}
\frac{T_{n}}{k_{n}} \rightarrow 1 \quad \text { a.s. } \quad \text { as } \quad n \rightarrow \infty, \tag{3.13}
\end{equation*}
$$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{U_{T_{n}}}{u_{T_{n}} v_{T_{n}}}=\limsup _{n \rightarrow \infty} \frac{U_{T_{n}}}{u_{k_{n}} v_{k_{n}}}=1 \quad \text { a.s. } \tag{3.14}
\end{equation*}
$$

Proof. For almost all ω, for $\varepsilon>0$ and for all sufficiently large n,

$$
(1-\varepsilon) k_{n}<T_{n}(\omega)<(1+\varepsilon) k_{n}
$$

Therefore $u_{T_{n}}^{2} / u_{k_{n}}^{2} \rightarrow 1$ a.s. as $n \rightarrow \infty$. Hence

$$
\limsup _{n \rightarrow \infty} \frac{U_{T_{n}}}{u_{k_{n}} v_{k_{n}}}=\limsup _{n \rightarrow \infty} \frac{U_{T_{n}}}{u_{T_{n}} v_{T_{n}}}\left(\frac{u_{T_{n}} v_{T_{n}}}{u_{k_{n}} v_{k_{n}}}\right)=\limsup _{n \rightarrow \infty} \frac{U_{T_{n}}}{u_{T_{n}} v_{T_{n}}} \quad \text { a.s. }
$$

Since (3.2) implies $\sigma_{n}=o\left(u_{n}\right)$ and by Chow and Teicher (1973)

$$
\underset{n \rightarrow \infty}{\limsup } \frac{U_{T_{n}}}{u_{k_{n}} v_{k n}}=\limsup _{n \rightarrow \infty} \frac{U_{T_{n}}}{u_{T_{n}} v_{T_{n}}} \leqq 1 \quad \text { a.s., }
$$

it suffices to show that

$$
\limsup _{n \rightarrow \infty} \frac{U_{T n}}{u_{k_{n}} v_{k_{n}}} \geqq 1 \quad \text { a.s. }
$$

Define n_{j} as in Lemma 3.2. Then again setting $m_{j}=k_{n_{j}}$,

$$
\begin{equation*}
\frac{U_{T_{n_{j}}}}{u_{m_{j}} v_{m_{j}}}=\frac{U_{m_{j}}}{u_{m_{j}} v_{m_{j}}}+\frac{U_{T_{n_{j}}}-U_{m_{j}}}{u_{m_{j}}-v_{m_{j}}} \tag{3.15}
\end{equation*}
$$

By Lemma 3.2, the second term on the righthand side of (3.15) will go to zero a.s., and for the first term, put

$$
y_{j}^{2}=u_{m_{j}}^{2}-u_{m_{j+1}}^{2}, \quad w_{j}^{2}=2 \log \log y_{j}^{-2}
$$

and note that $y_{j}^{2} \sim u_{m_{j}}^{2}\left(1-c^{-2}\right)$ and $w_{j}^{2} \sim v_{m_{j}}^{2}$. If $c_{j}^{\prime}=\frac{c_{m_{j}} v_{m_{j}}}{y_{j}}$, then $c_{j}^{\prime}=o(1)$ and $0<t c_{j}^{\prime} \leqq 1$ for all large j. Set $z=\frac{t u_{m_{i}}}{y_{j}}$, and replace t by z in (3.1) obtaining

$$
\begin{equation*}
\exp \left\{\left(1-t c_{j}^{\prime}\right) \frac{t^{2}}{2}\right\}<E \exp \left\{t\left(U_{m_{j}}-U_{m_{j+1}}\right) / y_{j}\right\} \tag{3.16}
\end{equation*}
$$

As in the derivation of Kolmogorov's exponential bound, for $\gamma>0$, if $b=b(\gamma)$ us sufficiently large and then $c=c(\gamma)$ is sufficiently small in (3.16), then

$$
\begin{equation*}
P\left[U_{m_{j}}-U_{m_{j+1}}>b y_{j}\right]>\exp \left\{-b^{2}(1+\gamma) / 2\right\} . \tag{3.17}
\end{equation*}
$$

Let $0<\delta<1$; choose $\gamma=(1-\delta)^{-2}-1, b_{j}=(1-\delta) w_{j}$ and note that $c_{j}^{\prime}=O\left(c_{m_{j}}\right)$, $b_{j} c_{j}^{\prime}=O\left(c_{m_{j}} w_{j}\right)=O\left(c_{m_{j}} v_{m_{j}}\right)=o(1)$; therefore for large j and by (3.17)

$$
\begin{aligned}
& P\left[U_{m_{j}}-U_{m_{j+1}}>b_{j} y_{j}\right]>\exp \left\{-(1-\delta)^{2} w_{j}^{2}(1+\gamma) / 2\right\} \\
& \quad=\exp \left\{-\log \log y_{j}^{-2}\right\} \sim\left(\log v_{m_{j}}^{-2}\left(1-c^{-2}\right)^{-1}\right)^{-1} \\
& \sim\left(\log c^{2 j}-\log \left(1-c^{-2}\right)\right)^{-1}-\left(2 j \log c-\log \left(1-c^{-2}\right)\right)^{-1}
\end{aligned}
$$

implying

$$
\sum_{j=1}^{\infty} P\left[U_{m_{j}}-U_{m_{j+1}}>b_{j} y_{j}\right]=\infty
$$

and by the Borel-Cantelli Lemma,

Hence

$$
P\left[U_{m_{j}}-U_{m_{j+1}}>(1-\delta) w_{j} y_{j}, \text { i.o. }\right]=1 .
$$

$$
\begin{equation*}
\underset{j \rightarrow \infty}{\limsup } \frac{U_{m_{j}}-U_{m_{j+1}}}{u_{m_{j}} v_{m_{j}}} \geqq(1-\delta)\left(1-c^{-2}\right)^{\frac{1}{2}} \quad \text { a.s. } \tag{3.18}
\end{equation*}
$$

Replacing X_{j} by $-X_{j}$ in (3.1) and by Chow and Teicher (1973)

$$
\liminf _{n \rightarrow \infty} \frac{U_{k_{n}}}{u_{k_{n}} v_{k_{n}}} \geqq-1 \quad \text { a.s. }
$$

A fortiori

$$
\liminf _{j \rightarrow \infty} \frac{U_{m_{j+1}}}{c^{-1} u_{m_{j}} v_{m_{j}}}=\liminf _{j \rightarrow \infty} \frac{U_{m_{j+1}}}{u_{m_{j+1}} v_{m_{j+1}}} \geqq-1 \quad \text { a.s., }
$$

whence

$$
\begin{equation*}
\liminf _{j \rightarrow \infty} \frac{U_{m_{j+1}}}{u_{m_{j}} v_{m_{j}}} \geqq-\frac{1}{c} \quad \text { a.s. } \tag{3.19}
\end{equation*}
$$

By (3.18) and (3.19), with probability one

$$
\begin{aligned}
& \limsup _{j \rightarrow \infty} \frac{U_{m_{j}}}{u_{m_{j}} v_{m_{j}}} \geqq \limsup _{j \rightarrow \infty} \frac{U_{m_{j}}-U_{m_{j+1}}}{u_{m_{j}} v_{m_{j}}}+\liminf _{j \rightarrow \infty} \frac{U_{m_{j+1}}}{u_{m_{j}} v_{m_{j}}} \\
& \quad \geqq(1-\delta)\left(1-c^{-2}\right)^{\frac{1}{2}}-c^{-1}
\end{aligned}
$$

Choose c large and δ small; then

$$
\limsup _{j \rightarrow \infty} \frac{U_{m_{j}}}{u_{m_{j}} v_{m_{j}}} \geqq 1 \quad \text { a.s., }
$$

and the result follows.
Corollary 3.2. Assume that $\left|X_{n}\right| \leqq M_{n}$ a.s. where M_{n} are constant satisfying (3.4) and that (3.2) and (3.9) hold. If $\left\{T_{n}, n \geqq 1\right\}$ is a sequence of positive integer-valued random variables satisfying (3.13), then

$$
\limsup _{n \rightarrow \infty} \frac{U_{T_{n}}}{u_{T_{n}} v_{T_{n}}}=\limsup \frac{U_{n \rightarrow \infty}}{u_{k_{n}} v_{k_{n}}}=1 \quad \text { a.s. }
$$

Proof. The result follows directly from Theorem 3.2 and the proof of Theorem 3.1.

Corollary 3.3. Let $\left\{Y, Y_{n}, n \geqq 1\right\}$ be independent and identically distributed random variables $E Y=0$ and $E Y^{2}=1$ and $\left\{a_{n}, n \geqq 1\right\}$ be constants satisfying (3.5) and (3.6). Assume that for any $\beta>0$, there exists an $\varepsilon>0$ such that for all large n

$$
\begin{equation*}
\sum_{p_{n}+1}^{v_{n}} a_{j}^{2} \leqq \beta \sum_{k_{n}}^{\infty} a_{j}^{2}, \quad \text { where } p_{n}=\left[(1-\varepsilon) k_{n}\right], r_{n}=\left[(1+\varepsilon) k_{n}\right] . \tag{3.20}
\end{equation*}
$$

If $\left\{T_{n}, n \geqq 1\right\}$ is a sequence of positive integer-valued random variables satisfying (3.13), then

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{\sum_{T_{n}}^{\infty} a_{j} Y_{j}}{\left(2 \sum_{T_{n}}^{\infty} a_{j}^{2} \log \log \left(\sum_{T_{n}}^{\infty} a_{i}^{2}\right)^{-1}\right)^{\frac{1}{2}}} \\
& =\limsup _{n \rightarrow \infty}^{\infty} \frac{\sum_{T_{n}}^{\infty} a_{j} Y_{j}}{\left(2 \sum_{k_{n}}^{\infty} a_{j}^{2} \log \log \left(\sum_{k_{n}}^{\infty} a_{i}^{2}\right)^{-1}\right)^{\frac{1}{2}}}=1 \quad \text { a.s. }
\end{aligned}
$$

Proof. The argument follows that in Chow and Teicher (1973). By Corollary 3.1, Theorem 3.2 and Lemma 3.2, the result follows.

References

1. Anscombe, F.J.: Large sample theory of sequential estimation. Proc. Cambridge Philos. Soc. 48, 600-607 (1952)
2. Bojanic, R., Seneta, E.: A unified theory of regularly varying sequences. Math. Z. 134, 91-106 (1973)
3. Chow, Y.S., Hsiung, C.A.: Limiting behavior of $\max _{i \leq n} S_{j} j^{-x}$ and the first passage times in a random walk with positive drift. Bull. Inst. Math. Acad. Sinica 4, 35-44 (1976)
4. Chow, Y.S., Hsiung, C.A., Yu, K.F.: Limit theorems for a positively drifting process and its related first passage times. Submitted to Bull. Inst. Math. Acad. Sinica (1980)
5. Chow, Y.S., Teicher, H.: Iterated logarithm laws for weighted averages, Z. Wahrscheinlichkeitstheorie verw. Geb. 26, 87-94 (1973)
6. Chow, Y.S., Teicher, H.: Probability Theory. Berlin-Heidelberg-NewYork: Springer Verlag 1978
7. Hartman, P.: Normal distributions and the law of the iterated logarithm. Amer. J. Math. 63, 584-588 (1941)
8. Lai, T.L.: Limit theorems for delayed sums. Ann. Probab. 2, 432-440 (1974)
9. Qualls, C.: The law of the iterated logarithm on arbitrary sequences for stationary Gaussian processes and Brownian motion. Ann. Probab. 5, 724-739 (1977)
10. Strassen, V.: An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Geb. 3, 211-226 (1964)
11. Teicher, H.: On the law of the iterated logarithm. Ann. Probab. 2, 714-728 (1974)
12. Tomkins, R.J.: A generalization of Kolmogorov's law of the iterated logharithm. Proc. Amer. Math. Soc. 32, 268-274 (1972)

Received March 20, 1980

Note Added in Proof.

Research of H. Teicher was supported by NSF Grant MCS-80-05481.
C.Z. Wei is currently applicated with the University of Maryland, College Park, MD. 20724, USA.

[^0]: * Research supported by NSF Grant MCS-78-09179

