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I. Introduction 

Tests for symmetry of a distribution function about an unknown value # are 
investigated. Two quite different methods are presented and compared. The first 
procedure consists of applying a non-parametric test for symmetry around 0, after # 
has been estimated. The sign and Wilcoxon statistics are considered, the mean or 
the median being our estimates for #. The second method was proposed by T. 
Gasser and seems to be new: non-parametric tests are applied to the differences of 
symmetrically located intervals of order statistics. A trimmed sign test only is 
presented. Analogous results have been obtained for trimmed statistics of 
Wilcoxon type but such tests do not seem to be good. Further, the asymptotic 
variance depends on the underlying density in a rather complicated way. The 
reason for throwing away the [en] smallest, resp., greatest observations is that 
unsymmetry in the tails of a distribution is irrelevant to practical purposes. The 
asymptotic variance a4 2,~ of the trimmed sign statistic S~,~ possesses a limit a4 2 for e 
tending to 0. It would be interesting to know whether $4,0 is asymptotically normal 
with variance a 2. We think this is the case but we have not been able to prove it. 
Technical difficulties arise because of the behaviour of the derivatives o f F -  1 near 0 
and 1, F being the underlying distribution function. 

For  both methods the asymptotic distribution under symmetry is given. The 
statistics are no longer distribution free but surprisingly, the asymptotic variance, 
in some cases, varies little with the density. The asymptotic distributions for 
alternatives where the distribution function is of the form F(x+n-1/2g(x)) are 
computed. Comparisons of the power are made in the case where g(x)= x, x > O, 
and 0 elsewhere. This corresponds to a contraction of the positive axis. We had also 
considered as alternatives the contamination model and the convolution of a 
symmetric distribution with an asymptotically negligible unsymmetric distribu- 
tion. The results are not satisfying, the alternatives differing too little from the 
hypothesis. 

For  the normal, double exponential and Cauchy distributions, a measure of 
relative efficiency to the Neyman-Pearson test is given. This shows that test based 



236 A. Antille and G. Kersting 

on $4, ~ and on the Wilcoxon statistic with # estimated by the median, are serious 
competitors among scale and translation invariant tests for symmetry. Further, if 
the underlying distribution does not have too heavy tails, tests based on the sign 
statistic with the mean as estimate for #, also seem to be good. More details and 
comparisons with other tests will be given in a forthcoming paper. 

II. Notation, Results 

Let (~2, d ,  P) be a probability space and X~, ..., X~, i.i.d, real random variables with 
distribution function F and density f Let X(~) . . . .  , X(~) be the order statistics and 
J~,, M~ the mean and the median of X~, ..., X~. Throughout  the paper, ~ is used for 
F -  1 and I(A) for the indicator function of a set A. 

Tests for symmetry of F about an unknown value # are derived from the 
following statistics: 

S l = n  -1/2 ~ ( I ( X i - X , < O ) - I / 2 ) ,  
l<_i<_n 

S2=n -3/z ~ ( I ( X i + X j < 2 X , ) - I / 2 ) ,  
l <=i<j<=n 

S3---n -3/2 ~ ( I (X i+Xj<=2M. ) - I / 2 ) ,  
l < _ i < j < = n  

S4,~=n -1/2 ~ ( I (Y i -Y , - i+2  <O)- l /2 ) ,  
[en] 4- 1 <=i<[n/2]  

where Y~ = X(;) - X(i_ ~), i = 2, ..., n, and 0 < ~ < 1/2. [a] means the greatest integer 
smaller or equal to a. S~, i = 1, 2, 3 are modified sign and Wilcoxon statistics, where 
# has been estimated by the mean or the median. $4,~ is a trimmed sign statistic 
based on Y ~  Y,-~+2, the differences of symmetrically located intervals of order 
statistics. 

II. 1. Asymptotic Distribution under Symmetry 

The following theorems give the asymptotic distribution of the four statistics under 
some regularity conditions. The asymptotic variances under the normal, logistic, 
double exponential and Cauchy distributions are given in Table 1 at the end of this 
subsection. For $4,~, the limit for e tending to 0 only has been computed. 

Theorem 1. Assume that F has a continuous derivative f at #. I f  f(#)=l:O and 
+ o o  

x E f ( x ) d x < o %  then S 1 is asymptotically normal Jff(O, a2), with a~--1/4 
- o o  

q-oo oo 

+f (# )  [a2f(#) _ #o], where a z = ~ (x - #)2f(x) dx and #o = 2 ~ (x - #) f ( x )  dx. 

Theorem 2. Suppose that f is absolutely continuous and f ' f f L 2 ( -  o% + ~).  
4-oo 

I f  ~ x 2 f (x )  dx < o% then S 2 is asymptotically normal ~ff(O, t~2), with 
- oo 
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Table 1 

Normal Logistic Double Cauchy 
exponential 

a~ 0,09085 0,10904 0,25 
G~ 0 ,00376  0,00805 0,02083 
a~ 0,03155 0,02778 0,02083 0,02083 
~ 0 ,10938  0,11621 0 ,12500 0,27744 
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lj12+o2 ( j2 x dx) 
+o~ +oo 

+oo 

where a 2 = ~ ( x -  #)2 f ( x )  dx. 

I f  f(#)4= O, then S 3 is asymptotically normal/C(O, a~), where 

+oo 2 

) , 

Theorem 3. Assume that the support of F is a (possibly infinite) interval. I f  f is 
strictly positive on this interval and twice continuously differentiable, then the statistic 
$4, ~ is asymptotically normal X(O, a]~), where 

1/2 

~72 = 1/8 + 1/4 ~ (ln 7 / ' (1 /2) -1n  7J'(t)) dt 4-, 

1/2 

+ 1/8 ~ (In T ' (1 /2 ) - - l n  IP'(t))2dt 

+ e/16 (ln 7 s' (1/2) - In T '  (e))2 _ e/4. 

The limit a~ of a2 for e tending to O, exists and is equal to 

cr 2 - 1/16 + 1/16 (1 + in f ( t ) / f (#))  2 f ( t )  dt 4 , 0 - -  

if the integral exists. 

II. 2. Asymptotic Distribution under the Alternative 

Let F be symmetr ic  abou t  0. Consider  the dis tr ibut ion function Hn(x)=F(x  
+ n -  ~/2 g (x)). We assume that  x + n -  1/2 g (x) is, for large n, a m o n o t o n o u s  increasing 
function. Otherwise  our  definition does not  m a k e  sense. If  the X i are dis tr ibuted 
according to H ,  it is shown that  the statistics are asymptot ica l ly  no rma l  with the 
same s tandard  deviat ion as under  F and  a mean  different f rom 0. The quot ient  of  
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Table 2 

A. Antille and G. Kersting 

Normal Logistic Double Cauchy 
exponential 

,u 1 -0,15915 -0,17328 -0,25 
,u 2 - 0,03296 - 0,04166 - 0,06250 
#3 0,07957 0,07385 0,06250 0,051 
P4 -0,125 -0,125 -0,125 -0,125 
I#1 I/~ 0,528 0,524 0,5 
1#21/0.2 0,538 0,464 0,433 
1/~3 I/0.3 0,447 0,443 0,433 0,35 
]#41/0.4 0,377 0,366 0,353 0,237 
l,u51/0-5 1 0,845 1 0,5 

17 2 - -  0-2 Here ~4=#4,0 and 4 -  4, o. #~ and 0-5 are the asymptotic mean and standard 
deviation of the Neyman-Pearson statistic, when the X~ are distributed 
according to H,. 

these values will precisely be our  measure of  efficiency. The asymptot ic  means #i 
and the quotients ]#il/cri, under  the normal,  logistic, double exponential  and 
Cauchy distributions are given in Table 2 at the end of  this subsection. The same 
quantities were also computed  for the Neyman-Pea r son  statistics and are presented 
in the last line of Table 2. 

Theorem 4. Suppose that 
a) F is twice continuously differentiabte with bounded derivatives; 
b) f '  is monotonous on (a, oo) for some a > 0 ;  
c) g admits two bounded continuous derivatives; 
d) ( f ' )2[x13~gl(-o% +oo), f 2 x Z ~ g l ( - o o ,  +oo). 
Then under the assumption of Section II.1, the statistics S~, i = 1, 2, 3 are under H, 

asymptotically normal X(lli ,  a2), i= 1, 2, 3, where 

#~ =f(O) ~ (g(O)-  g(x)) f (x)  dx 
- - c o  

+ c o  + 0 9  

- c o  

#3 = ~ f2(x)(g(x)-g(O)) dx. 
- c o  

Theorem 5. Under the assumptions of Theorem 3, if g is twice continuously 
differentiable with bounded derivatives, then $4, ~ is asymptotically normal 
11/'(#4, ~, ~ ,  ~), where 

1 / 2  

g4,, = 1/4 J" (g ' (~( t ) ) -  g ' ( -  ~(t))) dt. 
g 

The limiting value #4 for e tending to zero is given by 

0 

#4,0 = 1/4 S (g ' (s) -g ' ( -s) ) f (s)  ds. 
- - c o  
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III. Proofs 

III.1. Proof of Theorem 1 

Although the result has already been proved by Gastwirth [-4], we give here a 
lemma which will be used later for approximating the median of the sample. 

Lemma 1. Let X1, ..., X ,  be i.i.d, random variables with a density f Suppose that f is 
continuous in a neighbourhood of O. 

Let 

Zn(t)=n -1/2 ~ ( l (Xi<tn-a/2)-I(Xi~O))- t f (O).  
l < i<n  

Then for any fixed positive number B, 

sup {JZ,(t)] : t e l -  B, BJ} & 0, 

as n tends to infinity. 

Proof. For simplicity consider t as varying in the interval [0, lJ. An easy 
computation shows that 

sup {fE(z~ t~[0,  13} ~ 0, 

as n tends to infinity. So it is sufficient to prove Lemma 1 for the process Z,(t) which 
is obtained from Z,(t) by centering it at expectation. For  this let m be a fixed positive 
integer and fi > 0. 

Define s k = k/m, k = O, 1, ..., m. 
By the triangle inequality: 

{sup {12.(t)l: t~[0, 1]} > ~} 

___ {max {IZ,(sk)l : k = 0, ..., m} > 3/2} 

{ max sup {12 , (0 -  2,(sk) l: t s [s k, s k + 1]} > 6/2} 
O<~k<m-1  

=A 1 u A  2 (say). 

By Markov inequality, 

P{A1}< ~ P{[Z,(G)[>6/2}<(2/5) 2 ~ Var(2,(sk)). 
l<_k<_m l<k<_m 

But Var(Z,(Sk) ) =< (F(Sk/l/n)- F(0)), and by assumption there exists a K such that 

F ( ~ ) - F ( O )  < K n  -1/2, for n large enough. 
/ k  

g ' "  

Therefore, 

P{A1}< m. Kn  -1/2, for n large enough. 

We can now easily find a bound for P{A2} by using the monotony of 

I 0 < X i = as a function of t. 



240 A. Antille and G. Kersting 

Let t be fixed in Is k, Sk+ 1] and suppose for example that 

2 ~  - 2n(sk) >= 0. 

Then the absolute value of the left-hand side is smaller than 

LZ.(Sk+l)-2~(sk)L+n -1/2 Y, ~ = X i =  �9 
l <_i<_n 

A similar argument in the case where Z.(t)-Z.(sk)<O, leads to 

A2~{max{,Zn(Sk+l)--Zn(Sk),: k = 0  . . . .  , m - l } _ > ~ }  

w max n -1/2 ~" P - ~ < X i < - ~  . k=0,  m 
l<=i~, k v n  V n ] 

= B l w B  2 (say). 

By assumption there exists a K > 0, such that 

- - K K 1 

Var(ZjSk+l)-- Z.(sk)) <-~nn (Sk+l --Sk)= ~n  " m- , 

and 

p Sk< } K 
X~=--< sk+l < - -  m- 1, for n large enough. 

Hence 

P{B1}< 
~-- r 

and 

P{Ba} =0, for m, n large enough. 

Lemma 1 follows by letting, for a fixed 3, n tend to infinity and then m. 
Theorem 1 follows directly from the lemma. 

Proof. Suppose without loss of generality that # = 0. Then since 

+ a o  

I x2f(x) dx<~176 1/nJ(n=~ 
- o o  

S 1 can be written as 

Z.(n 1/2 X.) + n 1/2 )~. f(O) + n-  1/2 ~ {I(X i =< 0 ) -  1/2}. 
l <=i <~n 

By Lemma 1, the first term tends to 0 in probability and Theorem 1 follows. 
For  later purposes we now use Lemma 1 to approximate the median M, by a 

statistic which is easier to handle. 
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Let Xa . . . .  , X ,  be i.i.d, with density f symmetric 
f(0)  + 0. Then under the assumptions of Lemma 1, 

nl/ZM,=(f(O)) -1 n-1/2 2 {1/2-I(Xi<=O)} +~ (*) 
l <=i<n 

Proof It is known that n ~/2 M. = Op(1). By definition of M.. 

tl--1/2 2 {I(Xi<=M,)-I/2}=O, 
l <_i<_n 

which is equivalent to 

Z~(n~/2 M.)+n~/2 M.f(O)+n -1/2 ~ {I(X~ <0)-1/2}=0. 
l <_i<_n 

Since by Lemma 1, Z~(n 1/2 M.)~O, as n tends to infinity, relation (.) is proved. 
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around 0. Suppose that 

III.2. Proof of Theorem 2 

Assume without loss of generality that # = 0. Under the assumptions of Theorem 2, 
the mean and the median are, whenever used, Ov(n - 1/2). It then follows from Antille 
[1], Theorem II.2 and Corollary, that 

+co 
dx+n-3/2 2 {I(Xi+Xj<__ol-�89 

- ~  l < i < j < = n  

and 
+co 

f (x)dx+n {I(X,+xj<=ot-�89 
--oo l < i < j < = n  

The second term of the right-hand side can be approximated as follows: 

Lemma 2. Assume that f is symmetric about O. Let 

T = n  -3/2 ~ {I(Xi+Xj<O)-�89 
l < i < j < n  

Then, 

T=n -1/2 ~ {�89 
l<_i<_n 

Proof We use the projection method of Hfijek [5] '  T is approximated by its 
projection T= ~ E(T[ Xi). E(T I Xi) means here the conditional expectation of T 

l<_i<_n 

given X~. An easy computation shows that 

T= (n - 1) n- 3/2 ~ {�89 F(Xi)} ' 
l<_i<_n 

Var(T) = (n - 1) 2 n-  2(12) - 2, and 
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V a r ( r )  = (n - 1) n -  2(2)- 1 Var( i (X1 + X2 =< 0)) 

+ ( n -  1)(n - 2) n -  2 Cov(I(X~ + X 2 < 0), I(X 1 + X 3 < 0)) 

= (n - 1) n -  2(8)- 1 + n -  2(n - 2)(n - 1)(12)- 1. 

Since E(T-~)2  = V a t ( T - ~ ) = V a r ( T ) - V a r ( T ) ,  L e m m a  2 follows. 
The  statistic S 2 is then asymptot ica l ly  equivalent  to 

+ o o  )) 
n-1/2 2 (X ~ f2 )d �89 F(X i (x y +  - i . 

l<_i<_n ', - - o o  / 

By using the approx ima t ion  we gave before for the median  M, ,  S 3 is easily shown to 
be asymptot ica l ly  equivalent  to 

fZ(x)  dx (f(0))  -1 n -  1/2 ~ {�89 i(Xi<O)} 
l <_i<_n 

y. {1-F(X,)}, 
l<__i<=n 

and Theo rem 2 is proved.  

111.3. Proof of Theorem 4 

Let H, = F {x + g(x)]  and h, its derivative. Using Tay lo r  expansion,  

H,(x) = F(x) + f(x) ~ + f ' (x + ~ 1 (x)) g2(X) 
v n  2n ' 

h,(x) = f (x) + f(x) g'(x) + f ' (x + ~ 2(x)) (1 + g'(x)] g(x) 

Consider  first Sj .  
By the same way as before, one can show that  under  H n, 

S t = l ~ X . h . ( O ) + n  -1/2 ~ { X , < O ) - � 8 9  
l < _ i < _ n  

The asympto t ic  mean/~1 is then seen to be 

+ o o  0 

f(O) ~ x(f(x)g'(x)+ f'(x)g(x))dx+ ~ (f(x)g'(x)+ f'(x)g(x))dx, 
- n o  09 

while the var iance remains  the same. Here  the m o n o t o n y  of f '  and the fact that  
-boo 

S x2f(x) dx < 0% are used to show that  in a sympto t i c  considerat ions,  H ,  and h, 
- o o  

can be replaced by 
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g(x) ' ~  g(x)l/n" F(x)+f(X)~nn and f ( x )+f (x )  +if(x) 

By partial  integration, #1 simplifies to 
+ c o  

- f(O) ~ f(x)g(x)+ f(O)g(O). 
--O3 

Consider  now S 2 and S 3. 
Looking  at the p roof  of Theorem II.2 in Antille [1], one sees that, under  H,, 

t 

tends to 0 in probabil i ty  as n goes to infinity, for every fixed number  M. 
Fur ther  it still holds that 

l ~ - M ~ = ( f ( O ) )  -1 n -a/z ~, {�89 +Op(1). 
l<_i<_n 

Therefore,  by the same argument  as before, 

Y~ {I(Xi+X~<O)-E(I(Xi+Xj<O))} 
l < ~ i < j < = n  

+ n -  3/2 n(n - 1) 2 -  1 E(I(XI + X2 __< 0) - �89 + oe(1), 

and 

s3=(f(0)) -1 f2(x)dx n -~/~ E {l-I(Xi_-<0)} 
l<_i<_n 

+n -3/2 F, {I(x~+x~<=o)-E(I(x~+xj<=ol)} 
l < = i < j < n  

+ n - 3/2 n(n - 1) 2 - 1 E(I(XI + X2 < 0) - �89 + oe(1 ). 

Using Taylor  expansions for / - / ,  and h, and  assumptions c) and d) one gets, 

/ - z2=-  (_.~ fz(x)dx)  ( 2  f(x)g(x)dx) 

+oo  

+ �89 ~ (F( - x) f(x) g'(x) + F(-- x) if(x) g(x) + f 2 ( x )  g( - -  X)) dx, 
- o o  

+ o o  

+ o o  

+ �89 ~ (F(-  x) f(x) g'(x) + F ( -  x) if(x) g(x) + f 2(x) g ( -  x)) dx. 
- o o  
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By partial integration the second term of the right hand sides simplifies to 

+oo 

1 ~ f 2 i x ) (g ( x )+g(_x ) )dx .  
--oo 

The asymptotic variance is unchanged and Theorem 4 follows. 

111.4. Proof of Theorems 3 and 5 

Let I ; = X ( o - X ( i _ I ) ,  i=2,  ..., n, and choose 0 < e < � 8 9  as in Theorem 3. Define 1 
= [e n] + 1, m = In/2]. Then 

S4,e = n - l / 2  2 {I(~t)-Tt~,-,+2<0)-�89 
l <_i<_m 

Step 1. We give first a representation of ]r~ through exponentially distributed 
random variables. 

Let Wi, l/V2, ... be a sequence of i.i.d, random variables with exponential 
distribution and mean 1. 

Put 

< = 2 m / 2  m. 
l <_k<_i l__<k=<n+l 

It is well-known (see Breiman [-2], p. 285) that the vector (U1, ..., Un) has the same 
distribution as the vector of order statistics ofn i.i.d, random variables with uniform 
distribution on [0, 1]. 

Thus the vectors (X(1), . . . ,  X(,)) and (%(U1) . . . . .  7", (U,)) are identically distribut- 
ed, % being the inverse of the distribution function Hn. As in Theorem 5, H,  is given 

&+gix)  
by F ~ 1/~ ] .  We now compute ~g,. 

Define y = y ( x )  (depending on n) by 

y =  x + n-1/2 g(x). 

y is strictly increasing in x and varies from - oo to + oo for n large enough, since g 
has a bounded derivative, y can be written as 

y=  x + n-  ~/Z g(y) + n-  t K,(y) ,  

with 

Kn(Y ) = nt/2 (gi x) -- g(y)). 

Differentiating both sides of the last expression with respect to x and applying the 
mean value theorem we get, with 0 < fi < 1, 

K' (y)( l + n-1/2 g' (x)) = nl/g (g' (x) - g' (y)( l + n-1/~ g' (x))) 

= n*/~ g" (x + a (y - x)) (x - y) - g' (x) g' (y) 

= g"ix  + a i y -  x)) g ( x ) -  g'ix) g'(y). 
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Since g' and g" are bounded, K',(y) is, for n large enough, uniformly bounded on 
compact  subsets of IR. By definition, 

H . ( y - n - l l 2 g ( y ) - n - l K , ( y ) ) = F ( y ) ,  Vy~IR. 

Hence y -  n- 1/2 g(y) _ n-  1K, (y) = H 21 (F(y)). 

Put y = F - l ( t ) ,  te(O, 1), to get 

m n l(t) ~--- ~r't (t) -- H- 1/2 g(t/~t (t)) __///-1 K,(}P(t)), 

where 

}P(t) = F -  l(t). 

By assumption, kg is three times differentiable on (0, 1). Using Taylor expansions, 

X<i) - X(i-  1) = H21(Ui ) _ H/1(Ui_ 1) 
= v"(u3 (u , -  u,_ , ) -  n- 1/2 g'(~(u3) ~ ' (u , ) (u , -  ui_ 1) + ~,, 1, 

with 

1 It 
~ , 1 - ~  v' (u, + 61(u,-  u,_ 0)(u~- u,_ 02 

- - l ( g o  ~[/)" (U/-~- (~2 ( U / -  U/_ 1))(U/-  U/_ 1) 2/2-1/2 

--/2- l (Kno ~J)" (U i -}- (~3(Ui - Ui_ 1))(U/-  Ui_ 1), 

where 0 < 3~ < 1, for i = 1, 2, 3. 
It is well-known that, 

{ , } max U i - n ~ -  i- : i = 1 , . . . , / 2  =0p(/2-1/2). 

Then, since (K, o ~)' is uniformly bounded on compact  subsets of (0, 1), 

max {I ~w'(Ui + 61 (U,. - U/_ 0)l: i=l, ..., m} =Oe(1 ), 

max {l(go 70"(U~+32(U ~-  U,._I))[: i=l  . . . .  , m} =@(1) ,  

max {[(K, o 70'(U~+63(U i -  U~_ 1))1 : i=l, ..., m} = Op(1). 

By definition of U~, 

u , -  u,_ l = W,/ ~ w~. 
l_<k_<n+l 

W~ being exponential, 

max { Wi: i = l . . . .  ,/2} = 0 v(log n). 

Therefore, 

max {[Mi, 1[: i = l, ..., m} = 0 e ((log n) 2 n -  2). 
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F u r t h e r ,  

i 

- - ~ f /  , 

a n d  

i 6 i 

w h e r e  0 < 6 4 ,  6 s < 1 .  
U s i n g  a g a i n  the  b o u n d e d n e s s  of  the  func t ions  invo lved ,  

i 
�9 . ,  m t = G(n 1), 

max{n_l/2(go~),( i ( i ) )  ( i ) } n-~+fs U~-~-~ Ui- ~ :i=l,...,m 
= G ( n - 1 ) .  

Thus ,  p u t t i n g  e v e r y t h i n g  toge the r ,  

Y~ = X(1) - X(i_ 1) 

whe re  

m a x  {INi, 2 I: i =  l, ...., m} = Op((log n) 2 n -  2). 

W e  n o w  i n t r o d u c e  s o m e  n o t a t i o n :  
Def ine ,  

Wk=W,_k+Z, k = l ,  . . . , n + l ,  

l <_k<_i 1-<k-<n+l l <-k<-i 1Nk_<n+l 

T h e n  U , _ i + 2 = l - U i _ l  a n d  U n _ I + I = I - U / .  
There fo re ,  

Y.-,+2 --  e . ( 1 .  ~ _  1 ) -  kg.(1 - ~ ) .  

S ince  7~(1 - t) = - 7s(t), 

7~.(1 - t) = 7/(1 - t) - n -  1/2 g (ku (1 - t)) - n -  1K.(~P (1 - t)) 

= --  7s(t) + n -  1/2 g ( ~ ( t ) )  - n -  1K. (gs  (1 _ t)), 

w i th  g(x)  = - g( - x). 

A. Antille and G. Kersting 
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Thus, 

Yn-i+2 = I / / (g/ / )  __ ~.t ( g / _  1) - -  H-- 1/2 ~ ( ~ / ( ~ / ) )  

+ n -  1/2g(~,(U~_ 1)) + ~ -  1K~ _ ~)) 

Then interchanging U i and Ui, g and ~, in the expansion for Y/, we obtain a similar 
one for Y,-i+2. 

Now 

) >0,  by assumption.  The asymptot ic  distribution of $4, ~ is thus the 

same as the asymptot ic  distr ibution of  n-1/2 
representation,  

Zi=(Yi- Yn-i+ 2) (l <k<_~_n+ lWk/ltl' ( ~ )  ) 

=w~ 

m 

-w~ 

{I(Zi<=O)-�89 where, by our  
l<i<=m 

i- t , 

l<_i<_m 
independent  r andom variables. To do this we use the fact that W~ and U~ are 
becoming more  and more  independent  with i and n increasing. The idea is to 
replace U i by a different r andom variable and thus to enforce independence.  

For  this, choose �89 < 7 < 1 and define 

c~ n = In 7]. 

Then define integers N,, r io, . . . ,  fin as follows: 
Let  flo = l -  1, and for i = 1, 2, ..., N - 1, put  fli+ 1 =fli + %, where N is such that  

fl2V_ l <rrl and m-- f lN_  l <O:n. Let flu=re. 
We now introduce some new variables. For  j =  1 . . . . .  N, define 

Vj= Z Wk/( Z Wk-- Z (Wk+Wk)+2(fij__flj_1)) flj--1 
l<k<flj_l l < k < n + l  flj_l+l<=k<=flj n + l "  

with 

max { Ni 3]: i = l, ..., m} = Oe(n- 1 (log n):). 

This is the desired representation.  

Step 2. We now approximate  the statistic n-1/2 {I(Zi<O)-�89 by sums of 
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F 

V~ is defined similarly by replacing W k by W k. Finally, define, for any l < i __< m, isN, 
the integer j(i) by 

j(i)=j if fij_~+l<_i<flj, j = l  .... , g .  

We now want to estimate the magnitude of the error for our statistic if in the 
i i 

definition of Z~, U ~ - n ~  and ~ - n ~  are replaced by V~( o and ~(0" 

We have: 

i VJ(i) 

l = k = i  l <-k<=rij(i)-i i - - f l j ( i ) - i  < [ 2 VVk ~ VV k n+l  
l_<k-<n+ 1 1 N k _ < n + l  

+ 
Wk'l ~ (Wk § ~)--  2(flj(i)--flj(i)- l)[ 

1 ~k<=rid( 0 - 1 rid(i)- 1+ 1 ~k<=rij(i) 

( 2 
l _<k_<n+l  

w0( ~ wk-  2 ( w ~ + ~ ) + 2 ( & , ) - & o - 0 )  
1 <_k<<.n+ 1 rid(O- ~ + l<=k<-rij( 0 

I ~. Wk--(i--flj(,)_O[ ~[ ~ Wg-(n+ 1)[ 
flJ(i) - l  + l ~-k~-i l _ < k < - n + l  

W k (n+l)  ~ Wk 
1-<k--.n+ 1 l _<k_<n+ l  

I ~ w~ - (f~J(o - ~J(,)- 1)1 
_[__riJ(i)-l+ l <-k~riJ(i) 

E 
l _<k_<n+ l  

L Z ~ - ( & o - & , ) - l ) l  
_t_ r i , i ( i ) - l+ 1 <=k<=flj(i) 

l _<k_<n+l  

The second term is of order n ~- 3/2 by the central limit theorem. The three other 
terms can be handled similarly. So consider the first expression (say). 

By independence, for r > 0, 

P{max {] ~ W~-(i-fl~(o_ 1)1: i=l, . . . ,m}<n r} 
flJ(O 1 +l<-k<- i  

= 1-I P {max {I 2 Wk 
1 <j<=N f l j ( i ) -  I + 1 <_k<_i 

- (i - f~J(O- ~)l: ~(0-1 < i _<_ ~(~)} _-< .r} 

>p{max{I Y, W~-i[:i=l,...,~,}<=nq N. 
l <_k<_i 

By a lemma due to Skorokhod (see Breiman [2], p. 45), 

P{max{[ Z Wk--il ' i=l ..... ~,} >nr} 
l <_k<_i 

1 
<- cP{I 2 Wk--C~.l>n'/2}. 

1 - -  1 <-k<-an 



Tests for Symmetry 249 

with 

c=sup{P{] 2 w~-(~,-i)]>n~}:i=l,...,c~,} �9 
i N k < a n  

By Tschebyscheff inequality, 

c--<n-Z~sup{Var( 2 Wk--(C~,--i)): i= l , . . . ,~ ,}=n-2%~.~n ' -zL 
i<=k~an 

Now choose r>  -~ Then c<�89 for n large enough, and 
2 '  

P{max{] ~ l/Vk-il'i=l,...,~,}>n" } 
l <_k<_i 

<2P{n-'/el 2 Wk-=,l>n~-'/2/2} 
1 ~k__<~n 

_-<2P{n-'/~l Y~ wk-~, l>@-~)/ ' /2} . 
1 <k-_<~ 

Now use the large deviation theorem (see Feller 1-3], p. 549) for exponentially 

distributedvariables. Forthis, lety'=min{1/7,(r-2)/Y}.Then, forlargen, if 
r > ~/2, 

r 7 , , P {n-7/e I ~ Wk-c~,l>c~! -g)/7/2}<~exp(-~2~)~exp(-n2~y). 
i <=k<=a~ 

Thus, 

P {max {] E 
flJ(O-- 1 + 1 <k<_i 

2 ( 1 - 2  exp(-n2~'))N ~ , 1, 

Putting everything together we get: 

=Oe(nr-1)+Op(n~-3/2), for all r>7/2. 

Obviously, the same is true, if we replace U/and Vj(i) by U/and Vj(~). 
Now define: 

Zi= ~-4 

_ _  

w~-(i-/~j.~_l)l: i=l .... ,m}=<n r} 

since N ~ n. 
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Then Z i = Z, +.~i, 4, and since ? < 1, 

max {l~i,~[: i=l, ..., m} =Op(n-~), 

with s > 1/2 (and s of course depending on 7)- We mention here for later use that  our 

C.= 0 BiotA.. 
l<_i<_m 

results also show, that  

max {L Vj(0I: i=l, ..., m} = Oe(n- l/z). 

Step 3. We prove here that  the statistic n -  J/2 
equivalent to 

n -1/2 ~ {~(2,_<_o)-�89 
l<__i<=m 

Let 1/2 < s' < s and define, 

A, -= {max {1~i,4]: i =  l, ..., m} =< n-~'}, 

( Iv j ( , ) l+ l~ .>l )<X , 

{I(Z~ <0) - �89  is asymptotically 
l<_i<_m 

21=1-~ 

22-----1% 

21+22 

1 

21+22 

where 

- -  e - z r  x < O ,  

Then P { C,} --* 1, for n ~ oo. 
But 

P {2, <O, ZI>O, C,} < P {-n-~" < 2i <O, Bi} 

= ~ P { - n-2' =< 2i < 01V j(1), G(0} dP. 
Bi 

Since W~, W~ are independent of (~(0, ~(0) by construction,_ one can easily compute 
the conditional distribution of Z~ given Vj( 0 and V~( 0. The density is given by 

1 
- -  e -zclx, x>O, 
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On Bi, 2 i >= 1/4, for i=  1, 2 and n large enough. Therefore, on B~, 

P{-n-S'<2i<OI Vj(i), Vj(1)}_-<2 n -~'. 

Hence 

P{Zi<O, Zi>O, C,} G2n -~'. 

Now 

. - ' /~ y. {i(z,__<o)-�89 
l<--i~m 

>=n -1/2 ~_, {I(2~<O)-�89 -1/z ~ I(:2i<O,Z~>O,C,,) 
I K i ~ m  l<~i<--m 

_ n+ 1/2 I (C~) .  

(A c means the complement of the set A.) The last two random variables converge 
stochastically to zero. Similarly one can show that 

H-l/2 2 {I(Zi ~0)-1}~-~H-1/2 2 {I(2i~O)-�89 
l<_i<m l<<_i<_rn 

Step 4. We first introduce new random variables. For i=  1, ..., m, let 

L~=I(2 ,<0 ,  W~- g ~ > 0 ) - I ( Z , > 0 ,  W~- ~ < 0 ) .  

Then, 

~, I(Zi__<0)= ~, { I (W~-~<O)+Li} .  
l<_i<_m l<_i<m 

Further define, 

Mi= E(Li I Vj(i), Vj(i)). 

(E(Xf Y) means the conditional expectation of X given Y.) 
We now show that our statistic is asymptotically equivalent to 

n -1/2 ~. {I(W~-W~<-_O)-I/2+Mi}. 
l < i ~ m  

Let d > 0 and define 

Di= 

,(,5) 
and 

5.= (~ D i. 
l<--i<~m 

(I v~.> J + )~<~>)) < d n- ,/2], 
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For any tl > 0 we can choose d so large, that 

lim inf P {/),} > 1 - t  1. 

Thus it is sufficient to chow that 

1 
- ~( 2 Li-Mi) 2dP~O, as n tends toog. 
gl .Dn l<=i<-m 

By Cauchy-Schwarz inequality, 

1 ~ ( E Li-Mi) 2 d P = l -  ~ ( 2 2 (Li-Mi)) 2 dP 
n Dn I<~i<=rn HDn I<~J<=N flJ-l+l<=i<~flJ 

1 
<=-N 2 ~ ( Z Li-Mi) 2dP" 

Yl I<-j<=N Di flj l+l<=i<=flj 

By construction W i, W~, i=fij_ 1 + 1, ..., fly, are independent of Vj(0, V2(1). Thus 

S ( E Li-M,) ~de 
Di f l j - t+l~i<fl j  

Di flj_x+l=<i__<flj 

= I E E((Li- Mi)2lVj(i), ~j(i))dP 
D~ flj-~+ l <i<=&i 

~ 2 e(L21Vj,i), Yjj(i,) de" 
Di flj-.l+l <=i<=flj 

But 

= P {Zi -- O, W/-  ~ > 0 ] Vj(O, ~(i)) 

+ P {~ > o, E -  ~ < o l 5(,.  ~,~). 

Using independence, we obtain for the first term of the right-hand side: 

P {Zi ~ O, W/-  ~ > 01 E(1), ~(o} I(Di) 

t 
+P{W~>log n} +P{W~>log n} 

<-_Cn-1/21ogn+2n-1, for all i=l,...,m, 

with a constant C not depending on n. Here we used the fact that W~- ~ has the 
density �89 e -I~1. The same bound applies to the second term. Therefore, 
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i ~( E Li-Mi) 2dP 
11 Dn l<-i<<'m 

< n - i N  ~ ~ (2Cn-1/Zlogn+4n -1) 
I<=j<N flj_l+l~i<=flj 

<=NCn -lIe log n ~ n  i - r  Cn -1/2 logn. 

>1 Since ? 7, the last expression converges to zero and our statement is proved. 

Step 5. We now compute the variables M i to get the desired approximation of S~, 
by sums of independent variables. By independence, 

Mi=P{2,<=O, Wi-W/>O I V J(/) , ~(0} 

- P { Z i > O ,  I/V i - W/=<01Vyi) , ~(i)} 

=P{21W/-21W~__<0 , W/- W~>0} 

-P{21 W/-2  2 W~>O, W~- W~<O} 

=P{21W~-, t  z W~=<O} - P  {W~- W~__<0}, 

with 2~, 22 as defined before. 
We may assume 21, 22 >0, since this is true on a set of large probability for all 

i=  l, ..., m. Now, assuming 21, 22 >0, one can easily show, that 

22-21 
M i - 

2(3; 1 +22) 

" 7/ i 

4+Ni,  s 

where max{[~i, sl: i=l, ..., m} =Oe(n-1/2). Since the numerator is of the same 
order, ~i,5 can be neglected. We may also replace (~(i)-Vj(i)) by (Ui-Ui), as 
proved above. 

Therefore, our statistic is asymptotically equivalent to 

gl--1/2 2 {I(W~- ~=<0)-�89 
l<_i<m 

+n-112�88 Z 

t<=i<=,, 7 t i 7 j i 

1 / 2  

The last term converges to �88 f (g ' (Tqt))-g ' ( -~(t)))dt ,  using ff ' (x)=g'(-x) .  
E 
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On the other hand, 

E (c~-<) 

1 ~ (~7k _ l/Vk) 

(~ .  
+ '<-E~<-~ ~;~ v' ( i 

l < - k < l - - I  g 

1/2 T"{ t )  - -  

l<_k<_m k/n 

= ~ (lnT'(�89 ' - -  (~)) (w~ - w o  
l__<k=<l-1 

+ l~<~ (in T'(�89 In T' (~))  ( ~ -  Wk' �9 

Theorems 3 and 5 then follow from the central limit theorem. The calculation of the 
variance and covariance are easy and thus [eft to the reader. 

I I I . 5 .  The  N e y m a n - P e a r s o n - T e s t  

We show here how the mean and the variance of the Neyman-Pearson statistic can 
be computed for testing symmetry with normal, logistic, double exponential or 
Cauchy distribution against the alternative given by 

/t~(x) = F (x + & )  i(x >= o) + F(x) I(~ <o). 

Consider the case where 

1 

Let h, be the density of H,. 
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By Taylor expansion, 

[ ~ , .  f ( x )  f ' ( x )xX  
h , ( x ) . . ~ t j t x ) + ~ n  + - - ~ -  ] I(x>=O)+ f ( x ) I ( x<O) .  

Therefore, 

h,(xi) _ [ + f '(xl)  ~ , log - -  ~ n 1/2 k ] I(xi >= O) 
1 <_i~, f (x , )  ~_, 1 x i i <_i<_,, f (xi)  

=n  -1/2 ~ (1 -x~) I (x i>O) .  
l <=i<=n 

When the X i are distributed according to F(x), the last expression is asymptotically 
normal with mean 0 and variance o-2 = 1. 

Under the alternative, the variance remains the same, while the mean P5 is given 
by 

o0 

(1 - x 2 )  f ' (x )  x dx = 1. 
0 

The same method applies to the other distributions. Since simple integrals only are 
involved, computation is left to the reader. 
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