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Probability Theory on Discrete Semigroups
By

Prr MARTIN-LOF

0. Introduction and summary

The study of the classical problems of probability theory, such as the deter-
mination of the distribution of the sum of a large number of independent random
variables, on more general algebraic structures than the real line, attracts a
rapidly increasing interest. A survey of the field, including the history and prac-
tical background of it, is given in the treatise by GRENANDER (1963).

This paper deals with discrete semigroups. It is the first paper abstaining from
compactness assumptions in the non group case. The main tool is the theory of
Markov chains and that is why the study is confined to the discrete case. It
should be noted that, unless we put restrictions on the algebraic structure, assum-
ing it to be a group for example, we do not have access (at present) to any sort
of Fourier analysis, which is the basic tool in the classical studies.

In the following a survey of the paper is given. Section 1 deals with the measure
theoretic (this sounds a bit too solemn since the topology is discrete) preliminaries
and section 2 with the algebraic ones. This leads to the definition of the basic
concept, the convolution operation, in section 3. The connection between the
composition of independent random variables and. the theory of Markov chains is
established in section 4, permitting a complete description of the behaviour of the
convolution iterates of an arbitrary probability distribution in section 5. We
return to this problem in section 8, where necessary and sufficient convergence
conditions are given. This is made possible by the study of the idempotent pro-
bability measures and the structure of a group of probability measures in section 6
and 7 respectively. Infinitely divisible distributions are the subject of section 9,
where it is shown that the compound Poisson distributions are the only infinitely
divisible ones on a finite semigroup. A discussion of the homogeneous processes is
found in section 10. The bibliography should be reasonably complete up to and
including 1963.

I am indebted to UL¥ GRENANDER, my teacher, for rousing my interest in the subject,
and I wish to thank him for his encouragement. Also, I have benefited from discussions with

SreraN ScEwarz. HENRIE ERIKSSON read the manuscript, and his comments resulted in a
number of improvements.

1. Measures on a diserete space

Let S be a set (possibly non denumerable) endowed with the discrete topology.
By a non negative measure on S we understand an extended, non negative, coun-
tably additive set function, defined for all subsets of .S, assuming finite values on
finite sets and regular in the sense that the measure of an arbitrary set equals the
supremum of the measures of all finite sets contained in it. See Harmos (1950)
for the general measure theoretic definitions.
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A probability measure (or probability distribution) is a non negative measure
such that the measure of the whole space equals one.

A non negative measure is said to be finite if it is not extended, i. e. if the
measure of the whole space is finite. By a finile (signed) measure we mean the
difference between two non negative finite measures.

The measure which attributes to each set the number of points in it is called
counting measure. If K is a finite subset of 8, the probability measure that gives
equal masses to the points of £ and mass zero to all other points will be referred
to as the uniform distribution over K.

The regularity assumption we have imposed guarantees the one to one corres-
pondence between a measure y and its densily funclion (with respect to counting
measure) m given by

m(a) = p({a}),
for all points @ in 8, and, for all subsets 4 of §,

pd) = Zam(“) .
4

We shall consistently denote measures by small Greek letters and their densities
by the corresponding small Latin ones.

It is trivial to give an example of an extended countably additive set function
4 (defined for all subsets of the space) which is not regular. Let, for example, S be
non denumerable and define 1 (4) to be 0 when 4 is countable and + oo otherwise.
However, no example seems to have been given of a finite valued g with the re-
quired properties. We know even that when S is the real line no such function
exists (assuming the continuum hypothesis). A discussion of the problem and
further references are found in Uram (1960).

Let 4 be a finite measure. Then -

H/tll=%alm(a)|

is defined to be the norm of u. It is evident that the sum converges precisely
when g is finite. For a non negative measure the norm is simply the measure of the
whole space.

In the following the concept of the support of a measure u, to be denoted
O (u), will be of fundamental importance. By definition

C(u) = {a; m(a) = 0}.

The support of a finite measure is denumerable.
Several topologies in the set of measures will concern us. In the vague topology
a subbase neighbourhood of the (not necessarily finite) measure u is given by

{r; |2 af(@) (n@) —m()| <e},
S

where f vanishes outside a finite set. This is evidently the same as the pointwise
topology for the densities.

The set of all finite measures may be viewed as the dual of the Banach space
of all functions tending to zero at infinity. Thus, by letting the function f above
belong to this space instead, we obtain a subbase neighbourhood of u in the weak
star topology. For a uniformly bounded (in norm) set of measures, in particular for
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the set of probability measures, the weak star topology evidently coincides with
the vague topology. The set of all finite measures with norm = 1 is compact
as well as sequentially compact in the weak star topology.

The topology in the set of finite measures determined by the norm will be
referred to as the norm fopology.

The weak topology in the set of probability measures is determined by the
requirement that a subbase neighbourhood of s is of the form

{0:] 2 af @) (r(@) — p(a))| < &},
S

where f is a bounded function. This is the topology with which probability theory
is mainly concerned. It is a consequence of the discreteness of the space that the
weak topology coincides with the norm topology. We note that weak convergence
of a sequence of probability measures is equivalent to vague convergence together
with the fact that the limit measure has total mass one. A set of probability
measures is conditionally compact in the weak topology if and only if, for every
& > 0, there exists a finite set C such that 7 (C) > 1 — & for all 7 in the set, i. e. if
and only if the tails of the distributions are uniformly small.

It is evident what should be the definition of a random variable taking values
in 8, namely a function defined on a probability space and with range in S,
satisfying the condition that the inverse image of every subset of § should be
meagurable (i. e. belong to the Borel algebra implicit in the definition of a pro-
bability space).

2. Semigroups

In this section the algebraic definitions and theorems, basic to the rest of this
paper, are outlined. Everything is found in the monographs by Liarix (1960)
and CrL1FFORD and PrEsTON (1961).

A groupoid is a set S together with a binary operation (i. e. a function from the
Cartesian product § x S to 8), which in the following will be denoted multi-
plicatively. If A and B are two subsets of S, 4 B denotes the set of all products ab
with @ in 4 and b in B. We shall write ¢ B and Ab instead of {a}.B and 4 {b}.

A groupoid is a semigroup provided the multiplication is associative, i. e. if
a(be) = (ab)c for all ¢, b and ¢ in S. In a semigroup the product of an arbitrary
finite number of elements and the power a” of an element @ are unambiguously
defined.

A subset T of a groupoid is called a subgroupoid if T2 = T'T c T. If A is an
arbitrary subset of a groupoid, the intersection of all subgroupoids containing A4
is called the subgroupoid generated by A. It sonsists of all finite products of elements
of 4. If § is a semigroup the subsemigroup generated by 4 is expressible as
JAn.
n=1

An element 1 of a groupoid S is called an identity element if la = al = a
for all @ in S. There can be at most one identity element. If there is none we can
adjoin one and consider the enlarged set § U {1} and extend the multiplication to
it by defining 11 == 1 and la = al == a for all ¢ in 8. If § is a semigroup, so is
Su {1}
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An element ¢ of a groupoid is called idempotent if 2 = e. In particular, an
identity element is idempotent.

By a right (left) ideal of a groupoid S we mean a subset (L) such that BS
c R(SLc L). A twosided ideal is a subset which is a right as well as a left ideal.
A groupoid is right (left) simple if there is no right (left) ideal properly contained
in it and simple provided S is itself the only twosided ideal. A right (left, twosided)
ideal is minimal if there is no right (left, twosided) ideal properly contained in it.
Two different minimal right (left) ideals are disjoint. There can be at most one
minimal twosided ideal.

Let 4 be an arbitrary subset of a groupoid S. The intersection of all right
(left, twosided) ideals containing A is called the right (left, twosided ) ideal generated
by A. If S is a semigroup it equals A U AS(A US4, 4uVASUSAUSAS). In
case 4 = {a} we speak of the principal right (left, twosided ) ideal generated by a.

Let S and 7’ be groupoids. A mapping % of § into 7' is called a homomorphism
(antihomomorphism ) if h(ab) = h{a)h(b) (k{ab) = h(b}h(a)) for all @ and b in S.
If, in addition, it is one to one, we speak of an isomorphism (antiisomorphism).

Let S be a semigroup with identity element 1. The set of all elements a to
which there exists an element a~1 such that aa~1 = a~1la = 1 is a subgroup of 8
(containing 1). It is maximal in the sense that it contains any subgroup which
meets it.

An element a of a semigroup S is called regular if axa = a for some x in S.

The following equivalence relations, called Green relations after their discoverer,
are important. Two elements @ and b of a semigroup § are said to be right (left)
ideal equivalent if they generate the same principal right (left) ideal. The equivalence
classes modulo this equivalence relation are called right (left) ideal layers. Two
different elements a and & are right (left) ideal equivalent if and only if each one
of them is divisible on the left (right) by the other one, i. e. b = ax(b = za) and
a = by (e = yb) for some x and y in S.

A simple semigroup S is completely simple if it contains at least one minimal
right ideal and at least one minimal left ideal. Then

S:LIJ,-RZ:L]J;Lj.

Here R;(L;) runs through all minimal right (left) ideals as ¢(j) varies over the
index set I(J). Foreveryiin I andjinJ, Ly B; = Sand Bily = By N Ly = Gy ;
is a subgroup of S, all these groups being isomorphic. Moreover, Gy, ; G, 1 = Qi
for every ¢, kin I and j, I in J. We refer to the decomposition
S = Uz i Gig
IxJ
as the group decomposition of S.

A fundamental theorem of Rees tells us that a completely simple semigroup is
isomorphic to a so called Rees matrixz semigroup. Such a semigroup is of the form
G x I xJ, where G is a group and I and J arbitrary index sets, multiplication
being defined in terms of a J x I matrix (g, ;) of elements in @, called the sandwich
matrix, by the relation

(ga Zaj) (k> k’ l) = (ggf,khz 7:: l)
forall g, hin G, 4, kin I and j, lin J.

Z. Wahrscheinlichkeitstheorie, Bd. 4 6
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Let S be a semigroup. To each element ¢ in S we make correspond the § X §
matrix 7T'(¢) whose a, b th element equals 1 if ac = b(ca = b) and 0 otherwise.
Tt is easily verified that 7' (cd) = T (¢} T'(d) (T (cd) = T (d) T (c)), i. e. the mapping
constructed is a homomorphism (antihomomorphism). It is a representation
(antirepresentation ) of the semigroup § by matrices over the field of real numbers.

3. Convolution of measures

Let 8 be a groupoid and p and » two finite measures on 8. The convolution of u
and v is the finite measure pv defined by

(uv) (A) = (u X »)({(b,c); bee A})
for all A4 c 8. The density of 1 = uv is
@)= pemB)n(c) = > ym(d)v({c;be = a})
s

{(b,e);be=a}

=chu({b;bc:a})n(c).
S

If x and y are two random variables taking their values in S, 0 is their product
xy, provided their probability distributions, say & and p, are regular and the
probability measure over the basic probability space is complete. The probapbilistic
importance of the concept of convolution is that if » and y are idependent, the
probability distribution of xy is precisely the convolution g of 7 and .

It is immediately verified that || uv| < |u| |»| and that C(uv) c C(u)C(»).
Equality holds in both cases provided u and » are non negative.

The convolution operation is associative or commutative if and only if the
multiplication in § is. This follows immediately from the fact that the mapping
which makes correspond to each point o of 8 the unit mass placed at o is an
isomorphism from S into the set of probability measures on .

If S is a semigroup it follows from what we have just said that the convolution
of an arbitrary finite number of finite measures and the convolution power y* of
a finite measure y are unambiguously defined.

An important question is whether the convolution yv depends in some way
continuously on u and ». From the inequality |puv| < |u| ||| it follows that,
in the norm topology, uv is a jointly continuous function of g and ». Joint con-
tinuity holds also for probability measures in the weak topology (since, as we
have remarked, it coincides with the norm topology).

In the vague or weak star topology, however, the situation is much worse. To
exemplify this, let S be the set of non negative integers and define the multi-
plication by b = 0 for all ¢ and b in 8. This makes § a commutative semigroup.
Let 7z, be the unit mass placed at n and ¢ a fixed probability measure. Then 7, — 0
vaguely as n — oo. However, 7,0 == gy is the unit mass placed at 0 for every =.
This shows that the convolution product may not be continuous in the vague or
weak star topology even if one factor is held fixed.

The convolution v of two finite measures 4 and » depends continuously on
»(u) for arbitrary fixed u(») in the weak star topology if and only if the equation
ax == ¢ (xa = c) has at most finitely many solutions for every ¢ and c. In par-
ticular, the mentioned continuity holds on a group.
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To prove the sufficiency, let f be an arbitrary function tending to zero at

infinity. Since
2. e () () (fe}) = Z (Z af(ab)m d))” b)
5

it suffices to show that the function within the brackets tends to zero at infinity.
Choose finite sets A and € such that |u|(4") < e and |f(c)] < ¢ if ¢¢ C. On
account of our assumption we can find a finite set B such that 4 B’ does not meet C.
Then, for b ¢ B

2 af@bym @) = max|f@h)] | (4) + max[f@d)] | u](4) < el + 11D,

where || denotes the maximum of |f].

Conversely, assume that there are infinitely many x such that ez = ¢ for some
a and ¢. Let g and » be the unit masses placed at a and « respectively. Then v — 0
in the weak star topology as = tends to infinity, while yy identically equals the
unit mass at c.

Let 8 be a semigroup and recall the matrix representation (antirepresentation)
of the preceding section. We now extend this to a representation (antirepresenta-
tion) of the algebra of finite measures on 8. To u we make correspond

M=73  m(c)T(c).
S

The @, b th element of M equals u({c; ac = b}) (u({c; ca = b})). It is immediately
verified that kM corresponds to ku for an arbitrary real constant &, M 4 N to
u+ vand MN(NM) to uv. Here N denotes the matrix corresponding to ».

4, Composition of independent random variables and Markov chains

Let 21, 22, ... be a sequence of independent, identically distributed random
variables taking their values in the (discrete) semigroup § and let & be their
common probability distribution. (Given any probability distribution we can in
the usual way construect a suitable sample space and define a sequence of indepen-
dent random variables on it having the prescribed probability distribution.)
Consider the partial products

Yn =2X1%2...%n, n=1,2,....
It is a fact, basic to this paper, that the sequence yi, ya, ... forms a discrete
parameter Markov chain with stationary transition probabilities. The Markov
property is obvious from the relation

Yn = (X122 -+ Tp1) Tp = Yn—1%n
and the independence of 4,1 and z,. The one step transition probability, i. e. the
probability that y, = b given that y,_1 = a, evidently equals

a({c;ac=>0}),

and hence the transition probabilities are stationary. The transition matrix is
simply the matrix corresponding to s in the representation described in the

previous section. The initial distribution of the Markov chain is {p(a); a € S}
{(remember that p(a) = n({a})).

6*



84 Per MARTIN-LOF:

Changing left and right we can in an analogous way treat the partial products
Zp =Xy X2y, n=12,....
The probability of going from & to b now equals
w({c; ca = b}),
and the matrix of transition probabilities is identical with the matrix corres-
ponding to x in the antirepresentation of the foregoing section.

It is evident that the case of non identically distributed random variables
could be discussed in a similar way. However, the transition probabilities will
then, in general, no longer be stationary.

The idea of considering a sequence of partial products of independent random
variables as a Markov process is by no means new. In fact, many of the classieal
examples of Markov chains are of the above type, in particular the card mixing
process and the unrestricted random walk in one or several dimensions (see the
books by FELLER, DooB and CHUNG). In the case of realvalued random variables
(the law of composition being ordinary addition) CHUNG uses the term chain with
independent increments. The double formulation of the problem has been exploited
repeatedly with a purpose opposite to ours, i. e. limit theorems for products of
independent random variables, derived mostly by means of Fourier analysis, have
been interpreted as limit theorems for the corresponding Markov process. This is so
in the papers by Kawapa and It6 (1940, separable compact groups), VoROBIOY
(1954, finite Abelian groups) and Kross (1959, compact groups). ROSENBLATT
(1960) and HEBLE and RosENBLATT (1963) use the Markov process connection in
deriving the complete description of the idempotent measures on a compact
semigroup and, in his book, GRENANDER points out the possibility of deriving
limit theorems on finite semigroups by borrowing results from the theory of
Markov chains and considers a few examples. '

Having constructed the above two Markov chains — for simplicity they will
be called the right and left chain respectively — we can look upon an element
(subset) of the seinigroup also as a state (set of states) of any one of the two
chains. The question arises as to what relations there are between the various
concepts of the theory of Markov chains and those of the theory of semigroups.
Further, if a state has a certain property in the right chain, does it necessarily have
the same property as a state of the left chain ? These two questions will be ans-
wered below in the form of a dictionary. A series of statements in Markov chain
language are given in the left column and the algebraic reformulations in the right
one. The Markov chain terminology is taken from FELLER’s second edition.

4.1. T s the minimal state space of T is the semigroup generated by the
the right (left) chain. support of 7.
Since the probablhfy distribution of ¥ (zs), = 1,2, ..., equals n® the

minimal state space is U C(nn) = U(O(n))” and this is precisely the semigroup
n=1 n=1
generated by the support of z.

From now on we will assume that the support of 7 generates the whole of S.
This will simplify the formulations of our theorems a lot and evidently implies no
essential restriction of generality. In Markov chain terms this means that if the
state space is not minimal from the beginning we replace it by the minimal one.
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4.2. The state a leads to b in the right b is divisible fo the left (right) by a.
(left) chain.
p?(a, b) > 0 if and only if there exists 2 € C{n”) such that ax = b. Thus «

leads to b if and only if ax = b for some z € UO(n”) = 8.
n=1
4.3. R is a closed set of stafes in the R is a right (left) ideal.
right (left) chain.
The set of states that can be reached from R in n steps equals RO (7). Thus
no state outside R can be reached from R if and only if

RDORC(TE”) = R(OO(n")): RS.

n=1 n=1
The following theorems are now obvious.
4.4. R is a minimal closed set in the B is a minemal right (left) ideal.
right (left) chain.
4.5. R is the closure of B in the right R is the right (left) ideal generated
(left) chain. by B.
4.6. The closure of a set of states E The right ideal generated by E equals

in the right (left) chain is the set of all EUES.
states that can be reached from it (includ-
ing E).

A class in a Markov chain is an equivalence class with respect to the equi-
valence relation ~, where @ ~ b if and only if @ communicates with b or a = b
(see CHUNG’S book). From what we have proved above it follows that, in the right
(left) chain, this means precisely that a and b are right (left) ideal equivalent and
hence the following correspondence is proved.

4.7. R is a class in the right (left) R is a right (left) ideal layer.
chain.

Since an essential class in the right (left) chain is the same as a minimal closed
set, the algebraic translation is again minimal right (left) ideal, and a state is essen-
tial if and only if it is contained in a minimal right (left) ideal. Thus the following
theorem holds (since its algebraic reformulation is true), making clear the relation
between the properties of being essential in the right and left chain respectively

4.8. If there exist essentiol states in If there exist both minimal right and
both the right and the left chain, the es-  minimal left ideals, the wunion of the
sential states in the two chains are the  former equals the union of the latter (and
same. 18, in fact, the completely simple minimal

twosided ideal).

The following example, a modification of one given by STEFAN SCHWARZ,
shows that it may happen that there are essential states in one chain although
there are none in the other. We have to construct a denumerable semigroup
possessing a minimal right (left) ideal but no minimal left (right) ideal. Let
8§ = {a, b, ...} be the set of polygonal lines of the form

t—"m-1
S IR
m 1+7‘m—7”m—1

a(ty = m=1,2,...,n

Sp -t — 1y if t=vr,

(8m —sm—1) H ry1 St <1y,
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where 0 = rg < 711 <-- <7y and 0 <8y << 81 < -+ < 8, are all rational,
n=0,1, ..., multiplication being the ordinary composition of functions. § is
itself the unique minimal left ideal, since for every b and ¢ the equation xb = ¢
is solvable. A suitable solution is

c(b-1(t) if bO)<t<+ oo
W= 0y i 000

However, § can not contain a minimal right ideal as that would imply complete
simplicity and hence the existence of an idempotent. For e2 = e implies in
particular e(e(0)) = e(0), contradicting the fact that e is strictly increasing and
e(0) > 0.

The next two theorems show that a state is persistent, persistent null or
transient in one chain if and only if it is in the other so that we may unambiguously
use these terms without reference to left and right

4.9. The state b is persistent (transient) Z an({b}) = + oo (<< + 00).
in the right (left) chain. n=1
Find an m such that b € C(mm), i. e. pm{b} > 0. From the relation (n = m)

7 ({b}) = > ap™ (@) p"~m(a, b) = p™ (b) p™~™ (b, b)

it is evident that the divergence of Z p" (b, b) implies that of Zrc”({b}). (We
n=0 n=1 00

define p%(a,b) =1 if a = b and 0 if a +5.) Assume instead that an(b, b)
n=0

converges. Using the fact that (see p. 21 in CHUNG’s book)

Zp” a,b) =h{a,b Zp" (b, b)

n=0
where k(a, b) is the probability that b will ever be reached from @, a +b, and
h(b,b) =1 we find

Zn” {b})—Z > ap(@)p*t(a,b)
=>ap(@) Zp” a,b) = > p"(b,b) > «p(a) h(a, D)
n=10
giwmm.

n=20

Hence Zn”({b}) converges and we are finished.

n=1
4.10. b is a persistent null state in > an({b}) = + oo but
the right (left) chain. n=1

7 ({b}) >0 as n—co.

From the first formula of the preceding proof it follows that z=»({b}) -0
implies that p"(b, b)) — 0 as n — co. Conversely, if b is null p»(a, b) — 0 for all
a and thus so does

2 ({) =S up (@) p"~ (a,b).

4.11. {s(c); ¢ € 8} is a stationary o=c0n(0=mn0o).

distribution of the right (left) chain.
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This follows from the relations
o({e}) = s(c),
(07) ({e}) = 2 aps(@)p(b) = > as(@) > sp(b)

{(a,b); ab=c} b;ab=c}
=2 as(@)pla,c),
where ce § is arbitrary.

There remains the question whether a state necessarily has the same period in
the two chains. It is trivially seen that it may happen that the period is undefined
in both chains or defined in one of them but undefined in the other. The following
example, due to HENRIK ERIKSsowN, shows that the right and left period may be
both defined and yet unequal. Take § = {0, @, b, ¢, 1} with the multiplication table

0 a b ¢ 1
0O 00 0 00
a 0 0 0 b a
b 0 0 0 a b
¢c 0 a b 1 ¢
1 0 a«a b ¢ 1

and choose a probability distribution with the support {a, ¢}. Then the support
generates the whole semigroup and the period of @ in the right chain is two, while
it is one in the left chain. However, we shall mainly be interested in the period of
persistent non null states, and the following theorem is accordingly more than
sufficient for our purposes.

4.12. Let a be a regular element. Then the period d of a in the right (left) chain
is the largest integer with the property that the infegers n such that a € C'(n®) differ
only be multiples of d. In particular, a state which is essential in both chains, e. g.
a persistent state, has the same period in the right chain as in the left one.

We first show that the largest integer with the property that the values of n
such that a e C(nn) differ only by multiples of it, is a divisor of d. For this part of
the proof we need not assume @ to be regular. In fact, choose r such that a € C'(n7).
Then p”(a, a) > 0, i. e. a € aU(a"), implies a € O (7") C (7") = C (77+") from which
the assertion follows. Conversely, assume that @ is regular and choose x such that
a = aza. Since x € C(nr) for some r, a € C(nm) N C(x®) implies a € aC (nr+m)
N a0 (mr+7) and so v + m and 7 + » are both multiples of d. Hence, so is n — m
= (r + n) — (r 4+ m). The last part of the theorem follows from the fact that a
state which is essential in both chains, e. g. a persistent state, is contained in the
completely simple semigroup of all essential states and hence regular.

The condition of regularity is, of course, not necessary as can be seen from the
following example. Put § = {0, a, 1}, define multiplication by

[en el e B el
* SO
= ]

0
a
1

and choose a probability distribution with the whole of § as its support. Then the
right and left period both equal one, although a is not regular.
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The following theorem contains the basic facts we need for the proof of the
main limit theorem of the following section.

4.13. If there exist essential states in both chains, e.g. persistent states, all
essential states have the same period. If there exist persistent states, they are either all
nwull or all non null and there are no essential transient stafes.

Suppose that there are essential states in both chains. Then, if not empty, the
set of all essential states having a certain period, being closed in both the right and
the left chain, is a twosided ideal contained in the minimal twosided ideal of all
essential states and hence equals it. The same reasoning applies to the set of all
persistent states and the set of all persistent null states.

The unsymmetrical random walk shows that, in case there are no persistent
states, there may very well exist essential transient states. In fact, let S be the
group of integers under addition and define = by

Jp if a=1
pl@y=i1—p if a=—1
L o if a+l,—1

where p %0, 1/, 1. Then the support of 7z generates the whole of S and all states
are both essential and transient.

We finally remark that, although it would be unnatural, we could prove well-
known theorems on semigroups using the ideas of this section. To exemplify this
let us prove that a finite semigroup has at least one minimal right (left) ideal.
Choose a probability distribution the support of which generates the whole
semigroup and consider the right (left) associated chain. Since there are only a
finite number of states not all of them can be transient and the persistent ones
may be divided into minimal closed sets, i. e. minimal right (left) ideals.

5. The main limit theorem

The object of this section is to give a complete description of the behaviour of
7" as n — oo, We begin with the fellowing lemma of independent interest, proved
for a compact semigroup by RosENBLATT (1960) (cf. GRENANDER’s book, where
a heuristic version of the proof is given).

5.1. If I is a twosided ideal

ar(l)—1
as n — oo,
Retaining the notations of the previous section, y, € I evidently implies
Yni1 = YnZym € I and hence an+1(I) = mn(I), n =1, 2, .... Now choose m so

that C{z™) N I +0, 1. e. a7 (I) > 0. From the decomposition
Yem = (1" Tm) "= (@km-m-1°"" Tm)
and the fact that as soon as one of the blocks belongs to I so does the whole
product it follows that
1=abn(l)=1— (1 —am())F—>1
as k — oo.

Let @ be an arbitrary element of a (discrete) semigroup and consider the

sequence of its powers
q SP ’ a,a?,...,a"%,....
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Two things can happen, either they are all distinct or else there are A + d — 1

different ones,
a,...,ab~1 gh . qhtd-1

where a®t? = ¢* and {a®, a?*1, ..., ah+d-1} is (isomorphic to) a cyclic group of
order d.

This may be interpreted as a limit theorem for the probability distribution
that assigns mass one to the pointa. We have seen that, in the limit, the probability
mass either escapes to infinity or jumps round cyclically. The following theorem
shows that the behaviour of an arbitrary probability distribution is essentially
the same. "

5.2. As n — oo either
7?0

vaguely or else there is a natural number d such that
,’Tﬂﬂd+r“—>ﬁ'r, 7”:—'1,2,...,d,

weakly where 01, 62, ..., og have disjoint supports and
Oy T — 7T 0y == Or+1 (modd) > Or0s = Or+s (modd) -

Suppose first that all states of the associated Markov chain are transient or
persistent null. Then, as we have shown in the previous section, n”({a}) — 0 for
every a € 8§, i. e. #7 — 0 vaguely.

There remains to see what happens when there are non null persistent states.
In this case the theorems 4.13 and 4.8 tell us that the persistent states are all non
null and all have the same period, d, and that they form the (completely) simple
minimal twosided ideal, I. By the lemma which we have just proved, n%(I) — 1
as 1 — oo, i. e. the probability of remaining for ever in the transient states is zero.
These facts show firstly that no probability mass can escape to infinity and
secondly, since

andr ({b}) = > 4 p (@) pri+r=1(a, b),

that #7917 converges vaguely as n — oo, r = 1, 2, ..., d. Hence the convergence is,
as a matter of fact, weak. The last two formulas of the theorem are now obvious
consequences of the weak continuity of the convolution operation. It remains to
show that the limit distributions have disjoint supports. Suppose that a € C (o)
N C(os). Then there exist m and »n such that a € C(amétr) N C(xPe+s) and hence,
according to theorem 4.12, r = s.

The theorem we have just proved has the following immediate corollary,
proved for a compact semigroup by Rosexnsratt (1960) and for a locally compact
group by GRENANDER (p. 59 in his book). '

5.3. The Césaro mean
1
Pl kA

converges as m — oo, either vaguely to zero or weakly to an idempotent measure o
such that
on=mo=02=g.
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The proof is contained in the following lines, letting 4 denote the integral part
of n/d,

b e an)

kd
:T%<%(ﬂ+ +n(k—1)d+1)+ ‘l—%(nd‘i— _}_ nkd)>+

o (L ) > 2 (o1 aa o ).

Alternatively, we could have applied directly the corresponding Markov chain
theorem.

6. Idempotent measures

In the present section we proceed to give an algebraic description of the
idempotent probability measures. Maybe it is not out of place to recapitulate
briefly the literature on this subject. LAvy (1939) determined all idempotents
(real and complex) on the circle group and his results have been rediscovered, in
the case of probability measures, by Kaxerasazr (1949) and, in the general case,
by Hersox (1953). This line of investigation was carried on by Rupix (1959) and
completed by CorEN (1960), who determined all idempotents on a general locally
compact Abelian group. On a compact, not necessarily commutative, group the
idempotent probability distributions were described by Kawapa and ITé (1940)
and their result has been rederived (without their separability assumption) in
almost all papers on the subject. In the case of probability measures on a compact
semigroup partial results have been obtained (round 1960} by a large number of
authors. The complete solution was found by Pym (1962) and HesLE and
RoserBrAaTT (1963) We are now able to do without the compactness condition,
still assuming, however, that our semigroup is discrete.

6.1. The support of an idempolent probability measure, 7, is a completely simple
semigroup such that the (isomorphic) groups Gy ; = RiL; = By O Ly in its group
decomposition are finite. Letling 4,5 denote the normed Haar measure over Gy ; we
have, with 7 (R;) = t; and 7w (Ly) = wu;,

m= g itiuony, D eli=pjuj=1.

Conversely, any measure of this type is idempotent.

Suppose that 7 is idempotent. Then 7% = 5 for all natural » and, in particular,
a® — 7 as n —oo, Hence, all states of the associated chain are persistent (non
null), so that the support of 7 is a completely simple semigroup. Let us restrict
our attention to an arbitrary fixed minimal right ideal Ry, i. e. an irreducible closed
set in the right chain. A theorem of DERMAN (see p. 50 in CHUNG’s book) tells us
that the stationary distribution equations

s(¢) = as(@)p(a, o)
R;

admit of a unique (up to a multiplicative constant) non negative solution. Let us

show that
s@)=m(Ly) if aelGy;
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is one such solution. Suppose that ¢ € G,;. Then

Sas@plac) =2 al)>a > opb)
R:

Gi,i {b;ab=c}
=2 i7w(Ly) 2 60 () 2,0l =n(Ly) = 5(c),
L Gin{a;ab=c}
since for every ce G;,; and b e L; there exists exactly one ac Gy ; such that
ab = c. On the other hand, due to the idempotence of 7, the restriction of p to R;
also satisfies the equations above. From this we conclude, firstly, that the groups
Gy,;arefinite and, secondly, that the restriction of & to R; equals 7z (R;) Z s (Ly) o 5.
The last assertion of the theorem follows from the relation
04,7 Ok, 1 == 04,1,
which is an immediate corollary to the fact, used previously in the proof, that to
every ¢ € Gy,; and b € G, ; there exists exactly one a € G ; such that ab = ¢.
We could just as well, in accordance with RoseNBLATT and PyM, formulate our
theorem in terms of the REES structure theorem. In fact, we have shown that the
support of an idempotent probability measure z is isomorphic with a REEs
matrix semigroup G X I X J over a finite group G (I and J can of course be at
most denumerable). Further
T—=0XTXUY,

where ¢is the normalized Haar measure over ¢ and 7 and v are probability measures
on I and J respectively. Conversely, any such measure is idempotent.

In the commutative case the theorem takes the following form.

6.2. An idempotent probability measure on a commutative semigroup is the
normed Haar measure on a finite subgroup and conversely.

Pym (1962) and Loy~NEs (1963) have proved that the idempotent probability
measures on a locally compact group are precisely the Haar measures on compact
subgroups. In the discrete case a simple direct proof of this fact has been given
by Rupin (1963). We deduce it as a corollary to the theorem above.

6.3. An idempotent probability measure on a group is the normed Haar measure
on a finite subgroup and conversely.

We know already that the support is a completely simple semigroup such that
the groups in its group decomposition are finite. However, since a group does not
contain more than one idempotent (namely the identity element), there is only
one group in the group decomposition.

7. The semigroup of probability measures and the structure of its subgroups

We have already proved that the convolution of two probability measures is
again a probability measure and that the convolution operation is associative
(provided the underlying algebraic structure is a semigroup) and jointly continuous
in the weak topology. This can be expressed by saying that the set of all probability
measures is a topological semigroup. It has been studied from an algebraic point
of view in a series of papers (mostly assuming that the underlying structure is a
compact semigroup). Typical exponents of this line of investigation are WENDEL
(1954), Scawarz (1957, 1963), GLICKSBERG (1959), CorrLiNs (1960, 1961) and
Corrins and KocH (1962). Results in this spirit may be obtained as reformulations
and corollaries of many of the theorems of this paper.



92 PErR MARTIN-LOT:

One problem that has attracted attention is to determine the structure of a
group of measures, see GLICKSBERG (1959, compact groups and compact Abelian
semigroups, and 1961, compact Abelian separately continuous semigroups),
Corrins (1962, compact semigroups), Kross (1962, locally compact groups
representable in compact ones) and Scawarz (1963, finite semigroups). We have
already met one such group, namely the set of all weak limit points of the sequence
7, 7%, ... . In fact, in theorem 5.2 we proved that (if non empty) it was isomorphic
to a finite eyelic group. The problem will now be solved in the discrete case,
assuming neither compactness nor the group property. First we introduce the
following concept. If I'is a set of measures (on a discrete space), the support of I,
C(I"), is the union of the supports of all measures contained in 7.

7.1. Let I' be a group of probability measures on o discrete semigroup and let ¢ be
its identity element. Then C(I") = G X I X J is a completely simple semigroup and
C(e) = H X IxJ a completely simple subsemigroup. Here H is a finite normal
subgroup of G. The elements of I' are of the form v X T X v, where T and v are fixed
probability measures over I and J respectively and v is the uniform distribution over
@ coset of H, i. e. the Haar measure over H translated.

¢ is idempotent and hence

Oy =\UiBi=UsLy =i,  Hi,; = HX I xJ
is a completely simple semigroup.
(CIN))P =017 =C(T),
so that C(I) is a semigroup, and
CIN=0@EN=0@E0I)=JiRCI).

R; C(I") is obviously a right ideal of C(I"). If we can prove that it is minimal, it
will follow (since we can prove analogously that C(I")L; is a minimal left ideal)
that C(I') is completely simple.

Take a € R;C'(I'). Then a € R;C(x) for some 7 in I'. Consequently

aC(n)c R, C{m)C(nt)= R;C(nnl)= R;C(e) = R;,

and
aCr)C(e)=aC(ale)=al(m 1),

so that aC(m~1) is a right ideal in C(e) contained in the minimal right ideal RB;,
whence aC (7-1) = R;. Finally,

aCIN=aC(x 1N =aCxYC0UI)= R, C(I),

and the minimality of RB;C (I") is proved.

The groups in the group decomposition of C(I') are Gy ; = R;C(I)C(I"L;
> R;C{e)L; = R;L; = H; ; with ¢ in I and j in J. Recalling how the represen-
tation of a completely simple semigroup as a REES matrix semigroup is constructed
(see the book by Lyapin, p. 281), we find that

CIN=GxIxJ,

where @ is a group containing H as a subgroup and the sandwich matrix defining
the multiplication in @ X I xXJ may be chosen as the one corresponding to
C(g) = H x I xJ. In particular the elements of it belong to H, which is also
necessary since H x I x J is a subsemigroup of ¢ x I x J.
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Let zz be an arbitrary element of I" and choose (g, 7, §j) in C'(s). Then
HgHxIxJ=HxXIxJ)(gij)(HxIxJI)cC)Cx)C(e)= C(x)

and hence Om) = AXIxJ
where AH = HA = 4. Likewise

Cla)=BxIxdJ
with BH — HB = B, and

ABXIXJ =C()0)=C0(e) = HxIxJ.

This can not hold unless 4 is a right and B = 41 a left coset of H. Changing the
order of multiplication we find that 4 is also a left coset of H, and, since any point
of ¢ is contained in the projection of C(x) for some 5 in I, it follows that H is
normal.

It remains to show that w = » X 7 X v where v is the uniform distribution over
a coset of H. We know already that this is true for . Let m be the mass that the
normed Haar measure over H attributes to each of its points. From 7 = s it
follows that, letting ¢ = (g, 4, §) be an arbitrary point of C(7),

p(€) =D a,pe(@)pb) = > xmbtiug > yp() > 41
{(a,b); ab=c} HixO{a;ab=c}
= Z;cmtlukn(G’ x I X{j}) =mla(Gx X {j}) .
Dually,
ple) =ma(G x{i}x J)uy,
wherefrom we conclude that
p(c) = mit;u;.

The proof is finished.

8. Necessary and sufficient convergence conditions

The theorem of the previous section allows us to give necessary and sufficient
conditions for the convergence (weak and vague) of a7 as n — co. We shall see
that the limit behaviour is completely determined by the support and the alge-
braic properties of the semigroup. In the case of a compact group the solution
was essentially given already by Kawapa and IT6 (1940) and since then it has
been rederived in almost all papers on the subject, using Fourier analytic as well
as algebraic methods. Recently, RoSENBLATT (1964) has settled the problem on
an arbitrary compact semigroup.

8.1. 7* — 0 vaguely as n —> oo if and only if the semigroup generated by the
support of  does not posess a completely simple minimal twosided ideal with finite
groups in its group decomposition.

We know already from section 5 and 6 that the condition is sufficient.

Conversely, assume that the semigroup generated by the support of 7 contains
the completely simple minimal twosided ideal K ={_J; B; =\_J; Ls =|J:,; G1.5,
where (;; is finite. According to theorem 5.1. we can find m such that mm (K)
> 1 — ¢ and then

(U (s =1

\\E=1 j=1
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for sufficiently large » and s. Hence, if n = m,

an (iL:JlRi> gnm<ORi> >1—¢

and =t

n”(OL,-) gw(OLj) >1—ce,
so that =t =t

ﬂ”((o Rz) M (OL])) >1—2¢.
Since =l =t

7 $ 7 8
(8]0 05)- 9 0
i=1 i=1 i=1j=1
is finite, this means that the sequence m, 72, ... is weakly conditionally compact,
i. e. no probability mass escapes to infinity.

8.2. @ converges weakly as n —> oo if and only if the semigroup generated by
the swpport of w posesses a completely simple minimal twosided ideal G X I X J with
G finite, which conlains no subsemigroup H X I x.J, H being a proper normal
subgroup of G, such that

C(m) (HX IxJycgH X IxJ
for some g outside H.

Suppose that 77 does not converge weakly. Then either 7z — 0 vaguely, in

which case we use the previous theorem, or else there is an integer d > 1 such that

Tl g, r=1,...,d,
where d
UClor) =G xIxJ,

r=1
@ being finite, is the completely simple minimal twosided ideal of the semigroup
generated by the support of m. o4 is the identity element of the group of limit
distributions. Hence, by theorem 7.1, @ X I x J has the subsemigroup

Clog) =HXxIxJ,

where H is a proper normal subgroup of G. From theorem 5.2 and 7.1 we conclude

$hab ) (H X I % J) = O() Cl0a) = C(m0a) — Oloy) — g H X T

for a suitable ¢ outside H.

Conversely,
L Cn)(HxIxJ)cgH xIxdJ

implies

C(m?) N (G IxJ)cCam)(HxIXJIycC(ar1) (gHxIxJ)yc---cg®H X IXJ,

which, together with the fact that z»(G'xIxJ)—+1, shows that z" does not
converge weakly as n — co.

9. Infinitely divisible distributions

A probability distribution  is said to be infinitely divisible if, for every natural
number n, there exists a probability distribution n, such that

w=1y.
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Particularly important infinitely divisible distributions are the compound
Poisson distributions. Such a distribution is of the form

2 2 k
oo+ frotgret ) =2 et

where ¢ is a positive number, ¢ = 90 an idempotent probability measure and ¢
a probability distribution such that

pe=¢e0=0.

The last condition assures us that

o™ ot = Qm+n

for all m, n = 0. Using this it is immediate that the distribution above is infinitely
divisible. In fact, an nth root is obtained by replacing ¢ by ¢/n.

A basic question is whether, conversely, an infinitely divisible distribution is
necessarily a compound Poisson one. This is known to be so in the classical cases
when the semigroup under consideration is the set of non negative integers under
addition (see FELLER’s book) or the whole integer group. Vorosiov (1954)
obtained the same result by means of Fourier analysis for an arbitrary finite
Abelian group and BoOcE (1959), using quite different methods, removed the
commutativity assumption.

One might think that that the same result would hold for an arbitrary discrete
semigroup. That this is not so even for a commutative group is shown by the
following example.

Consider the set of all rational numbers under addition and let & be the point
mass at 1. Then, for every natural number », the point mass at 1/ is the unique
probability measure s, satisfying the definition of infinite divisibility. However,
7 is not a compound Poisson distribution since such a distribution can not be
degenerate except at 0.

It does not seem to be known at present what the appropriate conditions are
that should be imposed to avoid the pathologies exhibited in this example.

In the rest of this section we restrict our attention to finite (i. e. compact
discrete) semigroups. We shall show that an infinitely divisible distribution is then
necessarily compound Poisson, thus generalising the result of BogE to the non
group case. The following lemma will be needed.

9.1. An infinitely divisible distribution on a finite semigroup has, for each u,
at least one infinitely divisible nth root.

The proof is wellknown, see Vorossov (1954) and Kross (1961, 1962), and
works just as well on an arbitrary compact semigroup. Let 7, be an mth root,
m = 1,2, .... An infinitely divisible nth root may then be chosen as a limit point
of the sequence

!
Tpin, m=1,2,....

Following Kross (1961) we now imbed our infinitely divisible distribution
in a rational parameter homogeneous process, i.e. we construct a family of
probability measures s;, £ > O rational, such that

T T == TTs+t
for all s, > 0, and 71 = 7.
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According to the lemma we can find a sequence of infinitely divisible distri-
butions g1, pz2, ... such that o5 = 7, 05 = gz, ... . We put for ¢ = p/q with p and ¢
natural, :

T = Q%p/q)k!’ k=q,

which is a permissable definition. The equation above is easily seen to be satisfied
and ;1 = ¥ = a.

We shall now (and this is the clue) show that m; converges as ¢ — 0. Let
w = lim 715, and v = lim 5, be two arbitrary limit points. We may suppose that

1—>00 t—>c0
s; < t; for all 4. From the relation
. Tbs, Ti—s; = Toy—s, s, = Tt
it follows that the equations
pé=v, fu=v

are solvable. In fact, & may be chosen as a limit point of the sequence 7 _s,,
¢ =1,2,.... This means that the set of all limit distributions is a (commutative)
group. By theorem 7.1 it is even finite (because of the finiteness of the semigroup

under consideration}. Let # be the order of it and # a limit point of the sequence
Asyns 1 = 1,2, .... Since z,, = 75, for every 4,

p=n"=e,
where ¢ denotes the unit element of the group. Consequently ¢ is the only limit
distribution, i. e. ;; — ¢ as { — 0.

We could now, following BoaE, directly finish the proof that 7 is a compound
Poisson distribution. Alternatively, we can first show that s;, now defined merely
for positive rational £, may be continuously extended to all non negative real ¢ and
then apply the results of the following section.

Let ¢ and & denote positive rational numbers. We know that lim 7, exists. But
h—>0
then (remember that all types of convergence are equivalent on a finite set)

[ 7een — 7| = | we—n7won — me—n7tn |
= |7we-n)| | men — 7n | = | 72n — 7] -0
and
| 7tt—p — 701 = | ms—2n7th — T1—28 7021 |
= |-z | o0 — en| = | 7w2n — 7n] —0

as h — 0. Hence, by continuity, 7; may be extended to all non negative real ¢,
and the extension is continuous. The proof of the following theorem is finished.

9.2. A probability measure on a finite semigroup is infinitely divisible if and only
if it is a compound Poisson distribution.

10. Homogeneous stochastic processes
In this section we shall study the continuous analogue of the composition of
independent random variables, i. e. the homogeneous stochastic processes. By
such a process we mean a family of probability distributions sy, ¢ > 0, with the
property
Ts Tt = Tls+¢
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for all real s, ¢ > 0. It is said to be continuous if 75 — 7; as s — ¢ for all £ > 0.
7tz is physically interpreted as the probability distribution of the increment of the
process over a time interval of length ¢. The equation above then states that the
increments of the process over successive time intervals are independent.

Just as we in the foregoing sections used the theory of discrete parameter
Markov chains, we can now borrow results from the continuous parameter case.
Let P; be the matrix corresponding to s in the representation of section 3, i. e.

pe(a,b) = m({c;ac =b}) = > cpic).
{e;@e=0}
Being stochastic and satisfying the Chapman-Kolmogorov equation

PS—Pi:PS-i-t’ 8:t>07
Py, t > 0, is a transition matrix.

10.1. Let 7z, t > 0, be a continuous homogeneous process. Then the support of
sty 15 independent of t.

We note firstly that UtC’(m) is denumerable since it suffices to extend the
union over the denumerable set of positive rational numbers. Secondly, being an
at most denumerable sum of continuous functions, p:(a, b) is a measurable (in
fact, lower semicontinuous) function of ¢ for each a and b. Hence p;(a, b) is either
identically zero or never zero (see CHUNG’s book, p. 121). In particular, so is
pi(@) = pi(1, ), where 1 is the identity element (if there was no identity element
from the beginning we could have adjoined one).

In case the semigroup under consideration is denumerable the continuity
assumption may be replaced by the seemingly weaker condition that p;(a) is a
measurable function of ¢ for each a (see p. 121 in CHUNG’s book). In the non
denumerable case this is no longer true. Consider for example the real line with
the discrete topology and let s; be the point mass at ¢. Then

1 if t=a
0 if t+a
so that measurability though not continuity holds.
When the semigroup is denumerable more effort is needed to construct a non
continuous process since it is then not even measurable. However, consider the

commutative group of rational numbers under addition. It is known that there
exists a non trivial rational valued function f such that

) +{l)=f(s+1), —oo<s, <<+ oo.
This result goes back to HamuL (for a proof see p. 259 in CHUNG’s book). The

desired non measurable process is obtained by letting 7, be the point mass at
f(¢) for each ¢ > 0.

10.2. A homogeneous process on a finite semigroup is conlinuous.

This follows from the corresponding Markov chain theorem due to DoEBLIN
(1938). (The reference is found in CHUNG’s book. I am indebted to him for pointing
it out to me.) Alternatively, we could have proved the theorem directly, repeating
almost word for word the argument in the previous section.

We turn to the study of the behaviour of 7; as £ — co. The situation is somewhat
simpler than the discrete time case since the probability mass can no longer jump
round cyclically.

pi(a) =

Z. Wahrscheinlichkeitstheorie, Bd. 4 7
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10.3. Let 7, t > 0, be a continuous homogeneous process. As t — oo 71z converges,

either vaguely to zero or weakly to an idempotent measure o such that
OTy = T4 0 — O .

The corresponding Markov chain theorem tells us (after having adjoined an
identity element if necessary) that m; converges vaguely as { — co. But then the
limit distribution coincides with the limit distribution of =, = #} as #n — oo,
which is either zero or an idempotent probability measure. The last relation
follow from the weak continuity of the convolution operation.

Theorem 8.1 tells vs precisely when the probability mass escapes to infinity.

10.4. A continuous homogeneous process g, t > 0, converges weakly as t — oo
if and only if the support of the process contains a completely simple minimal twosided
ideal with finite groups in its group decomposition.

We now turn to study the infinitesimal properties of the process.

10.5. A continuous homogeneous process converges vaguely as t — 0.

After having, if necessary, adjoined an identity element this follows from the
corresponding Markov chain theorem (p. 118 in CHUNG’s book). As is shown by
the first example above, the converse is, at least in the non denumerable case,
false.

A homogeneous process is said to be a compound Poisson process if it is of the

form )
(ct)? LY o (ct)?
2 ¢t ) _nz: a2
where ¢ is a non negative constant, ¢ = o? an idempotent probability measure and
o a probability distribution such that
pe=¢cp=0.

It is immediately verified that szs7; = 7s1¢, s, £ > 0, and that 7; is continuous.
Since

m=e‘“<e+—i—f9+

mm=c¢

i—0
and lim 1/t (7 — &) = ¢(o — &)

-0

(with convergence in the norm topology), ¢ and ¢(p — ¢) are uniquely determined
by the process. Conversely, as we shall see in a while, 7z; may be expressed solely
in terms of £ and c(o — ¢&). It will be proved below that the restriction of ¢ to
O(¢) is proportional to ¢ and hence we can just as well assume that ¢ and ¢ have
disjoint supports. With this convention not only ¢(¢ — ¢) but ¢ and ¢ themselves
are unique (unless ¢ = 0, in which case p may be arbitrary).

Suppose now that ab = ¢ with a, ¢ in C(e) and b in C(p). Since ¢ = &g, C(o)
= C(¢)C(p), there is an idempotent ¢ in C(e) such that b = eb. Consequently
b = (eae)~tec € O (), where the inverse is taken in that one of the groups in the
group decomposition of C'(e), whose identity element is e. Letting » be the restric-
tion of p to C(¢) we conclude that

VE=¢EY =1V.
Hence, remembering the proof of theorem 6.1, » is proportional to & and we have
proved what we promised.

10.6. A homogeneous process is a compound Poisson process if and only if it
converges weakly as { — 0.
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We have already proved that a compound Poisson process converges weakly
as ¢ — 0. The proof of the converse is wellknown from the analytical theory of
operator semigroups.

First we note that the existence of lim 7 = ¢ (in the weak or, equivalently,
i—0

the norm topology) implies continuity for all ¢. A direct proof was given at the
end of section 9. We could also argue as follows. Adjoin an identity element if
necessary. The continuity of p;(a, b) = 7:({c; ac = b}) at zero implies continuity
for all ¢ (p. 118 in CHUNG’s book). In particular, continuity holds for p: (a) = p; (1, ).

Now find y > 0 such that |7; — ¢ =< 6 for # < y. If 0 is sufficiently small,
e—m)  (e—m)®

1 2
is welldefined and continuous for ¢ < y,

log 7,y = log )y, = nlog @

log T — —

vin
and log 7, = log #}},, = mlog 7., = % log 7,
for an arbitrary rational number m/n =< 1. By continuity
1
logmzt—?;logny =tu,
t £2

”t:ew:g‘i“f!ﬂ‘{_ﬁ,uz‘{“”'

fort < . Ift > 01is arbitrary, we can choose » so large that {/n < y and conclude

that my = A, = (et/mu)n = etu,

Since = lim ¢
t—0
and pe=cl=Hu

we see, firstly, that the total variation of g is zero and that x is non negative
outside C (¢) and, secondly, that the restriction of u to C(e) is proportional to e.
Hence y = ¢(o — &) for a suitable ¢ = 0 and probability measure ¢ with ge = ¢g
= g, wherefrom we conclude that

S (™) ok ~k

m=3 prele—an=3 &
—ct

n=0

¢ —ci)”
:Icgo(k! Okz ("" Z
i. e. 77; is a compound Pmsson process.

It is now easy to see that the only continuous homogeneous processes on a
group are the compound Poisson ones. In the commutative case this has been
proved, using Fourier analysis, by BocHNER (1955).

10.7. A continuous homogeneous process on a group is a compound Poisson
process and conversely.

Let 7;, t > 0, be a continuous homogeneous process on a group. We know
already that z; converges vaguely as ¢ — 0, say towards e. Using the vague con-
tinuity of the convolution when one factor is held fixed, established in section 3,
we conclude that :

gtr = lim 754 = lim s 1 = e 12
s—0 s—0

(the limit is in the vague topology). Hence
lell = lel Jmll, Je] =1,
so that, in fact, 7; converges weakly as ¢ — 0.

&
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Without the group property the above theorem is no longer true. However,
just as the asymptotic behaviour of m; as ¢ — oo proved to be completely deter-
mined by the algebraic properties of the support of the process, one might hope
that the condition that m; converges weakly as { — 0 is also equivalent to some
algebraic property of the support. At least in the commutative case this is indeed so.

10.8. A continuous homogeneous process on a commulative semigroup is a
compound Poisson process if and only if the support of the process has an identity
element. .

Let C = C(m;) be the support of the process. Suppose first that z; converges
weakly as ¢ — 0. The limit distribution, say ¢, is then the uniform distribution
over a finite subgroup ¢. From

T & = ETy = Tt
it follows that
CG=GC=C.

Hence the identity of @ is an identity element for the whole of C.

Conversely, suppose that C has an identity element, say 1, and let G be the
maximal group containing it. From ab = g € ¢ we conclude that a (bg~1) = (ad)g1
=gg 1= 1,1 e aisin G Similarly, b is contained in . Consequently, the restric-
tion of 7; to @, u;, satisfies

Us+t = fs iy, 8, 6> 0.
From
et = Ll Ll s s8> 0,

it follows, since y; is non zero, that |u;|| = e for some ¢ = 0. But then e y; is
a continuous homogeneous process on G and the previous theorem tells us that it
converges weakly as ¢ > 0. Hence, so does

7y = e yuy - (1 — e) py 4 (7w — pae) -

We finally give an example of a continuous homogeneous process on a commu-
tative semigroup which is not a compound Poisson process. Let § be the set of
integers with the multiplication rule

ab = max(a,b),

and let z be an arbitrary probability distribution on S. It may be imbedded in the
continuous homogeneous process 7z, £ > 0, defined by

%t({"',a*‘- 1>a}) = (ﬂ({,a— 17“}))t’

@ =---, —1,0,-1,.... If the support of = is bounded below, the smallest
element of it is an identity element and all probability mass concentrates at it as
t — 0. However, if the support has no lower bound,

Tt —> O
vaguely as ¢ — 0.
It is interesting to note that the derivative at zero still exists, although now
merely in the vague topology, and that it is unbounded. Indeed,

7'65—-0

M
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vaguely as ¢{ —> 0, where

a({--,a—1,a})
m(a) = log a({-,a—2,a—1}) °

a=--,—1,0,+1,....
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