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Probability Theory on Discrete Semigroups 
By 

PER MAI~TIN-L6F 

0. Introduction and summary 

The study of the classical problems of probability theory, such as the deter- 
mination of the distribution of the sum of a large number of independent random 
variables, on more general algebraic structures than the real line, attracts a 
rapidly increasing interest. A survey of the field, including the history and prac- 
tical background of it, is given in the treatise by GI~E~A~C])ER (1963). 

This paper deals with discrete semigroups. I t  is the first paper abstaining from 
compactness assumptions in the non group case. The main tool is the theory of 
Markov chains and that is why the study is confined to the discrete case. I t  
should be noted that, unless we put restrictions on the algebraic structure, assum- 
ing it to be a group for example, we do not have access (at present) to any sort 
of Fourier analysis, which is the basic tool in the classical studies. 

In  the following a survey of the paper is given. Section 1 deals with the measure 
theoretic (this sounds a bit too solemn since the topology is discrete) preliminaries 
and section 2 with the algebraic ones. This leads to the definition of the basic 
concept, the convolution operation, in section 3. The connection between the 
composition of independent random variables and the theory of Markov chains is 
established in section 4, permitting a complete description of the behaviour of the 
convolution iterates of an arbitrary probability distribution in section 5. We 
return to this problem in section 8, where necessary and sufficient convergence 
conditions are given. This is made possible by the study of the idempotent pro- 
bability measures and the structure of a group of probability measures in section 6 
and 7 respectively. Infinitely divisible distributions are the subject of section 9, 
where it is shown that  the compound Poisson distributions are the only infinitely 
divisible ones on a finite semigroup. A discussion of the homogeneous processes is 
found in section 10. The bibliography should be reasonably complete up to and 
including 1963. 

I am indebted to ULr GRE~CA~CDEg, my teacher, for rousing my interest in the subject, 
and I wish to thank him for his encouragement. Also, I have benefited from discussions with 
STEFAl~ SCEWARZ. HENRIK EI~IKSSON read the manuscript, and his comments resulted in a 
number of improvements. 

1. Measures on a discrete space 

Let S be a set (possibly non denumerable) endowed with the discrete topology. 
By a n o n  negat ive  m e a s u r e  on S we understand an extended, non negative, coun- 
tably additive set function, defined for all subsets of S, assuming finite values on 
finite sets and regular in the sense that the measure of an arbitrary set equals the 
supremum of the measures of all finite sets contained in it. See HALlos (1950) 
for the general measure theoretic definitions. 
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A probability measure (or probability distribution) is a non negative measure 
such that  the measure of the whole space equals one. 

A non negative measure is said to be finite ff it is not extended, i. e. if the 
measure of the whole space is finite. By a finite (signed) measure we mean the 
difference between two non negative finite measures. 

The measure which attributes to each set the number of points in it is called 
counting measure. I f  E is a finite subset of S, the probability measure that  gives 
equal masses to the points of E and mass zero to all other points will be referred 
to as the uni/orm distribution over E. 

The regularity assumption we have imposed guarantees the one to one corres- 
pondence between a measure # and its density/unction (with respect to counting 
measure) m given by 

m (a) = ({a}) ,  

for all points a in S, and, for all subsets A of S, 

A 

We shall consistently denote measures by small Greek letters and their densities 
by the corresponding small Latin ones. 

I t  is trivial to give an example of an extended countably additive set function 
/t (defined for all subsets of the space) which is not regular. Let, for example, S be 
non denumerable and define # (A) to be 0 when A is countable and + c~ otherwise. 
However, no example seems to have been given of a finite valued/ t  with the re- 
quired properties. We know even that  when S is the real line no such function 
exists (assuming the continuum hypothesis). A discussion of the problem and 
further references are found in ULA~ (1960). 

Let # be a finite measure. Then 

/l l[ 
S 

is defined to be the norm of #. I t  is evident that  the sum converges precisely 
when ~t is finite. For a non negative measure the norm is simply the measure of the 
whole space. 

In  the following the concept of the support of a measure /~, to be denoted 
C (#)~ will be of fundamental importance. By definition 

= {a; 0 } .  

The support of a finite measure is denumerable. 
Several topologies in the set of measures will concern us. In the vague topology 

a subbase neighbourhood of the (not necessarily finite) measure ~a is given by 

I Z (n + )  - -  m + ) ) l  < 
S 

where / vanishes outside a finite set. This is evidently the same as the pointwise 
topology for the densities. 

The set of all finite measures may be viewed as the dual of the Banach space 
of all functions tending to zero at infinity. Thus, by letting the function / above 
belong to this space instead, we obtain a subbase neighbourhood of/~ in the weak 
star topology. For a uniformly bounded (in norm) set of measures, in particular for 
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the set of  probabil i ty measures, the weak star topology evidently coincides with 
the vague topology. The set of  all finite measures with norm _< 1 is compact  
as well as sequentially compact  in the weak star topology. 

The topology in the set of  finite measures determined by  the norm will be 
referred to as the norm topology. 

The weak topology in the set of probabil i ty measures is determined by  the 
requirement t ha t  a subbase neighbourhood of ~ is of the form 

{5; [ g ( a )  (r (a) - -  p (a)) I < 
S 

where ] is a bounded function. This is the topology with which probabil i ty theory  
is mainly concerned. I t  is a consequence of the discreteness of the space tha t  the 
weak topology coincides with the norm topology. We note t ha t  weak convergence 
of a sequence of probabil i ty measures is equivalent to vague convergence together 
with the fact  tha t  the limit measure has total  mass one. A set of  probabil i ty 
measures is conditionally compact  in the weak topology if and only if, for every 
s > O, there exists a finite set C such tha t  ~ (C) > 1 - -  e for all ~ in the set, i. e. if 
and only if  the tails of  the distributions are uniformly small. 

I t  is evident what. should be the definition of  a random variable taking values 
in S, namely  a function defined on a probabil i ty space and with range in S, 
satisfying the condition tha t  the inverse image of every subset of S should be 
measurable (i. e. belong to the Borel algebra implicit in the definition of  a pro- 
babil i ty space). 

2. Semigroups 

I n  this section the algebraic definitions and theorems, basic to the rest of this 
paper, are outlined. Every th ing  is found in the monographs  by  LJAI~IN (1960) 
and CLIFFORD and Pm~STON (1961). 

A groupoid is a set S together  with a binary operation (i. e. a function from the 
Cartesian product  S • S to S), which in the following will be denoted multi- 
plicatively. I f  A and B are two subsets of S, A B denotes the set of all products  ab 
with a in A and b in B. We shall write a B  and A b  instead of { a } B  and A{b} .  

A groupoid is a semigroup provided the multiplication is associative, i. e. if 
a(bc) ---- (ab)c for all a, b and c in S. I n  a semigroup the product  of an arbi t rary  
finite number  of elements and the power a n of an element a are unambiguously  
defined. 

A subset T of a groupoid is called a subgroupoid if T 2 ---- T T c T. I f  A is an 
arbi t rary  subset of a groupoid, the intersection of all subgroupoids containing .4 
is called the subgroupoid generated by  A. I t  sonsists of all finite products  of elements 
of  A. I f  S is a semigroup the subsemigroup generated by  A is expressible as 
c o  

[ . J A  n �9 
f t ~ l  

An element 1 of  a groupoid S is called an identity element i[ 1 a = a 1 = a 
for all a in S. There can be at most  one ident i ty  element. I f  there is none we can 
adjoin one and consider the enlarged set S ~d {1} and extend the multiplication to 
it by  defining 11 = 1 and l a  = a l  = a for all a in S. I f  S is a semigroup, so is 
s u {1}. 
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An element e of  a groupoid is called idempotent if e 2 = e. I n  particular, an 
ident i ty  element is idempotent .  

By  a right (le/t) ideal of a groupoid S we mean a subset R(L)  such tha t  R S  
c R ( S L  c L). A twosided ideal is a subset which is a r ight  as well as a left ideal. 
A groupoid is right (le/t) simple if there is no right (left) ideal properly contained 
in it and simple provided S is itself the only twosided ideal. A right (left, twosided) 
ideal is minimal if there is no right (left, twosided) ideal properly contained in it. 
Two different minimal r ight (left) ideals are disjoint. There can be at most  one 
minimal twosided ideal. 

Let  A be an arbi t rary  subset of  a groupoid S. The intersection of  all r ight 
(left, twosided) ideals containing A is called the right (left, twosided) ideal generated 
by A.  I f S  is a semigroup it equals A u A S ( A  u S A ,  A u A S u  S A  u S A S ) .  I n  
case A = {a} we speak of the principal right (left, twosided) ideal generated by a. 

Let  S and T be groupoids. A mapping h of  S into T is called a homomorphism 
(antihomomorphism) if h (a b) = h (a) h (b) (h (a b) ~ h (b) h (a)) for all a and b in S. 
If, in addition, it is one to one, we speak of an isomorphism (antiisomorphism). 

Let  S be a semigroup with ident i ty  element 1. The set of all elements a to 
which there exists an element a -1 such tha t  aa -1 --  a - l a  --  1 is a subgroup of S 
(containing 1). I t  is maximal in the sense tha t  it contains any subgroup which 
meets it. 

An element a of a semigroup S is called regular if axa  ~ a for some x in S. 
The following equivalence relations, called Green relations after their discoverer, 

are impor tant .  Two elements a and b of a semigroup S are said to be right (left) 
ideal equivalent if they  generate the same principal r ight  (left) ideal. The equivalence 
classes modulo this equivalence relation are called right (le]t) ideal layers. Two 
different elements a and b are r ight (left) ideal equivalent  if and only if each one 
of them is divisible on the left (right) by  the other one, i. e. b ~ ax(b = xa) and 
a ~ by(a ~ yb) for some x and y in S. 

A simple scmigroup S is completely simple if it contains at  least one minimal 
r ight  ideal and at least one minimal left ideal. Then 

= R, = U J  L j .  
I J 

Here Ri (Lj) runs through all minimal r ight  (left) ideals as i (j) varies over the 
index set I (J). For  every i in I a n d j  in J,  L j R f  ~- S and R iL j  = Ri n Lj = Gf,i 
is a subgroup of  S, all these groups being isomorphic. Moreover, GajGk, l-~ Gt,~ 
for every i,/z in I and j, 1 in J .  We refer to the decomposition 

S - U~,J  G,i,] 
I x J  

as the group decomposit ion of S. 
A fundamenta l  theorem of l~ees tells us tha t  a completely simple semigroup is 

isomorphic to a so called Rees matrix semigroup. Such a semigroup is of  the form 
G • I • J ,  where G is a group and I and J arbi t rary  index sets, multiplication 
being defined in terms of a J • I matr ix  (gj, i) of elements in G, called the sandwich 
matrix,  by  the relation 

(g, i, j) (h, k, l) = (g gj, k h, i, l) 

for all g, h in G, i, k in I and j ,  I in J .  

Z. Wahrscheinl ichkei ts theorie ,  Bd. 4 6 
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Let  S be a semigroup. To each element c in S we make correspond the S • S 
matr ix  T(c)  whose a, b th  element equals 1 if ae = b(ca = b) and 0 otherwise. 
I t  is easily verified tha t  T (c d) = T (c) T (d) (T (ed) = T (d) T (c)), i. e. the mapping 
constructed is a homomorphism (antihomomorphism).  I t  is a representation 
(ant irepresentat ion)  of the semigroup S by  matrices over the field of  real numbers.  

3. Convolut ion  of m e a s u r e s  

Let  S be a groupoid a n d / t  and ~ two finite measures on S. The convolution oft t  
and ~ is the finite measure ,u ~ defined by  

(#v )  (A) ---- (# • v ) ({ (b ,c ) ;  b c e A } )  

for all A c S. The density of ~ ---- # v is 

l(a) ~- ~ b ,  c m ( b ) n ( c )  ~-- ~ bm(b)  u ( { c ; b c  = a}) 
{(b, c); bc = a}  S 

---- ~ .c#({b;  bc ~-- a } ) n ( c ) .  
s 

I f  x and y are two random variables taking their values in S, so is their product  
x y ,  provided their probabil i ty distributions, say ~ and 0, are regular and the 
probabil i ty measure over the basic probabil i ty space is complete. The probabilistic 
importance of the concept of convolution is tha t  if x and y are idependent,  the 
probabil i ty distr ibution of x y  is precisely the convolution ~0 of 7~ and 0. 

I t  is immediately verified tha t  ]] # v lI ----< ]l # II ][ v ][ and tha t  C (# v) c C (#)C (v). 
Equal i ty  holds in both  cases provided # and v are non negative. 

The convolution operation is associative or commutat ive  if and only if the 
multiplication in S is. This follows immediately from the fact  tha t  the mapping 
which makes correspond to each point  a of  S the unit  mass placed at a is an 
isomorphism from S into the set of probabil i ty measures on S. 

I f  S is a semigroup it follows from what  we have just said tha t  the convolution 
of an arbi t rary  finite number  of finite measures and the convolution power #n of 
a finite measure # are unambiguously  defined. 

An impor tan t  question is whether the convolution #v  depends in some way 
continuously on # and ~. F rom the inequali ty [I #~ ][ < [[/~ n [] ~ [] it follows that ,  
in the norm topology, #v  is a jointly continuous function of # and v. Jo in t  con- 
t inui ty holds also for probabil i ty measures in the weak topology (since, as we 
have remarked, it coincides with the norm topology). 

I n  the vague or weak star topology, however, the situation is much worse. To 
exemplify this, let S be the set of  non negative integers and define the multi- 
plication by ab ---- 0 for all a and b in S. This makes S a commutat ive  semigroup. 
Let  ~rn be the unit  mass placed at n and ~ a fixed probabil i ty measure. Then Y~n --> 0 
vaguely as n --> oo. However,  7~n ~o = 0 ~n is the uni t  mass placed at  0 for every n. 
This shows tha t  the convolution product  m a y  not  be continuous in the vague or 
weak star topology even if one factor is held fixed. 

The convolution # v of two finite measures # and ~ depends continuously on 
v (,u) for arbi t rary  f ixed/ t  (v) in the weak star topology if and only if the equation 
a x  - -  c ( xa  ~ c) has at  most  finitely m a n y  solutions for every a and c. I n  par- 
ticular, the mentioned cont inui ty  holds on a group. 
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To prove the sufficiency, let / be an arbi t rary  function tending to zero at 
infinity. Since 

it suffices to show tha t  the function within the brackets tends to zero at infinity. 
Choose finite sets A and C such tha t  t # I ( A ' )  < s and I / ( c ) [  < s if c ~ C ,  On 
account  of our assumption we can find a finite set B such tha t  A B '  does not  meet  C. 
Then, for b ~ B 

~ a / ( a b ) m ( a )  g m a x l / ( a b ) l  l / t  ] ( s )  ~- m a x l / ( a b ) l  l ~  ] ( A ' ) < s ( l [ ~ l [ + [ l / ] l ) ,  
s A A'  

where II/][ denotes the m a x i m um  of I/I- 
Conversely, assume tha t  there are infinitely m a n y  x such tha t  a x  = c for some 

a and c. Let  # and ~, be the unit  masses placed at a and x respectively. Then v -~ 0 
in the weak star topology as x tends to infinity, wbile/~v identically equals the 
unit  mass at  c. 

Let  S be a semigroup and recall the matr ix  representation (antirepresentation) 
of the preceding section. We now extend this to a representation (antirepresenta- 
tion) of the algebra of finite measures on S. To # we make correspond 

M = ~ ( ~ )  T(c).  
S 

[['he a, b th  element of M equals # ({c; ac  = b}) (# ({c; ca  = b})). I t  is immediate ly  
verified tha t  k M  corresponds to /c# for an arbi t rary  real constant  /c, M -~ 2V to 
# -~ v and M N ( N M )  to ,uv. Here 2( denotes the matr ix corresponding to u. 

4. lJomposition o~ independent random variables and Markov chains 

Let  xl ,  x2 . . . .  be a sequence of independent,  identically distr ibuted random 
variables taking their values in the (discrete) semigroup S and let ~ be their 
common probabi l i ty  distribution. (Given any  probabil i ty distribution we can in 
the usual way  construct  a suitable sample space and define a sequence of indepen- 
dent  random variables on it having the prescribed probabil i ty distribution.) 
Consider the partial products  

yn  = x l  xz  . .  . xn  , n = l ,  2 . . . . .  

I t  is a fact, basic to this paper, tha t  the sequence yl ,  y2, ... forms a discrete 
parameter  Markov chain with s ta t ionary transit ion probabilities. The Markov 
proper ty  is obvious from the relation 

yn  =- ( x l  x2 . . .  Xn 1) Xn = y n - l X n  

and the independence o f  y n - 1  and xn .  The one step transit ion probability,  i. e. the 
probabi l i ty  t ha t  Yn = b given tha t  Yn-1  = a, evidently equals 

~({c;  a c  = b}), 

and hence the transi t ion probabilities are stat ionary.  The transit ion matr ix  is 
s imply the matr ix  corresponding to ~ in the representat ion described in the 
previous section. The initial distribution of the Markov chain is {p ( a ) ; a  ~ S} 
(remember tha t  p (a) = ~ ({a})). 

6* 
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Changing left and right we can in an analogous way treat  the partial products 

Z n ~ X n . . . X 2 X l ~  • =  1 , 2 ,  . . . .  

The probability of going from a to b now equals 

~ ( { c ;  c a  = b} ) ,  

and the matrix of transition probabilities is identical with the matrix corres- 
ponding to ~ in the antirepresentation of the foregoing section. 

I t  is evident that  the case of non identically distributed random variables 
could be discussed in a similar way. However, the transition probabilities will 
then, in general, no longer be stationary. 

The idea of considering a sequence of partial products of independent random 
variables as a Markov process is by no means new. In  fact, many  of the classical 
examples of Markov chains are of the above type, in particular the card mixing 
process and the unrestricted random walk in one or several dimensions (see the 
books by FELLER, DOOB and CHUNG). In  the case of realvalued random Variables 
(the law of composition being ordinary addition) CHu~G uses the term chain with 
independent increments. The double formulation of the problem has been exploited 
repeatedly with a purpose opposite to ours, i. e. limit theorems for products of 
independent random variables, derived mostly by means of Fourier analysis, have 
been interpreted as limit theorems for the corresponding Markov process. This is so 
in the papers by KAWADA and IT5 (1940, separable compact groups), Vo~oBJov 
(1954, finite Abelian groups) and KLOSS (1959, compact groups). ROSE~BLATT 
(1960) and HEBL]~ and I~OSENBLATT (1963) use the Markov process connection in 
deriving the complete description of the idempotent measures on a compact 
semigroup and, in his book, GnE~ANDEa points out the possibility of deriving 
limit theorems on finite semigroups by borrowing results from the theory of 
Markov chains and considers a few examples. 

Having constructed the above two Markov chains - -  for simplicity they will 
be called the right and left chain respectively --  we can look upon an element 
(subset) of the semigroup also as a state (set of states) of any one of the two 
chains. The question arises as to what relations there are between the various 
concepts of the theory of Markov chains and those of the theory of semigroups. 
Further,  if a state has a certain property in the right chain, does it necessarily have 
the same property as a state of the left chain ? These two questions will be ans- 
wered below in the form of a dictionary. A series of statements in Markov chain 
language are given in the left column and the algebraic reformulations in the r ight  
one. The Markov chain terminology is taken from FELLEn/S second edition. 

4.1. T is the minimal state space o] T is the semigroup generated by the 
the right (felt) chain, support o/~. 

Since the probability distribution of y~.(z~), n -  1, 2 . . . . .  equals zn the 
o o  o o  

minimal state space is U c (an) = (,.J (C (7~))n and this is precisely the semigroup 
n=l n = l  

generated by the support of ~. 
From now on we will assume that  the support of 7e generates the whole of S. 

This will simplify the formulations of our theorems a lot and evidently implies no 
essential restriction of generality. In  Markov chain terms this means that  if the 
state space is not minimal from the beginning we replace it by the minimal one. 
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4.2. The state a leads to b in the right b is divisible to the left (right) by a. 
(left) chain. 

pn(a,  b) > 0 if and only if there exists x ~ C(~ n) such tha t  ax  = b. Thus a 
c o  

leads to b if and only if a x  = b for some x ~ ~ J C ( ~  n) = S. 

4.3. R is a closed set o/ states in the R is a right (left) ideal. 
right (le/t) chain. 

The set of  states tha t  can be reached from R in n steps equals RC(~n) .  Thus 
no state outside R can be reached from R if and only if 

R o [ , . J R C ( ~ n ) =  R C(~n = R S .  
n = l  

The following theorems are now obvious. 
4.4. 17 is a minimal  closed set in the 17 is a minimal  right (left) ideal. 

right (leJt) chain. 
4.5. R is" the closure o / E  in the right R is the right (le/t) ideal generated 

(le/t) chain, by E. 
4.6. The closure o/ a set o/states E The right ideal generated by E equals 

in the right (le/t) chain is the set o /a l l  E to E S. 
states that can be reached/rein it (includ- 
ing E ). 

A class in a 1V[arkov chain is an equivalence class with respect to the equi- 
valence relation ~ ,  where a ~ b if and only if a communicates  with b or a = b 
(see CHu~a's  book). F rom what  we have proved above it follows that ,  in the r ight  
(left) chain, this means precisely tha t  a and b are r ight (left) ideal equivalent  and 
hence the following correspondence is proved. 

4.7. R is a class in the right (left) R is a right (left) ideal layer. 
chain. 

Since an essential class in the r ight  (left) chain is the same as a minimal closed 
set, the algebraic translation is again minimal r ight (left) ideal, and a state is essen- 
tial if and only if it is contained in a minimal r ight (left) ideal. Thus the following 
theorem holds (since its algebraic reformulation is true), making clear the relation 
between the properties of being essential in the r ight  and left chain respectively 

4.8. I /  there exist essential states in I / there  exist both minimal  right and 
both the right and the left chain, the es- minimal  le/t ideals, the union o/ the 
sential states in the two chains are the /ormer equals the union el the latter (and 
same. is, in ]act, the completely simple minimal  

twosided ideal). 

The following example, a modification of one given by  STEFAN SCHWAIgZ, 
shows tha t  i t  m a y  happen tha t  there are essential states in one chain al though 
there are none in the other. We have to construct  a denumerable semigroup 
possessing a minimal r ight (left) ideal but  no minimal left (right) ideal. Let  
S = {a, b . . . .  } be the set of polygonal  lines of  the form 

t ~ rm_ I s ~ - i  + - -  (s~ - -  s~- l )  if r ~ - i  < t < r,~, 
f m  - -  T i n - 1  

a(t) = m = 1,2 . . . . .  n 

sn @ t --  rn "ff t >: rn 
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where O = r 0 < r : < ' " < r n  and O < s 0  < 8 : < ' " < s n  are all rational, 
n = O, 1 , . . . ,  multiplication being the ordinary composition of functions. S is 
itself the unique minimal left ideal, since for every b and c the equation xb = c 
is solvable. A suitable solution is 

{c(b- i ( t ) )  ) if  b ( O ) ~ t < + o o  
X (t)  = c (0) t 

~ -  l + b ~ O  7 if O<_t<_b(O) 

However, S can not contain a mininlal right ideal as tha t  would imply complete 
simplicity and hence the existence of an idempotent.  For e ~ = e implies in 
particular e (e (0)) = e (0), contradicting the fact that  e is strictly increasing and 

e (0) > 0. 
The next two theorems show that  a state is persistent, persistent null or 

transient in one chain if and only if it is in the other so that  we may  unambiguously 
use these terms without reference to left and right. 

4.9. The state b is persistent (transient) 2~n({b})  = @ o o ( <  + oo). 
in the right (left) chain. ~ = : 

Find an m such tha t  b G C(zm),  i. e. pro(b) > 0. From the relation (n => m) 
~n({b}) ----- ~ a p m ( a ) p n - m ( a ,  b) ~ p m ( b ) p n - m ( b ,  b) 

o o  

it is evident tha t  the divergence of ~ p n ( b ,  b) implies that  of ~ ~zn({b}) .  (We 
~ = 0  n = l  o o  

define pO(a, b) ---- 1 if a = b  and 0 ff a * b . )  Assume instead tha t  ~ p n ( b , b )  
n = 0  

converges. Using the fact that  (see p. 21 in C~u~G's book) 
o o  o o  

~ ( a ,  b) = h(a, b ) ~ ( b ,  b) 
n = 0  n = 0  

where h(a, b) is the probability that  b will ever be reached from a, a 4= b, and 
h(b, b) =- 1 we find 

~ 1  ~ % = 1  
o o  o o  

= ~ a p ( a ) ~ p n ( a ,  b) = ~.pn(b,  b ) ~  ap(a)h(a ,  b) 
n = 0  n ~ 0  

o o  

=< 7 p ~ ( b , b ) .  
n = 0  

o o  

Hence ~ xn ({b}) converges and we arc finished. 
n = l  

o o  

4.10. b is a per,istent null state in ~ 7~ n ({b})---- + oo but 
the right (felt) chain, n = : 

~ ({b}) -+ 0 as n -+ oo. 
From the first formula of the preceding proof it follows tha t  ~n ({b}) -+ 0 

implies tha t  pn (b, b) ---> 0 as n -+ oo. Conversely, ff b is null pu (a, b) -+ 0 for all 
a and thus so does 

~ ({b}) = ~ ~p (a )p ' -~  (a, b). 

4.11. {s (c) ; c e S}  is a stationary a = a ~ (a = 7~ a).  
distribution o/ the  right (le/t) chain. 
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This follows from the relations 

~({c})  = s ( e ) ,  

= = Z .  s (a )  
{(a,b); ab =c} {b; ab =c} 

= ~ ~ s (a) p (a, c ) ,  

where c ~ S is arbitrary.  
There remains the question whether a state necessarily has the same period in 

the two chains. I t  is trivially seen tha t  it m a y  happen tha t  the period is undefined 
in both  chains or defined in one of them but  undefined in the other. The following 
example, due to HE~RIK EnIKSSO~, shows tha t  the r ight and left period m a y  be 
both  defined and ye t  unequal.  Take S =- {0, 

0 a b 

a, b, c, 1 } with the multiplication table 

c 1 
0 0 0 0 0 0 
a 0 0 0 b a 
b O 0  O a b  
c 0 a b 1 c 
1 0 a b c 1 

and choose a probabil i ty distribution with the support  {a, e}. Then the support  
generates the whole semigroup and the period of  a in the r ight chain is two, while 
it is one in the left chain. However,  we shall mainly be interested in the period of 
persistent non null states, and the following theorem is accordingly more than  
sufficient for our purposes. 

4.12. Let a be a regular element. Then the period d o / a  in the right (leJt) chain 
is the largest integer with the property that the integers n such that a e C (7~ n) diger 
only be multiples o /d .  I n  particular, a state which is essential in both chains, e. g. 
a persistent state, has the same period in the right chain as in the le]t one. 

We first show tha t  the largest integer with the proper ty  tha t  the values of  n 
such tha t  a ~ C (nn) differ only by  multiples of it, is a divisor of  d. For  this par t  of 
the proof  we need not  assume a to be regular. I n  fact, choose r such tha t  a ~ C (~r). 
Then pn (a, a) > O, i. e. a ~ a (~(7~n), implies a e C (7c r) C (z~ n) -- C (y~r+n) from which 
the assertion follows. Conversely, assume tha t  a is regular and choose x such tha t  
a = axa .  Since x ~ C(z~ r) for some r, a ~  C(z~ m) r~ C(ze n) implies a ~aC(z~ r+m) 
fh a C ( ~  r+n) and so r @ m and r -[- n are both  multiples o fd .  Hence, so is n - -  m 
= (r q- n) - -  (r q- m). The last par t  of the theorem follows from the fact  t ha t  a 
state which is essential in both  chains, e. g. a persistent state, is contained in the 
completely simple semigroup of all essential states and hence regular. 

The condition of  regulari ty is, of course, not  necessary as can be seen from the 
following example. Pu t  S =- {0, a, 1}, define multiplication by  

0 a 1 
0 0 0 0 
a 0 0 a 
1 0 a 1 

and choose a probabil i ty distr ibution with the whole of S as its support.  Then the 
r ight and left period both equal one, a l though a is not  regular. 



8 8  PER M_~RTIN-L6F: 

The following theorem contains the basic facts we need for the proof of the 
main limit theorem of the following section. 

4.13. I /  there exist essential states in  both chains, e .g .  persistent states, all 

essential states have the same period. I / t h e r e  exist persistent  states, they are either all 

nul l  or all non nul l  and there are no essential transient states. 

Suppose that there are essential states in both chains. Then, ff not empty, the 
set of all essential states having a certain period, being closed in both the right and 
the left chain, is a twosided ideal contained in the minimal twosided ideal of all 
essential states and hence equals it. The same reasoning applies to the set of all 
persistent states and the set of all persistent null states. 

The unsymmetrical random walk shows that, in case there are no persistent 
states, there may very well exist essential transient states. In fact, let S be the 
group of integers under addition and define a by 

I 
p if a = l  

p ( a ) =  1 - - p  if a = : - - I  

0 if a . 1 , - - 1  

where p :~ 0, 1/2, 1. Then the support of a generates the whole of S and all states 
are both essential and transient. 

We finally remark that, although it would be unnatural, we could prove well- 
known theorems on semigroups using the ideas of this section. To exemplify this 
let us prove that  a finite semigroup has at least one minimal right (left) ideal. 
Choose a probability distribution the support of which generates the whole 
semigroup and consider the right (left) associated chain. Since there are only a 
finite number of states not all of them can be transient and the persistent ones 
may be divided into minimal closed sets, i. e. minimal right (left) ideals. 

5. The main limit theorem 

The object of this section is to give a complete description of the behaviour of 
a n as n --> oo. We begin with the following lemma of independent interest, proved 
for a compact semigroup by gOSENBLATT (1960) (cf. GI~ENAm)E~'S book, where 
a heuristic version of the proof is given). 

5.1. I]  I is a twosided ideal 
a "  (I)  -~  1 

as n ---~ c~. 
Retaining the notations of the previous section, Yn ~ I evidently implies 

yn+l = ynxn+l  e I and hence a n + l ( I )  ~ a n ( I ) ,  n ---- 1, 2, . . . .  Now choose m so 
that  C(a m) rh I .  0, i. e. a m ( l )  ~. O. From the decomposition 

y~n  = (xl " " Xm) " " (X~m-m~, 1"'" X~m) 

and the fact that  as soon as one of the blocks belongs to I so does the whole 
product it follows that 

1 >~ a ~ m  ( I )  ~ 1 - -  (1 - -  a m ( I ) ) ~  -> 1 

a s  ]~ --~ o o .  

Let a be an arbitrary element of a (discrete) semigroup and consider the 
sequence of its powers, a, ae, ..., a n, . . . .  
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Two th ings  can happen ,  e i ther  t h e y  are all  d i s t inc t  or else there  are h ~- d - -  1 
different  ones, 

a~ . . . ~ a h - l  , a h ,  . . . , a h + d - 1 ,  

where ah+a - -  a h and  {aa, aa+l  . . . . .  a ~+~-1} is ( isomorphic to) a cyclic group of  

order  d. 
This  m a y  be in t e rp re t ed  as a l imi t  theorem for the  p robab i l i t y  d i s t r ibu t ion  

t h a t  assigns mass  one to  the  po in t  a. W e  have  seen tha t ,  in the  l imit ,  the  p r o b a b i l i t y  
mass  e i ther  escapes to  inf in i ty  or j umps  round  cyclically.  The following theorem 
shows t h a t  the  behav iour  of an  a r b i t r a r y  p robab i l i t y  d i s t r ibu t ion  is essent ia l ly  
the  same. 

5.2. A s  n -> oo either 
$-~ n - ~  0 

vaguely or else there is a natural  number  d such that 

7 ~ n d + r - - > f f r ,  r - -  ] , 2 , . . . , d ,  

weakly where a l ,  ae, . . . ,  aa have disjoint  supports and 

(7 r 7g I 7g f i r  = a r + l  (rood d ) ,  (Yr a s  - - -  f i r - s  (rood d) �9 

Suppose  first t h a t  all  s ta tes  of the  associa ted Markov  chain are t r ans ien t  or 
pers i s ten t  null.  Then,  as we have  shown in the  previous  section, zn  ({a}) -+ 0 for 
eve ry  a e S, i. e. ~n _+ 0 vaguely.  

There  remains  to see wha t  happens  when there  are  non null  pers i s ten t  s tates .  
I n  this  case the  theorems  4.13 and  4.8 tel l  us t h a t  the  pers is ten t  s ta tes  are all non 
null  and  all have  the  same period,  d, and  t h a t  t h e y  form the  (completely)  s imple 
min ima l  twos ided  ideal,  I .  By  the  l emma  which we have  jus t  proved,  7~ n (I)  -+  1 
as n -+  co, i. e. the  p robab i l i t y  of  remain ing  for ever  in the  t rans ien t  s ta tes  is zero. 
These facts  show first ly t h a t  no p robab i l i t y  mass  can escape to inf ini ty  and  
secondly,  since 

~ n d + r  ( { b } )  = ~ a P ( a ) p n d + f - l (  a ,  b ) ,  

t h a t  ~nd+r converges vague ly  as n --~ 0% r = 1, 2, . . . ,  d. Hence  the convergence is, 
as a m a t t e r  of fact ,  weak.  The  las t  two formulas  of  the  theorem are now obvious 
consequences of  the  weak  con t inu i ty  of the  convolut ion  operat ion.  I t  remains  to  
show t h a t  the  l imi t  d i s t r ibu t ions  have  d is jo in t  suppor ts .  Suppose t h a t  a ~ C(ar)  
(~ C(as).  Then  there  exis t  m and  n such t h a t  a c C ( z  ma+r) n C ( z  nd+s) and  hence, 
according to t heo rem 4.12, r = s. 

The theorem we have  jus t  p roved  has the  following i m m e d i a t e  corol lary,  
p roved  for a compac t  semigroup b y  ROSENBLATT (1960) and  for a local ly  compac t  
group b y  G~E~ANDER (p. 59 in iris book).  

5.3. The  C~saro m~an 
1 ~- (~ § z~2 § . . .  § ~ )  

converges as n --> c~, either vaguely to zero or weakly  to an idempotent  measure a 

such that 
a 7~ -~- :Tin = a 2 = a .  
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The proof is contained in the following lines, letting k denote the integral part  
of n/d, 

1 ~_ (~ + ~2 + . . .  + ~,,) 

__ kdn dl (7~ ~_ . . .  ~_ ~(k_l)d+l) _}_ . . .  @ T (7~g + . . .  @ ~kd) -~ 

-4-n-1 (gzkd+ 1 ~ - ' ' "  -~ y~n) __> d (ffl -~ 0"2 @ "'" -~ (Yd) 

Alternatively, we could have applied directly the corresponding Markov chain 
theorem. 

6. Idempotent measures 

In  the present section we proceed to give an algebraic description of the 
idempotent probabili ty measures. Maybe it is not out of place to recapitulate 
briefly the literature on this subject. L~vY (1939) determined all idempotents 
(real and complex) on the circle group and his results have been rediscovered, in 
the case of probabili ty measures, by  KAKEHASHI (1949) and, in the general case, 
by  HELSON (1953). This line of investigation was carried on by RuDn~ (1959) and 
completed by  COEE~ (1960), who determined all idempotents on a general locally 
compact Abelian group. On a compact, not necessarily commutative,  group the 
idempotent probability distributions were described by  KAWADA and IT5 (1940) 
and their result has been rederived (without their separability assumption) in 
almost all papers on the subject. In  the case of probabili ty measures on a compact 
semigroup partial results have been obtained (round 1960) by  a large number of 
authors. The complete solution was found by PYM (1962) and ttEBLE and 
ROSE~ZLATT (1963) We are now able to do without the compactness condition, 
still assuming, however, tha t  our semigroup is discrete. 

6.1. The support o] an idempotent probability measure, ~, is a completely simple 
semigroup such that the (isomorphic) groups Gi,j ~- R~Lj = Rt ~ Lj in its group 
decomposition are finite. Letting (~i, j denote the normed Haar measure over Gi,j we 
have, with ~ (Rl) -~ t~ and 7e (Lj) : ul, 

~ =  ~ i , j t l u s ( ~ , ~ ,  ~ i t i =  ~ i u j  = 1 .  

Conversely, any measure o/ th is  type is idempotent. 
Suppose that  ~r is idempotent. Then ~n - -  ~r for all natural  n and, in particular, 

~n _+ ~ as n --+ oo. Hence, all states of the associated chain are persistent (non 
null), so that  the support of z is a completely simple semigroup. Let  us restrict 
our attention to an arbi trary fixed minimal right ideal Ri, i. e. an irreducible closed 
set in the right chain. A theorem of DERMAN (see p. 50 in CHU~G'S book) tells us 
tha t  the stationary distribution equations 

s(c) = ~ ~ s (a)p(a ,  c) 
R~ 

admit  of a unique (up to a multiplicative constant) non negative solution. Let  us 
show that  

s (a )=Tc(L j )  ff a ~ G l , j  
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is one such solution. Suppose that  c e Gi, ~. Then 

~ a S ( a ) p ( a , c )  = ~ y ~ ( L j )  ~ a  ~ bP(b) 
R~ G~,j { b ; a b = c }  

= b p ( b )  o i =  (Li) = s ( c ) ,  
JL~ G~,jN{a; a b = c }  

since for every c ~ G~, z and b e L1 there exists exactly one a ~ G~, i such that  
ab = e. On the other hand, due to the idempotence of 7~, the restriction o f p  to R~ 
also satisfies the equations above. From this we conclude, firstly, that  the groups 
Gi,i are finite and, secondly, that  the restriction o f z  to R/equals z (R~) ~ 3" 7~ (Li) a~, j. 

The last assertion of the theorem follows from the relation 

( T i , j ( r k ,  l = (Ti, l~ 

which is an immediate corollary to the fact, used previously in the proof, that  to 
every c e Gi, ~ and b c Gk, 1 there exists exactly one a E G~,j such that  ab = c. 

We could just as well, in accordance with ROSENBLATT and PYM, formulate our 
theorem in terms of the REEs structure theorem. In fact, we have shown that  the 
support of an idempotent probability measure z is isomorphic with a R~Es 
matrix semigroup G • I • J over a finite group G (I  and J can of course be at 
most denumerable). Further 

~ d X T X v ,  

where o'is the normalized Haar measure over g and ~ and v are probability measures 
on I and J respectively. Conversely, any such measure is idempotent. 

In  the commutative case the theorem takes the following form. 
6.2. A n  idempotent probability measure on a commutative semigroup is the 

normed Haar measure on a finite subgroup and conversely. 
PYM (1962) and LOYNES (1963) have proved that  the idempotent probability 

measures on a locally compact group are precisely the Haar measures on compact 
subgroups. In  the discrete case a simple direct proof of this fact has been given 
by RUDI~ (1963). We deduce it as a corollary to the theorem above. 

6.3. A n  idempotent probability measure on a group is the normed Haar measure 
on a finite subgroup and conversely. 

We know a]ready that the support is a completely simple semigroup such that  
the groups in its group decomposition are finite. However, since a group does not 
contain more than one idempotent (namely the identity element), there is only 
one group in the group decomposition. 

7. The semigroup of probability measures and the structure of its subgroups 

We have already proved that the convolution of two probability measures is 
again a probability measure and that  the convolution operation is associative 
(provided the underlying algebraic structure is a semigroup) and jointly continuous 
in the weak topology. This can be expressed by saying that the set of all probability 
measures is a topological semigroup. I t  has been studied from an algebraic point 
of view in a series of papers (mostly assuming that the underlying structure is a 
compact semigroup). Typical exponents of this line of investigation are WENDEL 
(1954), SChWArtz (1957, 1963), GLICKS~ERG (1959), COLLINS (1960, 1961) and 
COLLINS and Koc~ (1962). Results in this spirit may be obtained as reformulations 
and corollaries of many of the theorems of this paper. 
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One problem that has attracted attention is to determine the structure of a 
group of measures, see GLICKSBElCG (1959, compact groups and compact Abelian 
semigroups, and 1961, compact Abelian separately continuous semigroups), 
COLLINS {1962, compact semigroups), KLOSS (1962, locally compact groups 
representable in compact ones) and SCRWARZ (1963, finite semigroups). We have 
already met one such group, namely the set of all weak limit points of the sequence 
7~, z2 . . . . .  In  fact, in theorem 5.2 we proved that (if non empty) it was isomorphic 
to a finite cyclic group. The problem will now be solved in the discrete case, 
assuming neither compactness nor the group property. First we introduce the 
following concept. I f  F is a set of measures (on a discrete space), the support o f / ' ,  
C(F) ,  is the union of the supports of all measures contained in/~. 

7.1. Let 1" be a group o/probabil i ty measures on a discrete semigroup and let s be 
its identity element. Then C(F) = G • I • J is a completely simple semigroup and 
C(s) = H )< I •  a completely simple subsemigroup. Here H is a finite normal 
subgroup o/ G. The elements o / I "  are o / t h e / o r m  v • w • v, where w and v are fixed 
probability measures over I and J respectively and ~ is the uni]orm distribution over 

a coset o / H ,  i. e. the Haar measure over H translated. 
s is idempotent and hence 

C(e) = [,.J~ Ri : ~ .J jL j  : ~.Ji,jH~,1 = H • I • J 

is a completely simple semigroup. 

(C (F))~ = C (F ~) = C (F), 

so that C(F)  is a semigroup, and 

c ( r )  = C(~ F) = C(~) C(F) = (.Ji R~ C(F) .  

R/C(F)  is obviously a right ideal of C(F) .  I f  we can prove that  it is minimal, it 
will follow (since we can prove analogously that  C (F)L I is a minimal left ideal) 
tha t  C(F)  is completely simple. 

Take a e R/C (F). Then a ~ Ri C (7~) for some :~ in F. Consequently 

a C (~-1) c Ri C (~) C (7~ -1) = Ri C (~ ~-1) = Rt C (e) = R~, 
and 

a C (7~ -1) C (e) = a C (~-1 e) = a C ( : r l ) ,  

so that a C ( z r  1) is a right ideal in C(e) contained in the minimal right ideal Ri, 
whence a C (:~-1) = Ri. Finally, 

a C ( F )  = a C (:7~ - 1  / I~) = a C ( : r  1) C (F) = Ri C (F) ,  

and the minimality of Ri C (F) is proved. 
The groups in the group decomposition of C (_P) are Gi, j = R/C (/~) C (/~) L I 

o R I C ( e ) L j  = R i L j  = H~,j with i in I and j in J.  Recalling how the represen- 
tation of a completely simple semigroup as a I~]~ES matrix semigroup is constructed 
(see the book by LJAPIN, p. 281), we find that 

C(I ' )  : G • I • J ,  

where G is a group containing H as a subgroup and the sandwich matrix defining 
the multiplication in G • I • J may be chosen as the one corresponding to 
C(s) = H • I • J .  In  particular the elements of it belong to H, which is also 
necessary since H • I • J is a subsemigroup of G • I • J .  
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Le t  ~ be an a r b i t r a r y  e lement  o f / ~  and  choose (g, i, j )  in C (~r). Then 

H g H  • I • J = (H • I • J )  (g, i , j )  (H • I • J)  c C(e) C(z 0 C(s) = C(n) 

and  hence C (70 = A • I • J 

where A H  = H A  = A.  Likewise 

C ( z  -1) = B • I • J 
wi th  B H = H B = B ,  and 

A B  • I • J = C(zOC(z~ -1) = C(e) = H X [ X J .  

This  can no t  hold  unless A is a r igh t  and  B = A-1  a left  coset of H.  Changing the 
order  of mul t ip l i ca t ion  we find t h a t  A is also a left  coset of H, and,  since any  po in t  
of  G is conta ined  in the  pro jec t ion  of  C(z)  for some ~ i n / ' ,  i t  follows t h a t  H is 
normal .  

I t  r emains  to  show t h a t  ~ = v X r • v where v is the  un i form d i s t r ibu t ion  over  
a coset of  H.  W e  know a l r eady  t h a t  this  is t rue  for s. Le t  m be the  mass  t h a t  the  
no rmed  H a a r  measure  over  H a t t r i bu te s  to each of  i ts  points .  F r o m  z = s ~  i t  
follows tha t ,  le t t ing  c = (g, i, j )  be an  a r b i t r a r y  po in t  of  C (Jr), 

p ( c )  = = 

{(a,b); ab = c}  Hi ,w(3 {a; ab = c} 

= ~kmt~ukz(G X I x { j } )  = mt, s(G X I x { j } ) .  
Dual ly ,  

wheref rom we conclude t h a t  

The  proof  is finished. 

p (c) ---- mz~(G X {i} X J )  u j ,  

p (c) = m t~ u j .  

8. Necessary and sufficient convergence conditions 

The  theorem of  the  previous  sect ion allows us to  give necessary and  sufficient 
condi t ions  for the  convergence (weak and  vague) of 7~ n as n --> oo. We shall  see 
t h a t  the  l imi t  behav iour  is comple te ly  de t e rmined  b y  the  suppor t  and  the  alge- 
braic  p roper t ies  of the  semigroup.  I n  the  case of  a compac t  group the  solut ion 
was essent ia l ly  given a l r eady  b y  KAWADA and  ITS (1940) and  since then  i t  has  
been reder ived  in a lmos t  all  papers  on the  subject ,  using Four ie r  ana ly t ic  as well 
as a lgebra ic  methods .  Recent ly ,  ROSENBLATT (1964) has se t t led  the  problem on 
an  a r b i t r a r y  compac t  semigroup.  

8.1. ~n __> 0 vaguely as n - +  oo i /  and only i] the semigroup generated by the 
support o/ 7r does not posess a completely simple min imal  twosided ideal with finite 
groups in  its group decomposition. 

W e  know a l ready  f rom section 5 and  6 t h a t  the  condi t ion  is sufficient. 
Conversely,  assume t h a t  the  semigroup genera ted  b y  the  suppor t  of 7~ contains  

the completely simple minimal twosiaed ideal K = U , R ,  = ( J j i j  = U , , J  G ,j, 
where Gi,j  is finite. According to  theorem 5.1. we can find m such t h a t  ~m (K) 
> l - -  s and  then  

((0 (0 It 7c m Ri  • L j  > 1 - -  e 
\ \ i  = 1 / ~] = 1 / /  
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for sufficiently large r and s. Hence, if n ~= m, 

(,__01) (0/  ~n R~ ~ m  R~ > l - - s  
\i = i / 

and 

so tha t  

Since 

oo,,, 
U=I  / i=1 i=1 

is finite, this means tha t  the sequence zr, ~2 . . . .  is weakly conditionally compact,  
i. e. no probabil i ty mass escapes to infinity. 

8.2. zr n converges weakly as n -~ oo i / a n d  only i /  the semigroup generated by 
the support o/7r posesses a completely simple min imal  twosided ideal G x I x J with 

G finite, which contains no subsemigroup H • I x J ,  H being a proper normal 

subgroup o/ G, such that 
C(;r) (H x I x J )  c g H  x I x J 

/or some g outside H.  
Suppose tha t  ~n does not  converge weakly. Then either u n -+ 0 vaguely,  in 

which case we use the previous theorem, or else there is an integer d > 1 such tha t  

~ng+r _+ dr, r ---- 1 , . . . ,  d ,  

where d 
U c(o-r) = G x  I x  J,  

G being finite, is the completely simple minimal twosided ideal of the semigroup 
generated by the support  of ~. a~ is the ident i ty  element of  the group of  limit 
distributions. Hence, by  theorem 7.1, G x I x J has the subsemigroup 

C ( ~ )  = H x I x J ,  

where H is a proper normal  subgroup of G. F rom theorem 5.2 and 7.1 we conclude 

tha t  
C(z )  (H x I x J )  = C(z)C((~g) = C(~(~d) = C((~1) = g H  x I x J 

for a suitable g outside H. 
Conversely, 

C(z)  (H X l x  J)  c g H  X I x J 
implies 

C(Te n) n ( G x I x J )  c C ( ~  n ) ( H X I X J ) c C ( z  n - 1 ) ( g H X I X J ) c ' ' ' c g n H  • I x  J ,  

which, together  with the fact  t ha t  ~ n ( G •  1, shows tha t  $~n does not  
converge weakly as n -+ oo. 

9. Infinitely divisible distributions 

A probabil i ty distribution 7r is said to be infinitely divisible if, for every natural  
number  n, there exists a probabil i ty distr ibution ~n such tha t  

~t 
7 C = 7 ~  n . 
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Par t icular ly  impor tan t  infinitely divisible distributions are the compound 
Poisson distributions. Such a distr ibution is of  the form 

( ) - - ~  -cC~@ ~ c c2 ee + . . . .  
e -c e §  + 2 !  k~0 e k! ' 

where c is a positive number,  s : @0 an idempotent  probabil i ty measure and @ 
a probabil i ty distr ibution such tha t  

@ e : e @ : @ .  

The last condition assures us t ha t  
@m @n : @m+n 

for all m, n ~ 0. Using this it is immediate  t ha t  the distribution above is infinitely 
divisible. I n  fact, an n t h  root  is obtained by  replacing c by  c/n. 

A basic question is whether,  conversely, an infinitely divisible distribution is 
necessarily a compound Poisson one. This is known to be so in the classical eases 
when the semigroup under  consideration is the set of  non negative integers under  
addit ion (see FELLER'S book) or the whole integer group. VOROBJOV (1954) 
obtained the same result by  means of Fourier analysis for an arbi t rary  finite 
Abelian group and BSa~ (1959), using quite different methods,  removed the 
commuta t iv i ty  assumption. 

One might  th ink tha t  t ha t  the same result would hold for an arbi t rary  discrete 
semigroup. Tha t  this is not  so even for a commutat ive  group is shown by  the 
following example. 

Consider the set of all rat ional numbers  under  addit ion and let z be the point  
mass at  1. Then, for every natural  number  n, the point  mass at  1/n is the unique 
probabil i ty measure ~n satisfying the definition of  infinite divisibility. However,  

is not  a compound Poisson distribution since such a distribution can not  be 
degenerate except at  0. 

I t  does not  seem to be known at present what  the appropriate  conditions are 
t ha t  should be imposed to avoid the pathologies exhibited in this example. 

I n  the rest of  this section we restrict our a t tent ion to finite (i. e. compact  
discrete) semigroups. We shall show tha t  an infinitely divisible distribution is then 
necessarily compound Poisson, thus generalising the result of  B6GE to the non 
group case. The following lemma will be needed. 

9.1. A n  infinitely divisible distribution on a finite semigroup has, /or each n, 

at least one infinitely divisible n t h  root. 
The proof  is wellknown, see VOROBJOV (1954) and KLoss (1961, 1962), and 

works just  as well on an arb i t rary  compact  semigroup. Let  Zm be an ruth root, 
m = 1, 2, . . . .  An infinitely divisible n t h  root  m a y  then be chosen as a limit point  
of  the sequence 

Y~m.n, m --  1,2, . . . .  

Following KLoss  (1961) we now imbed our infinitely divisible distribution 7~ 
in a rational parameter  homogeneous process, i .e .  we construct  a family of  
probabil i ty measures zet, t > 0 rational, such tha t  

2"g 8 2"t: t ~ g t ; s +  t 

for all s, t > 0, and z l  = z.  
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According  to the  l emma  we can find a sequence of inf ini te ly  divisible distr i-  
but ions  @i, ~2 . . . .  such t h a t  @~ = ~z, @~ = @2, -.- �9 W e  pu t  for t = p/q with  p and  q 
na tura l ,  

7~t ~ ~ k  , 

which is a permissable  definit ion.  The equat ion  above  is easily seen to  be satisfied 

a n d ~ l = @ ~ ! = ~ .  
We shall  now (and this  is the  clue) show t h a t  ~t  converges as t - +  0. Le t  

/~ = l im ~s~ and  v = l im ~t~ be two a r b i t r a r y  l imi t  points .  W e  m a y  suppose t h a t  
i--+oo i-+oo 

si < t, for all  i. F r o m  the  re la t ion  

2"t8~ $'gt~--8~ ~-- 7gt~--S~ $-gS~ ~ 7gti 

i t  follows t h a t  the  equat ions  

are solvable.  I n  fact ,  ~ m a y  be chosen as a l imi t  po in t  of  the  sequence ~h-s, ,  
i = 1, 2 . . . . .  This means  t h a t  the  set of all l imi t  d i s t r ibu t ions  is a (commutat ive)  
group. By  theorem 7.1 i t  is even finite (because of  the  finiteness of  the  semigroup 
under  considerat ion).  Le t  n be the  order  of  i t  and  ~ a l imi t  po in t  of  the  sequence 
~s,/n, i = 1, 2, . . . .  Since ~,, = ~, /n for every  i, 

/ s  

where e denotes  the  un i t  e lement  of  the  group. Consequent ly  e is the  only l imi t  
d i s t r ibu t ion ,  i. e. ~t --~ e as t --> O. 

W e  could now, following B6G~, d i rec t ly  finish the  proof  t h a t  x is a compound  
Poisson d is t r ibut ion .  Al t e rna t ive ly ,  we can first  show t h a t  ~t, now defined mere ly  
for posi t ive  r a t iona l  t, m a y  be cont inuous ly  ex tended  to all  non negat ive  real  t and  
then  a p p l y  the  resul ts  of  the  following section. 

Le t  t and  h denote  posi t ive  ra t iona l  numbers .  We  know t h a t  l ira 7~h exists.  Bu t  
h-~O 

then  ( remember  t h a t  all t ypes  of  convergence are equ iva len t  on a finite set) 

and  

as h --> 0. Hence,  b y  cont inui ty ,  ~t  m a y  be ex tended  to all non negat ive  real  t, 
and  the  extension is continuous.  The proof  of  the  following theorem is finished. 

9.2. A probability measure on a finite semigroup is infinitely divisible i /and only 
iJ it is a compound Poisson distribution. 

19. Homogeneous stochastic processes 
I n  this  sect ion we shall  s tudy  the  cont inuous  analogue of the  composi t ion  of 

independen t  r andom variables ,  i . e .  the  homogeneous  s tochast ic  processes. B y  
such a process we mean  a fami ly  of  p robab i l i t y  d i s t r ibu t ions  7~t, t > 0, wi th  the  
p r o p e r t y  

7gS 7g t ~ 2"g8+ t 
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for all real s, t > 0. I t  is said to be continuous if as -~ Y~t as 8 ---> t for all t > 0. 
at  is physically interpreted as the probabil i ty distr ibution of the increment of  the 
process over a t ime interval  of  length t. The equation above then states t ha t  the 
increments of the process over successive t ime intervals are independent.  

Jus t  as we in the foregoing sections used the theory  of  discrete parameter  
Markov chains, we can now borrow results from the continuous parameter  ease. 
Let  Pt  be the matr ix  corresponding to z~t in the representation of section 3, i. e. 

p t ( c t ,  b) = ~t({C;  a c  = b}) = ~ c P t ( e ) .  
{c; ac = b} 

Being stochastic and satisfying the Chapman-Kolmogorov  equation 

Ps Pt  = Ps+t, s, t > O , 

P t ,  t > 0, is a transit ion matrix.  

10.1. Let z t ,  t > O, be a continuous homogeneous process. Then the support o[ 
~t is independent o/ t. 

We note firstly t ha t  Q J t C ( z t )  is denumerable since it suffices to extend the 
union over the denumcrable set of positive rational numbers.  Secondly, being an 
at  mos t  denumerable sum of continuous functions, Pt (a, b) is a measurable (in 
fact, lower semicontinuous) function of  t for each a and b. Hence pt(a,  b) is either 
identically zero or never zero (see CHV~G'S book, p. 121). I n  particular, so is 
Pt (a) = pt (1, a), where 1 is the ident i ty  element (if there was no ident i ty  element 
f rom the beginning we could have adjoined one). 

I n  case the semigroup under  consideration is denumerable the cont inui ty  
assumption m a y  be replaced by  the seemingly weaker condition tha t  Pt (a) is a 
measurable funct ion of t for each a (see p. 121 in CRU~G'S book). I n  the non 
denumerable case this is no longer true. Consider for example the real line with 
the discrete topology and let ~t be the point  mass at  t. Then 

1 if t = a  

pt(a)  = 0 if t 4=a 

so tha t  measurabil i ty though not  cont inui ty  holds. 
When  the semigroup is denumerable more effort is needed to construct  a non 

continuous process since it is then not  even measurable. However,  consider the 
commuta t ive  group of rational numbers  under  addition. I t  is known tha t  there 
exists a non trivial rat ional  valued function [ such tha t  

/ (s)  + /(t)  = / (s  + t),  - -  oo < s ,  t < + o ~ .  

This result goes back to I-IA•EL (for a proof see p. 259 in CH~J~G'S book). The 
desired non measurable process is obtained by  letting z~t be the point  mass at  
](t) for each t > 0. 

10.2. A homogeneous process on a finite semigroup is continuous. 
This follows from the corresponding Markov chain theorem due to ])OEBLIN 

(1938). (The reference is found in CI~UNG's book. I am indebted to him for pointing 
it out  to me.) Alternatively,  we could have proved the theorem directly, repeating 
almost  word for word the a rgument  in the previous section. 

We ~urn to the s tudy  of  the behaviour  o f z t  as t -~ c~. The situation is somewhat  
simpler than  the discrete t ime case since the probabil i ty mass can no longer jump 
round cyclically. 

Z. Wahrscheinlichkeitstheorie, Bd. 4 7 
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10.3. Let 7~t, t ~ 0, be a continuous homogeneous process. As  t ~ oo z t  converges, 
either vaguely to zero or weakly to an idempotent measure (~ such that 

(~ 2"~ t ~ 2"~t (7 ~ ( 7 .  

The corresponding Markov  chain theorem tells  us (after having  ad jo ined  an  
i den t i t y  e lement  ff necessary) t h a t  z t  converges vague ly  as t -+ oo. Bu t  then  the  
l imi t  d i s t r ibu t ion  coincides wi th  the  l imi t  d i s t r ibu t ion  of zn  = ~ as n -+ co, 
which is e i ther  zero or an  i dempo ten t  p robab i l i t y  measure.  The las t  r e la t ion  
follow from the  weak con t inu i ty  of the  convolut ion  opera t ion .  

Theorem 8.1 tells  l~s precisely when the  p robab i l i t y  mass  escapes to  infini ty.  
10.4. A continuous homogeneous process ~t, t ~ O, converges weakly as t ~ oo 

i / and  only i / the support o/the process contains a completely simple minimal twosided 
ideal with finite groups in its group decomposition. 

W e  now tu rn  to s t u d y  the  inf ini tesimal  proper t ies  of the  process. 
10.5. A continuous homogeneous process converges vaguely as t ~ O. 
After  having,  i f  necessary,  ad jo ined  an  i d e n t i t y  e lement  th is  follows f rom the  

corresponding Markov  chain theorem (p. 118 in CE v~a ' s  book). As is shown b y  
the  first e x a m p l e  above,  the  converse is, a t  least  in the  non denumerab le  case, 

false. 
A homogeneous process is said to  be a compound  Poisson process i f  i t  is of the  

oo 
form ( ct (ct)~ @ 2 _ ~ . . . ) =  ~e_c t  (ct)n @n 

where c is a non negat ive  constant ,  s = @0 an i de mpo te n t  p robab i l i t y  measure  and  
@ a p r o b a b i l i t y  d i s t r ibu t ion  such t h a t  

@s~-s@----@. 

I t  is immed ia t e ly  verified t h a t  z~szt =- 7cs+t, s, t ~ 0, and  t h a t  7~ t is continuous.  

Since 
l im 7~t = s 
t - - + 0  

and  
lira 1/t(7~t --  e) ~-- c(@ - -  s) 
t - - ~ 0  

(with convergence in the  norm topology) ,  s and  c (@ - -  s) are un ique ly  de te rmined  
b y  the process. Conversely,  as we shall  see in a while, z t  m a y  be expressed solely 
in t e rms  of s and  c (@ - -  e). I t  will be p roved  below t h a t  the  res t r ic t ion  of @ to 
C(s) is p ropor t iona l  to  e and  hence we can jus t  as well assume t h a t  @ and  s have  
dis jo int  supports .  W i t h  th is  convent ion  not  only  c (@ - -  e) bu t  c and  @ themse lves  
are unique  (unless c =- 0, in which case ~ m a y  be a rb i t ra ry ) .  

Suppose now t h a t  ab ---- c with  a, c in  C(s) and  b in C(@). Since @ ~-- s@, C(@) 
= C(s)C(@), there  is an i dempo ten t  e in  C(e) such t h a t  b ---- eb. Consequent ly  
b -: (eae)- lec  e C(e), where the  inverse is t aken  in t h a t  one of the  groups in the  
group decomposi t ion  of C (s), whose i d e n t i t y  c lement  is e. Le t t ing  v be the  restric- 

t ion of @ to C(e) we conclude that, 

Hence,  remember ing  the  proof  of  theorem 6.1, v is p ropor t iona l  to s and  we have  
p roved  wha t  we promised.  

10.6. A homogeneous process is a compound Poisson process i] and only i/ it 
converges wealcly as t -+ O. 
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W e  have  a l r eady  proved  t h a t  a compound  Poisson process converges weak ly  
as t -+  0. The  proof  of the  converse is wel lknown from the ana ly t i ca l  t heo ry  of  
opera to r  semigroups.  

F i r s t  we note  t h a t  the  existence of  l im 7tt = e (in the  weak or, equiva lent ly ,  
t ~ 0  

the  no rm topology)  implies  con t inu i ty  for all  t. A di rec t  p roof  was given a t  the  
end of sect ion 9. W e  could also argue as follows. Adjo in  an  i den t i t y  element, i f  
necessary.  The con t inu i ty  of pt  (a, b) = z t  ({c; ac = b}) a t  zero implies  con t inu i ty  
for all t (p. 118 in CHUNG'S book).  I n  par t icu la r ,  con t inu i ty  holds for Pt (a) = Pt (1, a). 

Now find y > 0 such t h a t  [] z t  - -  s ]] =< d for t ~ y. I f  d is sufficiently small,  

log ~t = - -  1 2 

is welldefined and  cont inuous  for t ~ )~, 
log ~v = log ~ / n  = n log n7/n 

and  log ~,~,/n = log ~7"}~ = m log ~//n = ~ log ~ r  

for an  a r b i t r a r y  ra t iona l  number  m/n  G 1. B y  con t inu i ty  
1 

log ~t = t ~ log ~y = t # ,  

~t = et~ = e § . # -t- ~. # 2 §  

for t =< 7- I f  t > 0 is a rb i t r a ry ,  we can choose n so large t h a t  t/n ~ )~ and  conclude 
that ~t = :~/~, = (e(t/n)~)n = et.. 

Since # = l im ~t -- e 
t --+0 t 

and  t t s  = s #  = tt 

we see, f irst ly,  t h a t  the  t o t a l  va r i a t ion  of # is zero and  t h a t  # is non nega t ive  
outs ide  C(e) and,  secondly,  t h a t  the  res t r ic t ion  of # to  C(e) is p ropor t iona l  to s. 
Hence  # = c(~ - -  e) for a sui table  c =>- 0 and  p r o b a b i l i t y  measure  9 wi th  ~o e = e~ 
= ~, wheref rom we conclude t h a t  

~ t = ~  tn. c n ( Q - - e ) n = ~  (ct)n ~ ( n ) ~ / ~ ( - - 1 )  n -e  
n=0 n: n=0 nt ~ 0 \ k  

,~ oo 

k = 0  n = k  k = 0  " 

i. e. ~t is a compound  Poisson process. 
I t  is now easy  to  see t h a t  the  only  cont inuous  homogeneous  processes on a 

group are  the  compound  Poisson ones. I n  the  c o m m u t a t i v e  ease this  has been 
proved,  using Four ie r  analysis ,  b y  BOC~EI~ (1955). 

10.7. A continuous homogeneous process on a group is a compound Poisson 
process and conversely. 

Le t  ~t ,  t > 0, be a cont inuous  homogeneous  process on a group.  W e  know 
a l r eady  t h a t  ~t converges vague ly  as t -+  0, say  towards  e. Using the  vague  con- 
t i n u i t y  of the  convolut ion  when one fac tor  is he ld  fixed, es tabl i shed  in sect ion 3, 
we conclude t h a t  

~t  = l im ~rs+t = l im ~s ~t = e ~t 
8--+0 8--+0 

(the l imi t  is in the  vague  topology) .  Hence  

11 = 1 ,  
so tha t ,  in fact ,  ~rt converges weak ly  as t ~ O. 

7* 
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W i t h o u t  the  group p r o p e r t y  the  above  theorem is no longer true.  However ,  
jus t  as the  a sympto t i c  behav iour  of  7~t as t -+ c~ p roved  to  be comple te ly  deter-  
mined  b y  the  algebraic  proper t ies  of  the  suppor t  of the  process, one migh t  hope 
t h a t  the  condi t ion t h a t  7~t converges weak ly  as t --~ 0 is also equiva lent  to some 
algebraic  p r o p e r t y  of  the  suppor t .  A t  leas t  in the  commuta t i ve  case th is  is indeed so. 

I0.S. A continuous homogeneous process on a commutative semigroup is a 

compound Poissou process i f  and only i f  the support  of the process has an identity 

element. 
Let  C = C (st) be the  suppor t  of the  process. Suppose first t h a t  ~t converges 

weak ly  as t--~ 0. The l imi t  d is t r ibut ion ,  say  s is then  the  un i form d is t r ibu t ion  
over  a finite subgroup G. F r o m  

:7~ t g  ~ ~ 7 g  t ~ 2"g t 

i t  follows t h a t  
C G  = G C  = C .  

Hence the  i d e n t i t y  of G is an  i d e n t i t y  e lement  for the  whole of C. 
Conversely,  suppose t h a t  C has an i den t i t y  element,  say  l ,  and  let  G be the  

max ima l  group conta in ing it.  F r o m  a b = g ~ G we conclude t h a t  a (b g -1) = ( a b ) g-1 

= gg-1 = 1, i. e. a is in G. Similar ly,  b is conta ined  in G. Consequently,  the  restr ic-  
t ion of  ~rt to  G,/~t ,  satisfies 

#s+t = t ts t t t ,  s, t > O. 
F r o l n  

[I  s+t I[ = II I1 II II, s, t > 0 ,  

i t  follows, since #t  is non zero, t h a t  tl = e-c~ for some c > O. Bu t  then  ect#t is 
a cont inuous  homogeneous  process on G and  the  previous  theorem tells us t h a t  i t  
converges weak ly  as t -+ O. Hence,  so does 

~ t  = eCt ~ t  -[- (1 - -  eCt) ~ t  @ (TQ - -  [zt) . 

W e  finally give an example  of  a cont inuous  homogeneous  process on a commu- 
t a t ive  semigroup which is not  a compound  Poisson process. Le t  S be the  set of  
integers wi th  the  mul t ip l i ca t ion  rule 

a b --~ m a x  (a, b), 

and  let  x be an  a r b i t r a r y  p r o b a b i h t y  d i s t r ibu t ion  on S. I t  m a y  be imbedded  in the  
cont inuous  homogeneous  process z t ,  t > O, defined b y  

x t ( { " ' , a - -  1 , a } ) =  ( z ( { . . . , a - -  1, a})) t ,  

a . . . .  , - -  1, 0, ~- 1 , . . . .  I f  the  suppor t  of ~ is bounded  below, the  smal les t  
e lement  of  i t  is an i den t i t y  e lement  and  all  p robab i l i t y  mass  concentra tes  a t  i t  as 
t ~ 0. However ,  ff the  suppor t  has no lower bound,  

$gt  ---> 0 

vaguely  as t -~  0. 
I t  is in teres t ing  to note  t h a t  the  der iva t ive  a t  zero stil l  exists,  a l though now 

mere ly  in the  vague  topology,  a n d  t h a t  i t  is unbounded .  Indeed ,  

~ t  - -  0 
t - - > i t  
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v a g u e l y  as t -~  0, whe re  

~({ . . . ,  ~ -  1, ~}) 
re(a) = l o g  ~ ( { . . - , a - - 2 ,  a - - 1 } )  ' a . . . .  , - -  ], 0, T ] . . . . .  
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