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This note is the result of a tidying-up operation on the author 's  paper [4], the 
notation and terminology of which will be used without more ado. We shall deal 
here only with the construction of strictly stochastic transition matrices though 
the substoehastic ease may  be dealt with by a trivial modification. 

The argument in [4] consisted of three parts. First it was shown that  a stochastic 
transition function P - .  { P ( t ) : t  >= 0}, whose Q-matrix Q satisfied Assumptions 
A and B, defined, by formulae stated explicitly, matrix functions ~ = ~(P)  
and T = T ( P )  satisfying the conditions set out in Theorem 3 of [4]. Next, it 
was shown tha t  any matrix functions ~ and T satisfying these conditions defined, 
again by formulae stated explicitly, a strictly stochastic transition function 
P = P(~,  T) with Q-matrix Q. Lastly, probabilistie interpretations were given 
for the matrices ~ and T and for other matrices associated with them. 

The 'analytic '  section of the paper therefore presented a 'necessary and suffi- 
cient' construction. What  was unsatisfactory was the following situation. 

Starting with _Q satisfying Assumptions A and B, one could choose ~ and T 
suitably and then construct from them the transition function P = P (~, T). I f  
one then calculated ~ = ~ (P) and T = T (P), one found that,  in general, ~ =~ ~1 
and T4: T. (The example following Theorem 18.5 of C~uNG [2] illustrates this.) 
There is no contradiction here. All tha t  was asserted in [4] was the true result: 

P = P(7,  T) = P(~,  T).  

Let  {X(t)} be a Markov chain on _E with transition matr ix  {P(t)} where 
P'  (0) = Q and Q satisfies Assumptions A and B. Then (see CtlU~G [1]) X (t) will 
at  certain times reach points of the exit boundary. An exit boundary point _b may 
be 'stable' in tha t  definite t ime intervals elapse between successive visits to b. On 
the other hand, _b may  be ' instantaneous' in that  infinitely many  visits to b occur 
in a finite t ime interval. 

I t  is at  first sight surprising tha t  the law of succession of the exit boundary 
states qua limit points is in general different from the law of succession of states in 
B under the process {Z(t)} of w 4 of [4]. However, there is no great mystery here, 
only a 'Principle of Superposition of States'.  Let us examine this in a trivial ease. 

Suppose tha t  one started with the substochastic transition function on two 
states i and _] with Q-matrix 

i j 

i \ - 0  - . 
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One could build this up to a 

Adjoin two 'boundary '  states 

strictly stochastic transition function as follows: 

We could however obtain a process with the same Q-matrix as {X(t)} by 
adjoining 'boundary '  states a and _b, forming instead of the matr ix  at (1), the 
matr ix  

i j a b 

i o - 2  1 
a 0 2 --2 
b 2 0 0 - -  

and then deleting _a and b. 
What  is important  is that,  in an obvious sense, c = a, d ---- �89 (a ~- b). I t  is this 

type of stochastic lumping together of stable boundary states which occurs when 
# ~ and T ~ T. The point is that  making a boundary state real involves coupling 

together an exit law and an entrance law. An instantaneous boundary state is the 
natural  fusion of an exit law with a definite matching entrance law. (See the author 's  
paper  [4].) A stable exit law may  be coupled with more or less arbi trary combinations 
of entrance laws. 

I t  is true tha t  there is a 'canonical' process extended to the boundary. See the 
discussion in w 16 of C ~ v ~  [2]. We shall approach the problem differently. 

Suppose that  Q satisfies Assumptions A and B. I f  P is a strictly stochastic 
transition function ~dth P '  (0) = Q, let us call _P non-redundant if the vectors 
ya (2) are all different and extremal in the sense of w 3.4 of [4]. This implies tha t  
G = I and tha t  U(2) = V(2). 

For non-redundant transition matrices, Theorem 3 of [4] may  be replaced by 
the following more precise result. 

Theorem. Let E be a countable set and let Q be an E • E matrix  satis]ying 
Assumpt ions  A and B. De/ine the min imal  resolvent q5 (2) as in Lemma 5 o/[4] and 
the vector x o as in  Lemma 6 o] [4]. 

Let xb(b ~ B) be the extremal (sojourn) non-negative solutions o] Qx  = 0 such 
that 

~ x b = 1 - -  x o . 

b s B  

Eor ,~ > 0 define xV (2) = x~ - -  2 q5 (2)x b ~ 0 (b E B).  ~'or each b in  B choose an 
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_c and d and set up the Q-matrix 

i j e d 

i [ / - - 2  0 2 0 \  

i / o - 2  0 i )  " (1) 
c \ 0 2 - - 2  
d 1 1 0 - -  

Let  {Z (t)} be a Markov chain with Q-matrix as at (1)and let {X (t)} be the process 
on i and i obtained by deleting the states _c and _d from {Z(t)}. Then {X(t)} has 
Q-matrix 
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l valued/unction ~b (.) on (0, c~) satis/ying (~b (1), 1 } ----- 1, 

~b (~) = ~b (4)A (4, ~) (4, ~ > 0) 

(see Lemma 7 o/[4]) and also 

l im(2~b(2),  1 - - x  b} < c~ ( b ~ B ) .  
,~---) oo 

Define 

Next choose a matrix T on B • B such that 

-- Tab-~ Uab(c~) when a ~= b and Ubb(c~) is finite, 
-- T ab ~ Uab(c~) when a ~= b and Ubb(c,~) is infinite, 

Tac ~_ ~:a (a e B) . 
c~B 

Then the matrix M (~) z [U (2) + T/-1 exists and is non-negative. Now set 

ri~ (2) = qb~j ()0 ~- ~ ~ xa (~) iab  (~) ~ (2~. 
a e B  b~B 

Then R(A)---- {rij(A)} is the resolvent o/ a strictly stochastic transition /unction 
( P  (t)} with P' (0) ~-- Q. Every non-redundant such {P (t)} may be constructed in the 
above manner. 

With the notation used above, we now have 

Assuming T chosen as lust described, let {Z (t)} be the Markov chain described in 
w 4.2 o/[4]. Then the law o/succession o/states in B under {Z(t)} is identical to the 
law o/succession o/boundary points qua limit points o/paths traversed by the Markov 
chain {Z E (t)}. We recall that {Z E (t)} has transition matrix { P (t)} and that the law o/ 
succession o/states in B under {Z (t)} is determined by the ratios Tab/Taa, (a :~ b). 

Proo] o/the Theorem. Suppose P given with P '  (0) = Q, Q_ satisfying Assump- 
tions A and B. The matr ix T(P)  is the (subsequential) limit of the matr ix T(#) 
where 

(~ac __ ~ M a b  (# )  Ubc  ([~) 

Tat(#) = b 
M.~ (~) 

t 

(See equation (48) of [4].) 
I f  Ucc(co) is finite, in which case Ubc(oo) is finite for all _b then, in a suitable 

subsequence, 
_ Tac (#) = ~ Hab (#) Ubc (/~) --+, ~ Hab Ubc (oo) 

with H ab (/~) as in equation (39) of [4] ~nd H ab ~ lira H ab (#). From equation (43) 
of [4], H U (/~) ~ U (#) for all # and hence if Ucc (oo) is finite we have 

- T~o = ~ H ~  Ub~(~)  = U ~ ( ~ )  ( a ,  c) 
as required. 

Conversely, suppose tha t  _T has been chosen so tha t  - - T  ac ~- Uac(oo) when 
U cc (r is finite and tha t  the transition function {P (t)} has been constructed as 
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exp la ined  in the  theorem.  Then  since 

M ( # ) [ T  -k U(#)]  = I ,  
we have  for a + c, 

~ M a b ( / z ) [ T  @ U(/z)] bc = O. 
b 

I f  U cc (oo) is finite, th is  implies  t h a t  

0 = ~ H a b [ T  -~- U(c~)]bc = Hac[Tcc  -[- Ucc(oo)]. 

Hence  H ac = O. 

I f  Ucc(~o) - -  0% then if  a + c, 

- -  E H a b ( f l ) [ T  @ U (/z)] bc = H a c ( # ) [ T c c  @ Ucc(~)] . 
bes t  

Let  # t end  to  inf ini ty  to  yield 

- -  ~ H a b [ T  ~- U(#)]  bc = Hac[Tcc  @ Ucc(oo)] 
b ::T e 

so tha t ,  again,  H ac = O. Hence  H -= I .  

W e  now show t h a t  ~a (2) = ~a (2) for _a in B. F r o m  equa t ion  (33) of [4], 

~a(2) = lira Ya(tt)A(#') ')  b 
[[ya(tt) A ( #  , 1)[[ - -  l im ~-)t /~t(~) = 

t 

= Jim ~ H ab (/z)~b (~.) = E Hab'~b (.~.) = ~a ()Q. 
b b 

Since M ( # )  T = 1 - -  M(/~) U(~t), 
~.  M ab (~) T be 

~ac(lz ) = d ac -- [M(/~) U(/~)] ac b 
y . M ~ ( # )  - ~ ~ ( ~ )  - 

= [H (tn T]ac -> T " ~ .  

W e  have  shown tha t ,  under  the  new condit ions,  

Mab(oo)  = O, (a :t: b) .  

Consult ing Theorems 4 and  5 of [4], we see t h a t  i f  {Z(t)} s t a r t s  in a, the  t ime i t  
spends in b ( ~: a) before enter ing the  set _E is zero with  p robab i l i t y  one. This shows 
t h a t  the  law of  succession of  s ta tes  in _B is the  correct  one. 

Our res t r ic t ion  to  non - r edundan t  {P(t)} is not  impor t an t .  I n  the  general  
s i tua t ion  one needs to  define the  ' b o u n d a r y '  in t e rms  of the  non-ex t remal  vectors  
z b of Theorem 3 of [4] and  to replace x 's  b y  z's t h roughou t  the  whole theory .  
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