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1. I t  is well known that ,  if  {R (4), ,~ > 0} is a family of matrices R(~) = (rij(~) ; 
i, ] = 0, 1, 2 . . . .  ) such tha t  

r~j(~) >=o, ~ ~r~j(;~) <= 1, (1) 
i 

R(~) - R(~) + (4 -- ~)R(~)R(~)  = 0, (2) 

),r~j()~)--~(~ij as ~ - + r  (3) 

then R (4) is the resolvcnt  for a submarkovian semigroup {P (t), t > 0}. Tha t  is, 
there exist functions P'~I, continuous on (0, c~), such tha t  r/j is the Laplace trans- 
form 

0 o  

rtj (4) = S e-Zt Pii (t) dt 
o 

of Ptj, and such tha t  P (t) = (Pij (t)) satisfies 

p~j(t) > 0 ,  ~p i j ( t )  < 1, (1") 
] 

P(s  + t) = P ( s ) P ( t ) ,  (2*) 

p~j(t)-->(~ij as t - + 0 + .  (3*) 

The proof  (for which see e.g. [4]) comes by  applying the Hille-Yosida theorem 
to R (~), acting as an operator  on the Banach-space 1 by  

(xR(~))j= ~x~r~j(~), xel ,  (4) 

and condition (3) is needed to make the range of R (4) dense in 1. 
We shall show tha t  P(t) can still be obtained from R(~) if one drops (3) for 

R(~), of course at  the expense of losing (3*) for P(t).  The proof  will use direct 
real variable arguments  because use of the Hille-Yosida theorem becomes in- 
convenient  when the range of R (4) is not  known to be dense, and because in any  
case such direct arguments  may  be interesting. 

2. We now prove the following: 

Theorem. (i) Given R(X) satis/ying (1) and (2), rij(,~) is the Laplace trans/orm 
o/pii(t) ,  continuous on (0, c~) and such that P (t) = (pij(t)) satis/ies (1") and (2*). 

(ii) The limits c o i i :  limp~j(t) exist, and ~r~(,~) ~ o~ij as ~ --> ~ .  
t.-~O+ 

Corollary. I / R ( 2 )  also satis/ies (3), then P(t)  also satis/ies (3*). 
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Proo/. We star t  from the familiar observation tha t  (1) shows R(~), defined 
at  (4), to be a positive Linear operator  on 1 with norm ~ ~ - 1 ,  and t ha t  (2) then  
implies 

[ \ - - d ' ~  / ~ - . )  ~(~) = ~! (R(~) ) -<  (5) 

in the uniform operator topology. Hence 

0 < --  dX ru(2) < n ! / ~ ? + l '  (6) 

and also 

i 

Using the theory  of completely monotonic  functions (for which see e.g. [3; 
415--418]),  we deduce from (6) t ha t  rij (),) is the Laplace t ransform of a measurable 
func t ion / l j  (t) such tha t  

0 =< /u (t) =< l , t > 0 ,  (s) 
and from (7) t ha t  

O _ - - < ~ / ~ j ( t ) ~ l ,  t > 0 ;  (9) 
J 

note t ha t  since rij de te rmines / i j  only up to a null set, we can avoid exceptional 
null sets in (8) or (9). 

Next ,  we show tha t  
/~j (8 + t) = ~ / ~  (8)/kj(t) (10) 

k 

except  perhaps on a measurable (s, t) - -  set of piano measure zero. This holds 
because the double Laplace t ransforms 

0 0 

of  the two sides in equat ion (10) are 

k 

for ~ 4= ft. These are equal by  (2), and we can also get equal i ty  for ~t = ff by  
lett ing ;t ~ #. The uniqueness theorem for double Laplace t ransforms shows tha t  
(10) holds a.e. (s, t). 

Our problem now is simply how to alter the ]i3' (t) on a null set in such a way 
t ha t  (8) and (9) continue to hold, (10) holds for all 8 > 0, t > 0, and the new 
version p~j (t) o f / i j  (t) is continuous on (0, co). Define, for t > 0, 

t 

p~j(t) = t-1 ~ ~I~.~(~)l~j(t - ~) ~ (11) 
k 0  

t 

Since (10) holds a.e. (s, t), i t  follows t ha t  for almost  all t > 0 the integrand in 
(12) equals ]ij(t) for almost all t > 0 the integrand in (12) equals / l j ( t )  for almost  
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all u ~ (0, t), and therefore 
pij(t) =/ t j ( t ) ,  a.e. (13) 

Next, (11) tells us that  
p j(t) = t-1 (t) ,  (14) 

k 

where gk is the convolution of the two bounded measurable functions/l~ and 1~1 
and is therefore continuous. Also the series ~ g~ (t) is dominated by 

k 
t 

k 0  

the terms of this series are continuous, and its sum 

t 

is continuous (see (9)), so that  by Dini's theorem the series converges uniformly 
on any interval [0, T]. Hence ~ g~ (t) is also uniformly convergent, and it  follows 
that  

Tij(t) is continuous for t ~ 0.  (15) 

We can now deduce from (8), (13) and (15) that  

0 ~ p t j ( t ) ~ l  fora l l  t > 0 ,  (16) 

and from (9) and (13) tha t  
P~t (t) ~ 1 (17) 

i 

for almost all t > 0; but  since Pij is continuous the sum in (17) is lower semi- 
continuous, so that  (17) holds for all t ~ 0. (Of course we shall see in the end that  
the sum in (17) is continuous). 

We have now shown that  Pil is continuous and satisfies (1"), and continue 
the argument by deriving (2*) from (10). This amounts to removing the exceptional 
(s, t) -- set in the statement 

p i j ( s + t ) =  ~pi~(s)p~j(t) ,  a.e. (8, t),  (18) 

obtained from (10) and (13). Since the left side is continuous for s ~ 0, t ~ 0, 
it  will be enough to show that  the right side is continuous in every set 

(a~--s~_b, a ~ _ t ~ b } ,  O ~ a ~ b .  

Because 0 ~ Pkl (t) ~ 1 it will be enough to show that  ~ Pt~ (s) is uniformly 

convergent on [a, b], and this will follow from Dini's theorem ff we can show 
~,lo~(s) to be continuous. Now, from (12), 
k 

8 

i i 
8 
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The  series ~ here is dominated,  because of (9), b y  

8 

J/i (u) du, 
k 0  

and we saw earlier t h a t  this series converges uni formly  on any  [0, T]. The  uni form 
convergence of ~. pij (s) on [a, b] follows. 

i 
We have  now proved  (i) of  the  Theorem.  As for (ii), the existence of 

o)lj = lira p~j (t) 
t---~ 0 § 

is known ([2] ; see also [1 ; I I .  2.3]), and  the  fact  t h a t  ~r~j (~) --~ o~j as ~ --> oo 
is a well-known abelian p rope r ty  for Laplace t ransforms.  

3. The reader  m a y  well consider whether  it  is possible to  deduce the Theorem 
f rom the Hil le-Yosida theorem,  even though  the range of R (2) m a y  not  be dense. 
I t  seems to be possible to construct  such a proof  ' b y  hindsight '  b y  convert ing 
known facts abou t  the  ma t r ix  P (t), given in [1; Th. I I .  2.3] into s t a t ements  abou t  
R (~), which have  then  to be der ived direct ly f rom (1)--(3). The a rgument ,  using 
the  no ta t ion  of [1], would begin b y  an examina t ion  of the  range of R (A), leading 
to an identification of the c lasses/v,  I ,  J ,  . . .  and  the  quant i t ies  u~, followed b y  
the  construct ion of a resolvent  with dense range on the s ta te  space {I,  J ,  . . .}. 
This would lead, via the I-Iifie-Yosida theorem,  to a t ransi t ion ma t r ix  (IIij(t)), 
and a fur ther  a rgumen t  should lead to the functions II~j(t) (i ~ F). Although I 
have  not  gone through all details of the argument ,  I have  little doub t  t h a t  i t  
would be quite as e laborate  as the a rguments  in w 
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