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1. Itis well known that, if {R(4), 1 > 0} is a family of matrices B(1) = (r45(1);
8, 7=20,1,2,...) such that

rg(A) 20, > Arg(d) =1, (1)
j

R(4) — B(p) + (A — p) B(A) B(p) =0, (2)

Arij(A) =8y as A -—oo0, (3)

then R(A) is the resolvent for a submarkovian semigroup {P(¢), ¢ > 0}. That is,
there exist functions p;;, continuous on (0, oo), such that r;; is the Laplace trans-
form

rij(A) = [ e~ py (1) dt
0

of py, and such that P () = (py(f)) satisfies

pi(t) =0, sz‘j(t)él, (1%)

i
P(s-t)=P(s) P(t), (2%)
pi{t) >0y as t—>0-+. (3%)

The proof (for which see e.g. [4]) comes by applying the Hille-Yosida theorem
to R(A), acting as an operator on the Banach-space ! by

(xR(l))j=ZwiTzf(/1), zel, (4)

and condition (3) is needed to make the range of R (A) dense in .

We shall show that P () can still be obtained from R () if one drops (3) for
R (), of course at the expense of losing (3*) for P(t). The proof will use direct
real variable arguments because use of the Hille-Yosida theorem becomes in-
convenient when the range of R (1) is not known to be dense, and because in any
case such direct arguments may be interesting.

2. We now prove the following:

Theorem. (i) Given R(4) satisfying (1) and (2), rij(A) ts the Laplace transform
of pi;(8), continuous on (0, oo) and such that P (t) = (pi;(t)) satisfies (1%) and (2%).

(i) The limits wy; = lim py;(8) exist, and Ary(A) = wiy as A — oo,
{—>0+-

Corollary. If R(A) also satisfies (3), then P(t) also sotisfies (3%).
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Proof. We start from the familiar observation that (1) shows R(A), defined
at (4), to be a positive linear operator on ! with norm < A-1, and that (2) then
implies

(2] By =t (R(ym ®)
in the uniform operator topology. Hence
0= (= 4] ry(d) S myjinst, (6)
and also
0= (- -Cg—)" S ryp(A) < mljane, )
i

Using the theory of completely monotonic functions (for which see e.g. [3;
415—418]), we deduce from (6) that 7;; (1) is the Laplace transform of a measurable
function fy; (f) such that

0=fy(t) =<1, t>0, (8)
and from (7) that

0= Sl =1, ¢>0; (9)

note that since r;; determines f;; only up to a null set, we can avoid exceptional
null sets in (8) or (9).
Next, we show that
fig(s +8) = Zfzk ) ki (£) (10)

except perhaps on a measurable (s, f) — set of plane measure zero. This holds
because the double Laplace transforms

T }O - - gmAs—ut g dt
0

of the two sides in equation (10) are

(o — AL {rig () — rig(u Z"ik ) i (p

for A + u. These are equal by (2), and we can also get equality for 1 = u by
letting A — w. The uniqueness theorem for double Laplace transforms shows that
(10) holds a.e. (s, t).

Our problem now is simply how to alter the f;;(f) on a null set in such a way
that (8) and (9) continue to hold, (10) holds for all s > 0, { > 0, and the new
version pg; () of fi;(£) is continuous on (0, co). Define, for ¢ > 0,

py(t —“fouc ) fi (6 — w) du a1

— i (2 f () g6 — ) . 12)
0 \E

Since (10) holds a.e. (s, t), it follows that for almost all { > 0 the integrand in
(12) equals f;; () for almost all ¢ > 0 the integrand in (12) equals f;; (£) for almost
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all w € (0, t), and therefore
Py () =fuy), a.e. (13)

py(f) = 71 ng (14)

Next, (11) tells us that

where gy is the convolution of the two bounded measurable functions f;; and fz;
and is therefore continuous. Also the series Z gx () is dominated by
)

4
2 J fue(w) du ;
%0

the terms of this series are continuous, and its sum

¢
f(z fir (u)) du

0\&

is continuous (see (9)), so that by Dini’s theorem the series converges uniformly
on any interval [0, T']. Hence Z g% (f) is also uniformly convergent, and it follows
that

Py (1) is continuous for > 0. (15)
We can now deduce from (8), (13) and (15) that
0=p;;t) =1 forall ¢>0, (16)

and from (9) and (13) that
Zm <1 an

for almost all £ > 0; but since p;; is continuous the sum in (17) is lower semi-
continuous, so that (17) holds for all { > 0. (Of course we shall see in the end that
the sum in (17) is continuous).

We have now shown that py is continuous and satisfies (1*), and continue
the argument by deriving (2*) from (10}, This amounts to removing the exceptional
(s, 1) — set in the statement

Piz(s + 1) szlc ) pr;(8), a.e. (1), (18)

obtained from (10) and (13). Since the left side is continuous for s > 0, £ > 0,
it will be enough to show that the right side is continuous in every set
{a<s=b, a=t<b}, 0<a<b.
Because 0 = pgy(t) =1 it will be enough to show that me(s) is uniformly
P

convergent on [a, b], and this will follow from Dini’s theorem if we can show
> pik(s) to be continuous. Now, from (12),
k

Zpij( ’“8“1f8<2 Zfzk fkis—u))

0

=g1 kzojfik () (% fri(s — u)) du
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The series z here is dominated, because of (9), by
)

foik(u) du,
%0

and we saw earlier that this series converges uniformly on any [0, 7']. The uniform
convergence of Z pi;(8) on [a, b] follows.

i
We have now proved (i) of the Theorem. As for (i), the existence of

i = Him py (£)
i—>0+
is known ([2]; see also [1; II. 2.3]), and the fact that Ari;(A) = wy; as 1 —>co
is & well-known abelian property for Laplace transforms.

3. The reader may well consider whether it is possible to deduce the Theorem
from the Hille-Yosida theorem, even though the range of £ (1) may not be dense.
It seems to be possible to construct such a proof ‘by hindsight’ by converting
known facts about the matrix P (), given in [1; Th. II. 2.3] into statements about
R (), which have then to be derived directly from (1)—(3). The argument, using
the notation of [1], would begin by an examination of the range of E (1), leading
to an identification of the classes F, I, J, ... and the quantities u;, followed by
the construction of a resolvent with dense range on the state space {I,J,...}.
This would lead, via the Hille-Yosida theorem, to a transition matrix ({177 (¢)),
and a further argument should lead to the functions I1;;(f) (¢ € F). Although I
have not gone through all details of the argument, I have little doubt that it
would be quite as elaborate as the arguments in §2.
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