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This note is the result of a tidying-up operation on the author’s paper [4], the
notation and terminology of which will be used without more ado. We shall deal
here only with the construction of strictly stochastic transition matrices though
the substochastic case may be dealt with by a trivial modification.

The argument in [4] consisted of three parts. First it was shown that a stochastic
transition function P = {P(f): ¢ = 0}, whose @Q-matrix Q satisfled Assumptions
A and B, defined, by formulae stated explicitly, matrix functions 5 = 5(P)
and T = T (P) satisfying the conditions set out in Theorem 3 of [4]. Next, it
was shown that any matrix functions 7 and 7' satisfying these conditions defined,
again by formulae stated explicitly, a strictly stochastic transition function
P = P(yn, T) with @-matrix . Lastly, probabilistic interpretations were given
for the matrices 7 and 7' and for other matrices associated with them.

The ‘analytic’ section of the paper therefore presented a ‘recessary and suffi-
cient’ construction. What was unsatisfactory was the following situation.

Starting with @ satisfying Assumptions A and B, one could choose 5 and T
suitably and then construct from them the transition function P — Py, T). If
one then calculated 7 = 5 (P) and T = T (P), one found that, in general, 77 +7
and T+ 7. (The example following Theorem 18.5 of CHUNG [2] illustrates this.)
There is no contradiction here. All that was asserted in [4] was the true result:

P=PnT)=PunT).

Let {X(¢)} be a Markov chain on E with transition matrix {P(f)} where
P'{0) = @ and @ satisfies Assumptions A and B. Then (see Crune [1]) X (£) will
at certain times reach points of the exit boundary. An exit boundary point b may
be ‘stable’ in that definite time intervals elapse between successive visits to . On
the other hand, b may be ‘instantaneous’ in that infinitely many visits to b occur
in a finite time interval.

It is at first sight surprising that the law of succession of the exit boundary
states qua limit points is in general different from the law of succession of states in
B under the process {Z(f)} of § 4 of [4]. However, there is no great mystery here,
only a ‘Principle of Superposition of States’. Let us examine this in a trivial case.

Suppose that one started with the substochastic transition function on two
states ¢ and § with @-matrix

T [—2 0
] 0o —2/.
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One could build this up to a strictly stochastic transition function as follows:
Adjoin two ‘boundary’ states ¢ and d and set up the @-matrix
v j ¢ d
—2 0 2 0

?

j 0 —2 0 2\. (1)
¢ 0 2 —2 0

d 1 1 0 —2

Let {Z(t)} be a Markov chain with @-matrix as at (1) and let {X ()} be the process
on ¢ and j obtained by deleting the states ¢ and ¢ from {Z(t)}. Then {X ()} has

@-matrix
— 2 2
1 —1/.

We could however obtain a process with the same @Q-matrix as {X ()} by
adjoining ‘boundary’ states g and p, forming instead of the matrix at (1), the
matrix

7 a b
7 —2 0 2 0
j 0 —2 1 1
a 0 2 -2 0
b 2 0 0 —2

and then deleting g and b.

What is important is that, in an obvious sense, ¢ = a, d = %(a + b). It is this
type of stochastic lumping together of stable boundary states which occurs when
n=+n and T+ T'. The point is that making a boundary state real involves coupling
together an exit law and an entrance law. An instantaneous boundary state is the
natural fusion of an exit law with a definite matching entrance law. (See the author’s
paper [4].) A stable exit law may be coupled with more or less arbitrary combinations
of entrance laws.

It is true that there is a ‘canonical’ process extended to the boundary. See the
discussion in § 16 of CrHuNG [2]. We shall approach the problem differently.

Suppose that @ satisfies Assumptions A and B. If P is a strictly stochastic
transition function with P’ (0) = @, let us call P non-redundant if the vectors
y*(4) are all different and extremal in the sense of § 3.4 of [4]. This implies that
G = I and that U(1) = V(4).

For non-redundant transition matrices, Theorem 3 of [4] may be replaced by
the following more precise result.

Theorem. Let E be a countable set and let Q be an E X E malriz satisfying
Assumptions A and B. Define the minimal resolvent @ (1) as in Lemma 5 of [4] and
the vector 29 as in Lemma 6 of [4].

Let 2% (b € B) be the extremal (sojourn) nmon-negative solutions of Qx = 0 such
that

be =1—al.
beB
For A > 0 define xb (1) =z — A (A)ax? = 0(b € B). For each b in B choose an
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I valued function #b(-) on (0, co) satisfying (x®(1),1)> =1,
nP(p) = (W) AQA, gy (A p>0)
(see Lemma 7 of [4]) and also
Hm (AnP(4), 1 — &by < oo (be B).

A—o0

Define
Ueb(A) = (An®(A), 2¥) (a,be B; 1> 0).

Next choose a matriz T on B X B such that

— Tab = Utb(co) when a +=b and Ub(co) (is finile,
—~Tab = Udb(co) when a +=b and Ubb(co) is infinile,
> Tee=1t  (aeB).

ceB

Then the matrix M () = [U (A) + T2 exists and is non-negative. Now set
T4 (/’{) (p” )u + Z Z.%‘ M“b (l\ .
aeB beB
Then R(A) = {ry;(A)} is the resolvent of a strictly stochastic fransition funclion
{P(t)} with P'(0) = Q. Every non-redundant such {P (1)} may be constructed in the

above manner.
With the notation used above, we now have

ﬁ:n,T:T.

Assuming T chosen as just described, let {Z (1)} be the Markov chain described in
§ 4.2 of [4]. Then the law of succession of states in B under {Z(t)} is identical to the
law of succession of boundary points qua limit points of paths traversed by the Markov
chain {ZE(t)}. We recall that {Z* (1)} has transition matriz {P (t)} and that the law of
succession of states in B under {Z (t)} is determined by the ratios Tev|Ten, (a =+ b).

Proof of the Theorem. Suppose P given with P'(0) = @, @ satisfying Assump-
tions A and B. The matrix 7' (P) is the (subsequential) limit of the matrix 7' (u)

where
Z Mab () Ube ()

Tec(u) = ZM’“(,LL)
;

(See equation (48) of [4].)
If Uce(co) is finite, in which case Ub¢(oo) is finite for all b then, in a suitable
subsequence,
— Tac () = ZHab W) Ube(p ZHab Uve (o0)
with He? (i) as in equation (39) of [4] and H2? = lim Heb(u). From equation (43)
of [4], HU (u) = U (u) for all 4 and hence if U¢¢(co) is finite we have
— Tac = 3 Hab Jbe(o0) = Usc(co)  (a + ¢)
as required.

Conversely, suppose that 7' has been chosen so that — T'e¢ = U2¢(c0) when
Uce(co) is finite and that the transition function {P (¢)} has been constructed as
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explained in the theorem. Then since

MWT+Uwl=1,

we have fora + ¢,
> Mo () [T + U (e — 0.
b

If Ucc(oco) is finite, this implies that
0= H[T + U(oo)]be = Hac[Tee |- Uc¢(co)].
Hence Haoe = 0.
If Ucc(oo) = oo, then if ¢ + ¢,
— 3 H ) [T + U ()Pe = Hoe () [T + Uee ()]

b*e
Let p tend to infinity to yield
— ZHab[T + U (u)]pe = Hae[Tee |- Uee(oo)]
b*e
so that, again, H2%¢ = 0. Hence H = I.
We now show that % (1) = 5% (1) for g in B. From equation (33) of [4],
M (u) P (4)
v Ap, ) lim %,,ﬁ,i, _
g (w Ap 1) %M“t(u)

= iim > Heb(u)nb(A) = 3 Honb(2) = %(4) .
b b

17“ (l) = lim ’“

Since M ()T =1 — M (u)U(u),

o _ e — (M) Ul %
T =TT S T S

= [H (u) Tec — Tac

We have shown that, under the new conditions,
Mab(c0) =0, (@ = b).

Consulting Theorems 4 and 5 of [4], we see that if {Z(f)} starts in g, the time it
spends in b ( + a) before entering the set E is zero with probability one. This shows
that the law of succession of states in B is the correct one.

Our restriction to non-redundant {P(f)} is not important. In the general
situation one needs to define the ‘boundary’ in terms of the non-extremal vectors
20 of Theorem 3 of [4] and to replace ’s by z’s throughout the whole theory.
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