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Introduction 

Limiting distributions and stochastic or almost  sure convergence of infinite 
products  of  independent  - -  not  necessarily equally distr ibuted - -  r andom group 
elements as well as interconneetions of the various types  of convergence have been 
investigated in the last years by  several authors,  as KLoss  [1], [2] ; TO~T~AT [3] ; 
LOYNES [4] ; B,~t~TtPAI [5] and others. The aim of  the present paper  is to establish 
general theorems, containing some of the results of the above mentioned papers as 
special cases and, in particular, to find the proper generalization of the fact  t ha t  for 
sums of  independent  real-vMued random variables convergence in law, stochastic 
convergence and convergence with probabil i ty 1 are equivalent. The main results 
are theorems 3.1 and 3.2 of w 3. They  will be obtained by  applying considerations 
concerning topological semigroups in general to the semigroup of probabil i ty 
measures on a group ; the basic tool will be the concept of  the tail idempotent, intro- 
duced in w 2. I n  w 1 a summary  of the necessary concepts and notat ions is given. 

w 1. Preliminaries 

I n  this section we summarise the basic concepts and notat ions used in the 
sequel, and ment ion some simple iemmas, with or wi thout  proofs. Details and 
further  references can be found, e. g., in the book of G ~ A X D E R  [6] or HnYER [7]. 

G will denote a locally compact topological group; eommuta t iv i ty  will not  be 
assumed. Saying "a  neighbourhood N" we shall always mean a symmetr ic  neigh- 
bourhood of  the ident i ty  in G (i. e., N = N- l ) .  

By  separability of G we shall mean the existence of  a countable base for its 
topology. A locally compact  group is separable ff and only if it is a -compact  and 
has a countable base at  the identity.  

The smallest a-algebra containing every compact  subset of G will be denoted 
b y e .  

A probability distribution # on G is a regular measure on .~, i. e., a measure 
satisfying 

(1.1) # (A)  = sup # ( K )  = i n f # ( U )  (K compact,  U open) 
K c A  U 2 A  

for every A c ~ ,  such tha t  # (G) = 1. 
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The set of all probability distributions on G will be denoted by  Pc. By the 
Riesz representation theorem, there is a one-to-one correspondence between the 
regular signed measures on ~ and the continuous linear functionals on the Banach 
space cd0(G); the probabili ty distributions # e P c  correspond to the positive 
functionals with norm one. Here c~0(G) denotes the closure (with respect to the 
sup norm) of Y ( G ) ,  the linear normed space of all continuous functions on G 
vanishing outside some compact set. The vague topology in the set of all regular 
signed measures on B is defined as the weak* topology in the conjugate space 
~ *  (G) :ten --~te if  and only if  1 

(1.2) f / (x) fin (dx) -+ f / (x) te (dx) for every / e ~0 (G). 

Actually, it would be enough to require (1.2) only for / ~ • (G) .  Note, tha t  P c  
is closed in the vague topology if and only if G is compact. Otherwise, the closure 
of P a  is the set of all regular non-negative measures on ~ with # (G) ~ 1, that  will 
be denoted by Qa. 

Lemma 1.1. I1 ~'n -+ ~'~ e Qa then /or  any compact set K and open set U with 
K c U c G we have lim inf ~n(U) ~ voo(K);lim sup ~n(K) ~ voo(U). 

~ - - - >  o o  n - - + ~  

Corollary. I]  ~o ~ P a  then/or  any e ~ 0 there exists a compact set Ks  such that 
~n (Ks) > 1 - -  e /or n large enough. 

Proo/. By Uryson's lemma, there exists ] e ~f (G)  with 0 =~ ] (x) ~ 1, /(x) =- 1 
for x E K and ](x) -~ 0 for x ~ U. Applying (1.2) to such an / ,  we obtain the state- 
ment  of the lemma. The corollary follows from the fact tha t  - -  by regularity - -  
a K with v~ (K) ~ 1 - -  s always exists, and there exists also an U ~ K having 
compact closure (e. g., U = K N ,  where N is a neighbourhood having a compact 
closure). 

R e m a r k .  In  the corollary, the restriction "for n large enough" has been made 
in order to ensure the validity of the s ta tement  also for nets (Moore-Smith con- 
vergence). 

The convolution te = tel * te~ of two probabili ty distributions (or, more gener- 
ally, of two measures/tl , /z2 e Qa) is defined by  

(1.3) #(B)  = f # l ( B x - 1 ) t e 2 ( d x )  -~ ] # 2 ( x - l B ) # l ( d x )  ( B E G )  

or, equivalently, by  

(1.4) f / ( z ) # ( d z )  ~-- f f / ( xy ) te~(dx) te2(dy)  (1 ec#0(G)). 

The convolution of two probabili ty distributions is again a probabili ty distri- 
bution; moreover, P c  is a topological semigroup with respect to the convolution 
(i. e., the mapping P a x  Pa  --> Pa: (#1, #2) ---> #1 * tee is vaguely continuous). The 
latter s tatement can be deduced from (1.3), using lemma 1.1 (first one has to show, 
tha t  the function g(n)(y) --_ ~ ](xy)lt(n)(dx) converges to g(y) : ~ / (xy) te (dx)  
uniformly on compact sets, ff #(n) _~ # e pa) .  Moreover, it can be shown in the 
same way tha t  convolution is continuous even as P c  • Qa ---> Qa. Here P c  cannot 
be replaced by  Qa, i. e., Qa is no topological semigroup, as the following simple 

1 Here and in the following, for the sake of simplicity, we use the notation/~n --> # (n --> o.), 
while it is understood that the same is true for Moore-Smith sequences too. 
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example shows : Let  #(1 n) be the point  lilgSS at the point  n of the real line and #~) 
the point  mass at  --  n;  then #(~) -~ 0, #(s -+ 0, bu t  #(~'~), #~n) is equal to the 
point  mass at  0, for n = 1, 2 . . . . .  

I f  H is a compact  subgroup of G, the Haa r  measure e)H on H (extended in the 
obvious way  to G) is an idempotent  of the semigroup Pa (i. e., ~ / ,  coil = COIl). I t  
is a very  impor tan t  fact  t ha t  these measures are the only idempotents  of P c  (for 
compact  G this was proved first by  WENDEL [8] and for the general case by  
Hv,u [7] ; actually, H~Y~R considered only separable groups but  this restriction 
is not  essential for the proof). A probabil i ty distr ibution # c P c  is called M-in- 
var iant  (where H is a compact  subgroup of  G) if for every x c H and B e 
# (Bx) = # (B). I t  is easy to see that/~ is H- invar iant  if and only i f #  = # ,  C0H. 

Lemma 1.2. Let K c G be compact and assume sup #1 (Kx) < ~ < 1 ; then there 
xeG 

exists a compact set K*  c G (depending on #x) such that [or any l~2 e Pc  and any 
x ~ G  

(ttl*tt2)(Kx) < ~ - -  ~ (l--~2(K*x)). 

Proo/. Let  /~ be a compact  set such tha t  #1 (/~) > 1 - -  ~/2. Then u ~ K -1/~ 

implies K u ~ / ~  = 0 and thus t ~ ( K u ) g  c~/2. Wri te  / ) - I K - - - - K * ;  then for 

y r K * x  we have x y  -1 ~ K *-1 = K - 1 K  and hence 

(#1 * #2)(Kx) = ~ #1 ( K x y  -1) #2 (dy) -~ f #1 ( K x y  1)#~ (dy) ~= 
I~*X G\\K*x 

( 1  - ~(K*x))  (1 - -  # 2 ( K ' x ) )  = ~ - -  ~ < c~#2(K*x) + 

The support  S (#) of a probabil i ty distribution # c P c  is defined as the set of  
those elements of G, all neighbourhoods of which have a positive # measure. S (#) 
is the smallest closed set with # (S (#)) = 1. I n  fact, if K is an arbi t rary  compact  
set and K ca S (#) = 0, then each point  of K has some neighbourhood of #-measure 
0 ; as K is compact,  already a finite number  of these neighbourhoods cover K and 
thus /~ (K) = 0. This means, by  the regulari ty of #, tha t  # ( G ~ S ( # ) )  0, i. e., 
~ ( S ( ~ ) )  = 1. 

The following easily verifiable s ta tement  is very  impor tan t :  

Lemma 1.3. I / t t  = #1 * #2 then S(#) is the closure o/the set S(#1)S(l~2 ). 

(Here and in the following, a notat ion like A B is to be understood as 

A B  = ( x y : x e A ,  y e B } ) .  

A random element ~ of G is a ~-measurab le  mapping of some probabil i ty space 
(~, ~ ,  P) into G. W h e n  considering random elements, we shall always assume 
tha t  G is separable. Thus the distribution o/~, i. e ,  the measure 

(1.5) #~(B) = P{~-~(B)} ( B e ~ )  

is automat ical ly  a regular measure. I f  ~ and ~2 are independent random elements, 
i . e . ,  

(1.6) P{~-~(B1)  (h ~-1(B2) } 2  = P{~-~(B~)}P{$;~(B2)}  (B1, B2 e 2 )  

then the distr ibution of ~ 2  is equal to the convolution ~t~l, #~.~. This fact 
suggests several simple but  useful inequalities, t ha t  can be easily proved also 

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 5 2 0  
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directly f rom (1.3), e. g., 

(1.7) (#1 * #2) (A B) >= 121 (A)#2 (B) 

(1.8) # I ( A B  -1) ~ (#1. / t2)  (A) + #2(B) - -  1 

(1.8') /*2 (A-1B) ~ (/Zl * #2)(B)  + #1 (A) --  1 etc. 

A sequence ~n (n = 1, 2 . . . .  ) of  r andom elements converges stochastically to a 
r andom element ~ iff for every neighbourhood N (i. e., symmetr ic  neighbourhood 
of the identity) we have 

(1.9) l i m P { ~ n ~ N ~ } = l i m P { ~ n ~ - l E N } = l i m P { ~ l ~ N }  = 1 
n - - +  o o  ~- - ->  o o  n - - >  o o  

or equivalently (as for the equivalence of  (1.9) and (1.10) see e. g. [4]) 

(1.10) l imP{~neSN} = l imP{~- l~neN}  = lim P { ~ - I ~ e N }  = 1. 
~ - + o o  ~ - + o o  n - - >  o o  

I f  G is separable --  what  we always assume when dealing with random ele- 
ments  --  the Cauehy criterion 

(1.11) P { ~ n ~ N ~ m } = P { ~ n ~ l e N } > l - - e  for n,m>=no=no(e) 

is necessary and sufficient for the stochastic convergence of the sequenee ~n to 
some random element ~ (see e. g. [6], p. 108). 

The concept of  the quotient space G/H of the topological group G with respect 
to some compact  subgroup H will play an impor tan t  role in the sequel. G/H is the 
set of all (left, say) cosets of H, with the quotient  topology with respect to the 
natural  mapping ~ of  G onto G/H (i.e., ~(x) = xH). Thus we obtain a homoge- 
neous space, which is I-Iausdorff, locally compact  and separable ff G is separable; 
G/H is a topological group, iff H is a normal  subgroup of G. I f  2V ranges over a 
base at  the ident i ty  of  G, the sets 

(1.12) N(x') = ~(NxH) 

form a base for the neighbourhoods of  x' = ~ (x) E G/H. Observe tha t  ff N = N -1 
- -  what  will be always assumed - -  we have 

(1.13) y' ~ N (x') iff x' E N (y') . 

A random element ~' of G/H can be defined as a N ' -measurablc  mapping from 
(tg, ~ ,  P)  into G/H, where ~ '  denotes the a-algebra generated by  the compact  
subsets of  G/H. The stochastic convergence on G/H can be defined in the same way 
as on G: lira st ~;~ = ~' iff 

(1.9') lim P { ~  eN(~ ' )}  = 1 
/ b - - +  o o  

for all neighbonrhoods N (of the uni ty  element of  G). The Cauchy criterion can be 
writ ten as 

(1.11') P{$~N(~'o~)}>=I--s for n,m>=no=no(s) 

and one can see 2 in a similar way  as for G itself tha t  this is necessary and sufficient 
for the stochastic convergence of  ~ to some ~'. 

2 As a matter of fact, this is a direct consequence of a general theorem due to Doss [10], 
since the homogeneous space G/H can be uniformized in an obvious way, yielding a separable 
complete uniform space. 



Infinite Products of Random Elements and Infinite Convolutions 283 

Since the na tura l  mapp ing  ~: G --> G/H is continuous and  hence measurable ,  
the m a p  of a r a n d o m  element  of ~ is a r a n d o m  element  ~' of G/H; this will be 
referred to as ~ rood H.  I n  part icular ,  by  saying t h a t  a sequence ~1, ~2 . . . .  of  
r a n d o m  elements  of G is (stochastically or with p robab ih ty  one) convergent  rood H 
we shall mean  the convergence of the corresponding sequence ~(~1), ~ (~2) . . . .  of  
r a n d o m  elements  of  G/H. 

We shall be interested in products  ~1 ~2 .. .  ~n of independent  r andom elements  
of G. For  such products ,  as Lou  [4] has shown, stochastic convergence is 
equivalent  to convergence with probabi l i ty  one. This result  holds also for the rood 
H convergence,  as it  will be shown later  (see the last  step of the proof  of theorem 
3.2). 

w 2. The Concept of Tail Idempotcnts  

The set PG of all p robabi l i ty  distr ibutions on a locally compact  group G is a 
topological semigroup with respect  to the vague topology and  the convolut ion as 
mult ipl icat ion.  

Since P v  is a subset  of  the uni t  sphere in the conjugate space of the Banach  
space ~0(G),  the vague closure of  P~  is (vaguely) compact .  I n  part icular ,  the 
compactness  of  G implies t h a t  of PG, too. 

When  dealing with a sequence of powers (in the convolut ion sense) of a given 
dis tr ibut ion on a compac t  group G, the theorem asserting t h a t  the sequence of 
powers of an element  of  a compac t  semigroup has a (unique) idempoten t  accumu- 
lat ion point  is ve ry  useful (cf. SchwArtz [12], KLoss  [1]). The following theorem 
will p lay  a similar role in our fur ther  investigations.  

Theorem 2.1. Let X be a compact semigroup, and xl ,  x2 . . . .  an arbitrary sequence 
o/elements o / X .  Write 

y~ = xk+lxk+2 ... xZ (0 ~ k < l) 

and assume that x ~ X is an accumulation point o/ the sequence Y~o = x l  x2 . . .  xz. 
Then there exist a directed set D and an integer-valued/unction n (d) on D with the 

property n(d) >_ no ]or d > do = do(no) - -  i.e., a subnet o/ the sequence o/ non- 
negative integers --  such that the limits ( in  the Moore-Smith sense, el., e.g. [11]) 

(2.1) lira y~(d) = yk ( k = O ,  1 , 2 , " ' ; y o = x )  
d 

and 

(2.2) lim yn (d) ---- Y~ 
d 

exist; yoo is necessarily an idempotent, and 

(2.3) y~ = y~y~ (k = 0, 1, 2 . . . .  ) .  

Furthermore i] x' ~ X is another accumulation point o / the  sequence yl o = x l  x2 . . .  x~ 
and n (d') (d' ~ D') is a subnet o/ the sequence o] non-negative integers such that the 
limits 

(2.4) lira y~.('t') = .~;: (k = 0, 1, 2 . . . .  ;Y0 = x') 
el' 

(2.5) l im Yi,,(,z') = Y2 
d '  

20* 
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exist, then/or any accumulation points y' and y"  o/the nets" Yn(d) and Yn(d') respec- 
tively, we have 

(2.6) x' = xy';  y' y"  = y~ . 

I]~ in particular, X satisfies the first axiom o/countability, one can take as n (d) 
some ordinary sequence o/positive integers n~ (l ~ 1, 2, ...). 

The assertions o/the theorem remain valid also ]or non-compact topological semi- 
groups X ,  supposing that X is a subspace ( in  the topological sense) o / a  compact 
Hausdorg space Xo and some/urther conditions ensure, that the limiting points in 
question, surely existing in Xo, belong also to X .  

Proo]. B y  assumpt ion ,  we have  l im y~(di) = x for some subne t  n(dl)  (dl E D1) 
dl 

of the  sequence of  non-negat ive  integers.  Consider the  topological  p roduc t  of 
c ~  

countable  copies of  X : Y = X X t, X z ---- X.  Tyhonov ' s  theorem implies  t h a t  Y is 
l = O  

compact ,  thus  for some subnet  n (d2) (d2 e D~) of n (dl)~ the  ne t  yn(42> will be 
convergent ,  where y~ denotes  the  vec tor  y~ = (Y~0, Y~, . . . ) :  

(2.7) l im yn(d2) = ~ ~_ (y0, y l , . . . )  (y0 = x) .  
d~ 

Now let  n (d) (d c D) be a subne t  of n (d2) such t h a t  Yn(d) (d ~ D) is convergen t ;  
the  re la t ion (2.7) obvious ly  remains  val id  for n (d), too. Thus for this  n(d),  the  
re la t ions (2.1) ~nd (2.2) hold. To prove  (2.3) and  t h a t  y~ is an idempoten t ,  t ake  in 

equa t ion  

(2.8) Y~ = YkY] j ~ (k < ] < l) 

three  t imes  ]imits, first as l = n (d), then  as ] = n (d) and  a t  las t  as k = n (d). By  

cont inui ty ,  we ob ta in  

(2.9) y~ J ~ "~ ~ = Yk YJ, Y~ = Y~ Y~ ; Y~ = Y~ Y~ �9 

To prove  (2.6), t ake  a subnet  n(d') of the  sequence of non-negat ive  integers 

sat isfying (2.4). 
Choose fur ther  subnets  n(do)(do ~ Do) and n(do) (d~ e Do) of n(d) and  n(d'), 

respect ively ,  such t h a t  

(2.10) lira Yn(d~ = Y',  lira y,,(d~) ~ y " -  
do d~ 

Then,  t ak ing  l imits  in (2.8) first as l : n(d'), t hen  as 2' = n(do), we obtain ,  
pu t t i ng  k : O, x' = xy';  fur ther  t ak ing  l imits  in (2.8) first as l = n (d), then  as 

?" = n(d'0) and  a t  las t  as k : n(d0), we ob ta in  y~ = y 'y" .  
I f  X satisfies the  first ax iom of countab i l i ty ,  one can t ake  everywhere  o rd ina ry  

sequences ins tead  of nets.  
The las t  s t a t emen t  of the  theorem is obvious.  

Definition. A n  idempotent y~ associated with the infinite product x l  x2 ... as in 
theorem 2.1 will be called a tail idempotent o/the infinite product. 

Let  us emphasiz% t h a t  an infinite p roduc t  m a y  have  several  ta i l  idempoten t s .  
The following theorem indica tes  a re la t ion  be tween  t hem enabl ing us in cer ta in  
cases (e. g., for commuta t i ve  X) to es tabl ish uniqueness.  



Infinite Products of Random Elements and Infinite Convolutions 285 

Theorem 2.2. Let n (d) and n (d') be two subnets o / the  sequence o /pos i t ive  integers 

such that (2.1), (2.2), (2.4), (2.5) hold. Then  we have 

t ,  t l !  (2.11) y'~ y"  yooy ,y  y = y ~ ,  

where y' and y"  are the same as in theorem 2.1. (Under  the condition, that all l imit ing 

points in  question belong to X . )  

Proo/.  Taking four times limits in the equat ion 

(2.12) y~ o,~.,Jo,~ 
= gk ~ i g j ,  

first as 1 = n(d') ,  next  as ?" = n(d0), then as i = n(d)  and at last as i = n(do) - -  

where n (do) and n (do) are the same as in the proof of  theorem 2.1 - -  we obtain by  
cont inui ty  equation (2.11). 

Observe, tha t  for commuta t ive  X the relations (2.11) imply 

Y : o =  " ' =  = y~o y y yo~ y~ y ~ .  

Now let us apply the above results to the semigroup X = PG of probabil i ty 
distributions # on a locally compact  group G. When  dealing with this semigroup, 
we shall write # and ~ instead of x and y respectively. 

Theorem 2.1 implies, in particular,  t ha t  for a compact G every infinite convo]u- 
t ion #1 * #u * ... has at  least one tail idempotent  ~ ,  and by  theorem 2.2 we know 
tha t  if G (and thus also Pa)  is commutat ive ,  the tail idempotent  is unique. I n  the 
non-commuta t ive  case there m a y  exist several tail idempotents,  as the following 
simple example shows : Let  H be a non-normal  (compact) subgroup of G and x an 
a rb i t r a ry  element of  G such tha t  x H x  -1 :~ H;  let us define te3~+l = ~x, 
#3k+2 = (~x-~ and #3~ = Coil (the I t aa r  measure on H). Then both coil and 
x IO~HX = (gx-~Hx :~ (OH are tail idempotents  of the infinite convolution 
~1 * #2  * . . . .  Recall t ha t  the idempotents  of PG are exactly the I t aa r  measures on 
the compact  subgroups of  G. 

I f  G is only locally compact,  PG is not  compact,  bu t  it is embedded into the 
(vaguely) compact  set Qa. Thus theorems 2.1 and 2.2 apply for P a  also in case of  a 
locally compact  G, if some condition makes sure tha t  the limiting measures in 
question belong not  only to Q~ but  also to P~. Now if 

~ : #1 * " "  * ten (tek c P~,  ]c : 1, 2 . . . .  ) 

possesses at  least one accumulat ion "poin t"  # e Pa,  we obtain tha t  for some 
subnet  n (d) (d ~ D) of the sequence 0, 1~ 2 . . . .  the limits 

(2.1') lira ~'(~) : ~ (It : 0, 1, 2 . . . .  ; ~0 : #) 
d 

and 

(2.2') lira ~n (d) : ~'oo 

d 

exist (in Qa). Further ,  ntilising tha t  the convolution yields a continuous mapping 
P a  • Qa -> Q~, the first equali ty in (2.9) is also true (replacing y by  u), ~nd thus 
r0 = # e P a  implies ~3" e P a  for every j. Then, by  the same argument ,  also the 
second equali ty of  (2.9) holds true and v~ ~ Pa,  ~ssuring the validi ty of the third 
equa]ity~ too. I n  particular~ subst i tut ing in (2.3)/c = 0, we h~ve 

(2 .13)  te : te  * voo 
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where ~ is an idempotent  of Pa, i.e., the Haa r  measure on some compact  sub- 
group H of  G: ~ = e0H. This result contains a theorem of TO~TRAT [3], asserting 
tha t  if the sequence #1 * " "  * #n is convergent,  then the limiting distribution # 
satisfies the equa t ion / ,  = / t  * (DH~ where OH is the Haa r  measure on some compact  
subgroup H c G and it is an accumulat ion point  of  the double sequence 

{~; o __< ~ < ~}. 

I f  # '  e P c  is another  accumulat ion point  of the sequence ~ = #1 * "'" * #n, 
~ l  �9 I 1 1  we obtain just  the same way  as above tha t  all the limiting measures v~, %o, v ,  

(playing the role of  the elements ~s y~,,, y', y"  in theorem 2.1) belong to Pc .  Thus 
theorem 2.1 applies for X = P c  wi thout  any  fur ther  condition. 

We finish this section with a generalization of  a theorem of KLoss [1]. 

Theorem 2.3. 11 the infinite convolution [~1 * #2 * "'" (/& e Pc,  k = 1, 2 . . . .  ) 
possesses accumulation "points" (measures) in PG, then any two such accumulation 
points can be shifted into each other, i.e., i/ /~ e P c  and #'  ~ P c  are accumulation 
points o/ the sequence r~(n = 1, 2 . . . .  ) then there exists a c G such that/~' = /~ * (3a. 
(r}a denotes the measure concentrated at the point a). 

R e m a r k .  KLOSS [1] proved this theorem for compact  groups G (in which case 
all accumulat ion points belong to Pc).  I-Ie claims tha t  his result implies also the 
existence of  a sequence al, a2 . . . .  of  elements of  G, such tha t  the sequence 
/~1 * "'" * ~n * ~a~ eonverg es3, bu t  does not  give the proof. I f  G is separable, the 
equivalence of the two s ta tements  can be easily shown; for the general ease, 
however, I have not  been able to find a proof. 

For  locally compact  separable groups, the necessary and sufficient condition 
of  the existence of  elements az, a2, . . . ,  an, ... of G such that /~1 * "'" */~n * ~a,, 
converges is contained in theorem 3.1. 

Proo /o f  theorem 2.3. We have just shown tha t  theorem 2.1 is valid for X = P a  
(replacing x by  # and y by  v) if # and # '  both  belong to Pc-  Thus, for some v', 
~" ~ P c  we have 

(2.14) # '  = ,u * ~' 

and 

(2.15) ~' * ~" = ~oo = O)H. 

F rom (2.15) and lemma 1.3 follows tha t  for any  x e S (v") we have 

(2.16) H ~ S ( v ' ) ' x ,  S ( v ' ) c H x  -1 

and hence, writing x 1 = a, 

(2.17) (DH*~ 0' : (-OH* 5a* 

Finally, (2.14), (2.17) and (2.13) imply/~'  = / ~  * da. 

3 Knoss formulated this statement in terms of random elements, and called it "the general 
principle of convergence". 



Infinite Products of Random Elements and Infinite Convolutions 287 

w 3. Limit Theorems on Infinite Products of Random Elements 

I n  this section G will denote a locally compact  separable group. Let  ~1, ~2, ... be 
independent  r andom elements of G with distributions #1, #2 . . . . .  

The results of the previous section now enable us to characterise the limiting 
properties of the infinite product  ~1 ~2 ...  in some detail. Our main results are 
contained in theorems 3.1 and 3.2. 

Theorem 3.I.  Either  

(3.1) sup P { ~ I  . . .  ~n ~ K x } - > O  as n - -~r  , 
x e G  

/or every compact  set K c G or there exists  a sequence al ,  a2 . . . . .  an, . . .  o / e l emen t s  
o/ G such that all the products 

(3.2) ~k+l. . .  ~nan (lc < n) 

have l imi t ing  distr ibut ions as n - ~  eo (k = O, 1, 2 . . . .  ). 

R e m a r k s .  1. This theorem extends B.M. KLoss '  "general principle of  con- 
vergence",  referred to in the remark  to theorem 2.3, to locally compact  (separable) 
groups. Another  slight generalization, tha t  will turn  out  also to be useful, is tha t  
we have a limiting distr ibution no t  only for ~1 ... ~nan but  for all the products  
(3.2). 

2. I f  we introduce the one-point  compactification G~ of G, (3.1) can be described 
equivalent ly as follows : For  a ny  sequence 31, 32 . . . .  of  elements of  G we have 

(3.1') l ims t  ~1~2 . . .  ~nan = c~ . 
n - - ~ -  o o  

Here the stochastic convergence cannot  be replaced by  convergence with pro- 
babil i ty one, as e. g., the example of the random walk in one dimension shows. 

P r o o / o f  theorem 3.1. The proof  will be divided into several steps. 

a) Wri te  

(3.3) sup P { ~ I . . .  ~n e K x }  = sup (r * "'" */~n) ( K x )  ---- o~n(K). 
x e G  x e G  

As 

(3.4) ~ul * " "  * }tn = ~ --~ ~k 0 * P~ (0 < k < n) ,  

we have for every x e G 

(~1 * " "  * tt~) ( K x )  = f ~ ( K x y - a ) ~ , ~ ( d y )  < ~ e ( K )  f u2.(dy ) = 
(3.5) 

: ~ k ( K )  (1 < / c  < n) .  

Thus the sequence an (K) is non-increasing. 
Now define 

(3.6) 

and 

(3.7) 

~(K) = l im~n(K)  
n ~  

~o = s u p  a (K )  
K 

(K c G, K compact ) .  
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F i r s t  we prove,  t h a t  e i ther  mo ----- 0 or so = 1. Suppose name ly  0 < ~o < 1, and  
choose an s such t h a t  

Then,  by  assumpt ion ,  for any  compac t  set K c G there  exists  such K t h a t  

(3.9) sup v~o(Kx) < s .  
x e G  

Now a p p l y  l emma 1.2 for v~ = V~o * v~ (n > k). We  ob ta in  t h a t  for a sui table  
compac t  set K *  c G (depending on K) 

(3.10) v~(Kx) <= ~ -- -2 (1 - -  v~(K*x)) (x c G, n > k) .  

Here  for n large enough, (n > no = no (K*), say) we mus t  have 

(3.11) v~(K*x) < s ,  

~ 0  - ~  ~ ~ �9 ~ - .  otherwise,  choosing a compac t  set  K '  wi th  v~(K') > ~ - , ~ n e  mequa~l~y (1.7) 

would yie ld  

s0 + ~ (n > k) v~(K'K*x) = (vko, v'~)(K'K*x) > v~(K')v~ (K ' x )  > 2 

~0 -~- ~, 
thus  s (K 'K*)  > ~ 2 - -  > so, cont rad ic t ing  (3.7). 

Bu t  (3.10) and (3.11) imply  

2 1 + ~ (n > no) v~(Kx) g s - -  ( 1 - - s ) = s  2 = 

thus  
~(1 + ~) 

(3.12) ~(K)  g 2 

Since K c G was an  a r b i t r a r y  compac t  set, (3.12) means  t h a t  s0 < _~(1 + 5) 

cont rad ic t ing  (3.8). 

b) We have  proved,  t h a t  e i ther  so ~ 0, i. e., (3.1) holds, or s0 = 1, i. e., to 
every  ~ < I there  exists  a compac t  set K~ c G such t h a t  

(3.13) sup v~ (Kc~x) ~- sup (#1 * " "  * #n) (K~x) > s (n -= 1, 2, . . . ) .  
:v~ G x e  q 

Moreover,  these compac t  sets can be chosen also in such a way  t h a t  for a fixed 

sequence xl ,  x2, . . . ,  xn, ... of e lements  of G 

(3.14) v~(Ko:xn) > s (n = 1, 2 , . . . )  

for every  s < 1. Indeed ,  let  us choose to  s ~ �89 a K~, sat isfying (3.13) and  then  a 
sequence xl,  x2 . . . .  such t h a t  (3.14) be fulfilled for s = �89 F i n d  now to every  ~ > �89 
some K~, sat isfying (3.13). Then for some x~ ~ G we have  

(3.15) v~(K~z~) > ~ .  

By (3.15) and  v~(K~xn) > �89 the  sets K~x~ and  K~xn cannot  be dis joint ,  and  

therefore  

x~EK~IK~xn  and  K ~ x n c K ~ K ~ l K ~ x n .  



Infinite Products of tZandom Elements a~d Infinite Convolutions 289 

This means  t h a t  replacing each K s  b y  K~ = K ~ K ~ I K p  the  inequal i t ies  (3.14) 

will be va l id  for every  ~ < 1. 
I n t roduce  now 

(3.16) ~n  = ~x. ~ * #n  * 5zj~  

where the  xn ' s  are the  same as in (3.14) and  x0 = e. Then 

(3.17) ~ = ~ 1  * " "  * ~ n  = [A1 * ' ' "  * ~ n  * ~ x :  l 

and,  b y  (3.14) 

(3.18) "~*~(K~) = v'~(K~xn) > o: 

for every  n and  ~. 

c) (3.18) means  t h a t  for every  r162 there  exists  a compac t  set K such t h a t  
~ ( K )  > ~; according to (1.8'), the  same is t rue  for the  whole set ( ~ : 0  =</c < n}. 
This  obvious ly  implies  t h a t  every  accumula t ion  " p o i n t s "  (measures) of this  set 
belong to P c  (cf. l emma 1.1) and  therefore  theorem 2.1 can be appl ied  4 to  P~  
(replacing y everywhere  b y  v). Thus,  being P a  now separable ,  for a sui table  
sequence n l  < n2 < ""  < nk < . . .  of pos i t ive  integers  all the  l imits  

(3.19) lira  ̂ n~ ~k (k = 0 .1 ,  2 , . . . )  
Z ---> co 

(3.20) l im ~ ~oo (oH ~n~ = 
]c-+ co 

exist ,  where the  ta i l  i d e m p o t e n t  ~ = (OH is the  H a a r  measure  on some compac t  
subgroup  H c G. Moreover,  

(3.21) z ?)k = "Pk * (OH (]~ = 0 ,  1~ . . . )  . 

d) F r o m  (3.19) and  (3.20) follows - -  ut i l is ing also the  sepa rab i l i ty  of  P~,  
impl ied  b y  the  sepa rab i l i ty  of G - -  t h a t  the  sequence n l  < n2 < ""  < nk < ""  
can be chosen also in such a w a y  (replacing the  original  sequence wi th  a sui table  
subsequence) t h a t  also 

(3.22) �9 ^n~+, h m  vn~ = (OH 
]~ --> co 

holds.  
Then according to  l emma  1.1, for any  nc ighbourhood  N and  any  ~ > 0 there  

exists  a posi t ive  in teger  k0 such t h a t  

(3.23) ~ + ~ ( N H ~  (k > ]co) %~ ~ j > 1 - -  e = . 

Since }*'~+*u~ ( N H )  = f v~*~ ( N H x  -1)'}~:+* (dx) (nk < m < nk+l), (3.23) implies 
t h a t  for some ~ ~ G we have  

i . e . ~  

(3.24) 

v n ~ ( N H x -  ) > 1 - - e  

~ m  (vn~* d ~ ) ( N H )  > 1 - -  s .  

4 One could use theorem 2.3 as well, but this would not make the proof essentially shorter. 
We prefer therefore the direct derivation. 
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Now let N1 ~ N2 ~ "'" ~ N~ ~ -.. be a base at  the ident i ty  in G, and 81 > 82 > " ' "  

�9 " > s / >  " -  a sequence converging to 0. For  every i, choose a k~ such tha t  for 
k > k/ (3.23) holds with Ni and 8i, where we m a y  and do assume kl < k2 < ""  
�9 .- < kj < . . . .  Further ,  for every m, find an ~m e G such tha t  (3.24) holds with Ni 
and st, where k and i (depending on m) are defined by  the inequalities 

n ~ < m ~ n ~ + l  and k i < k = < k ~ + l  

(if m = n~+l, we pu t  xm = e). 

e) Now put  am = x j ]~m.  We show tha t  then 

(3.25) lim te~+l * " "  * ten * ~. ,  = lim v~ ,  (~a., = (~ X~-I * ~k  

for every k. 
Since, according to (3.16), v~ = ~ ,  v~ * 5x~,  (3.25) is equivalent to 

(3.26) lira ( ~ ,  ~s = ~ (k = 0, 1 . . . .  ) .  

I f  (3.26) did not  hold, there would exist a positive integer l and a sequence 
mj -+ oo such tha t  

(3.27) lim ( ~ J .  ~ j )  : te' =~ ~l, 
: / - + c o  

(where, as was pointed out  in step c), necessarily te' ~ Pa).  
Hence, defining k~ by  the inequali ty nkj < mj < nk,~, and choosing a subse- 

quence of  mj (which, for the sake of  simplicity, will be denoted again by  mj) such 
tha t  

.lim ~n~.  ( ~ j  = v, 
J ~-> c o  

exists (and then necessarily belongs to P~), we would obtain 

(3.28) te' : l im  ~ n ~ ,  v m ~ ,  ~i.~ "~ ' 
~ - + c o  t n ~  . : ~ l *  ~ �9 

But  from the construct ion in step d) and lemma 1.1 clearly follows tha t  v' (NH)  = 1 

for every neighbourhood N, i. e., S(~') c H and thus WH * ~' = ~H. 

Hence from (3.21) and (3.28) we obtain te' = ~t, contradicting (3.27). 
Thus (3.25) is proved and the proof  of theorem 3.1 is complete. 
I n  the proof  of theorem 3.2 we shall need the following simple lemma : 

Lemma 3.1. Let N be a neighbourhood o] the identity in an arbitrary topological 

group G, and K c G a compact set. Then there exists a neighbourhood N *  such that 

x N * c N x /or every x ~ K.  

Proo]. Take a neighbourhood N '  with N '3 c N and select a finite subset 
(x~, x~ . . . . .  xn) of G such tha t  

~ n 

w N ' x ~ K .  Pu t  N * = n x ( ~ N ' x ~ .  
i = 1  i = l  

Then for every x e K we have x e ~V'x~ (and thus, by  symmetry ,  also x~ ~ N ' x )  for 
some 1 ~< i ~< n;  hence, utilizing x~N* c N'x~, we obtain 

x N  * c N '  x~ N*  c N'2x~ c N 'ax  c N x  . 
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Theorem 3.2. Let $1, $2 . . . .  be a sequence o/ independent  random elements o] a 
separable locally compact group G. Assume that the product $1 $2 ... Sn, as well as all 
the products $k +1 $~+2 ... Sn (k ~ 1) have limiting distributions as n -+ ~ .  

Then there exists a unique compact subgroup H c G such that all the above limiting 
distributions are H-uni /orm and the product $1 $2 ... Sn converges rood H with proba- 
bility 1. 

Pro@ Denote the distribution of $~ b y / ~ ( k  = 1, 2 . . . .  ) and write 

(3.29) v~ ~ #k+l * " "  * # n .  

Then by  assumption all the sequences v~ (/c ~ 0, 1, 2 . . . .  ) are convergent  in 
PG, a s n - - >  co:  

(3.30) lira v~ = ~ ~ P c  (/c z 0, 1, 2 . . . .  ).  
n ~ o o  

First  we show, tha t  this implies 

(3.31) l ira ~k ~ ~zo = (29H 
k---> o o  

where (9H is the H a a r  measure on some compact  subgroup H c G. (And thus the 
tail idempotent  is unique.) I n  fact, for any  two accumulat ion "poin ts"  (measures) 
~' and v" of the sequence ~k, taking limits in 

(3.32) ~ : ~k*~nn ~ (k < n) 

first for ~n~ -~ v" then for ~ -~ v', we obtain v' : v' * v". 
I n  particular, for any  accumulat ion point  v' of  {~},  we have 

(3.33) ( D H : O g H * ? J '  , ~ ' : ~ '  *50H 

where WH denotes a tail idempotent  of #1 */~2 * . . . .  being the H a a r  measure on 
some compact  subgroup H c G. Now the first equali ty in (3.33) yields S (~') c H 
and then from the second one follows v' = WH, proving (3.31). 

I t  is clear, t ha t  all the rk'S are H-uniform, as ~k : ~ .  WH (k : 0, l, 2, ...). I t  
is also clear t ha t  ff all ~k's are H ' -un i form (H'  ~= H) then v~ = OH is also H'-uni-  
form and thus H '  c H. 

We are going to prove tha t  the sequence $1 $2 ... ~n converges with probabil i ty 
one mod H. F rom this and the preceding paragraph also the uniqueness par t  of the 
theorem will follow, since if $1 $2 ... Sn converges (at least stochastically) rood H ' ,  
then the support  of  the tail idempotent  mus t  be contained in H' ,  i. e., H c H ' .  

First  we prove the stochastic convergence mod H. To this end, according to 
(1.11'), we have to show, tha t  for every neighbonrhood N of  the ident i ty  in G and 
every s > 0 we have 

(3.34) P{7~($1. . .$n)  e N ( z ( $ 1 . . . $ m ) ) }  > l - - s  for n , m  ~ n o : n o ( N , e )  

(where z denotes the natural  mapping G --> G/H, i. e., 7~ (x) ---- xH) .  (3.34) can be 
wri t ten also as 

(3.343) P { $ 1 . . . ~ n ~ N $ 1 . . . $ m H } >  I - - e  ( n , m ~ n o ) .  

Let  iV be an arbi t rary  (symmetric) neighbourhood of  the ident i ty  in G, and 
s > 0. Find a compact  set K such t h a t  

(3.35) P {$1 ...  ~n c K} : (#1 * " "  * fin) (K) > 1 - -  e/2 
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for every n; the existence of such K follows from the corollary of lemma 1.1. Take 
further a neighbourhood N* of the identity in G such that  xN* c N x  for every 
x ~ K;  this is possible by  ]emma 3.1. At last, let N1 be a neighbonrhood with 
N~ c N* and N~ c N 1 such a neighbourhood that  xN 1 c N ix  for every x s H. 
Then we have 

(3.36) ZV;HN  cN  VlH cN*H. 

As ~ -+ OH, by lemma 1.1 we can choose such lc0 that  

(/c >/co). (3.37) ~(N~H) > 1 -- -4- = 

The (3.36), (3.37) and 0.8) imply 

* * ~ ( n  > / c  =>/co) (3.38) ~ ( N * H )  ~ vk(NIHN1) ~ 1 2 

From (3.38) and (3.35) now follows 

P{~l . . .  ~ n e N ~ l . . .  ~mH} ~= 
>--_ P{~I. . .  ~ne~l . . .  ~uN*H;~I . . .  ~meK} >= 

P{~m+l... ~ n ~ N * H } - -  P{~l . . .  ~m ~K} = 
= # n ~ ( N * H ) - - P { $ 1 . . . $ m ~ K } > I - - e  (n>m>=lCo). 

Thus (3.34) is proved (we need no further proof for the ease m > n, since by the 
symmetry  of N the event ~1.. .  ~nH c N $ I . . .  ~mH is identical with $1.-. ~mH 
c N~i  ... ~ H ) .  

We remark tha t  if G is Abelian or anyway if H happens to be a normal sub- 
group of G, the stochastic convergence rood H of ~1.-. Sn implies convergence 
with probabili ty 1 rood H, by a theorem of LoY~ES [4] (applied to the group G/H). 
In  the general case we can complete the proof by a reasoning similar to the one of 
Loynes, although with more computational difficulties. Let  us denote the stochastic 
limit of the sequence ~ (~1 ... ~n) in G/H by ~'. 

Let N be an arbitrary neighbourhood of the identity in G, K c G a compact 
set, N~ a neighbonrhood with N~ c N and N~ a neighbourhood (depending on K) 
such tha t  xN~ c N ix  for every x e K (of. lemma 3.1). At last, take neighbourhoods 
N2 and N;  such tha t  the closure of N2 is contained in N1 and N;HN*.z c N1H. 

According to (3.34) and (3.38) we may  select a sequence 

n l ~ n 2  % " "  ~ n k  % " "  

such that  for every/c 

(3.39) P{a(~l . . .$n)~N2(7~($1 . . .$~) )}<2 -~ for n > n ~  

and 

(3.40) . . . .   ;V.iH} < 

From (3.39), in particular, (utilising tha t  N~ contains the closure of N2) follows 

(3.41) P{~; '  (~/~'1(~($1 . . .  ~n,~))} < 2-k  

i .e.  

(3.42) P{7~($~ ... Sn~) ~N~(~')} < 2-~.  
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This means  t h a t  wi th  p robab i l i t y  1 we have  

(3.43) 7~(~1 . . .  ~ )  e N I ( ~ ' )  

for all  b u t  a finite n u m b e r  of  k '  s. 
Now we make  use o f a  l emma  of L o i r e ,  assert ing t h a t  i fA~  and  Bk (k ~ 1 . . . . .  m) 

are a r b i t r a r y  r a n d o m  events  such t h a t  for each fixed k A~ and  B~ are independent ,  
then  

~n ~n 

(3.44) P(W A~B~) >= inf  P ( B i )  �9 P { u  A i } .  
i = l  l < i ~ m  i = 1  

Apply ing  (3.44) for the  events  

we ob ta in  for every  k - -  ut i l is ing N*2HN*. 2 c N*IH -- 

(3.45) n~.§ 
__> eiv  } p { u  $ . . . .  ... tN H}. 

As for k large enough we obviously  have  

inf  P{$n+l  . . .  ~ ...... e N~H} ~ �89 (say), (3 .45)and (3 .40) imply  

k ~ l  n - - n ~ + l  

Thus, by  the  Borel-Cantel l i  l emma,  we have  with  p robab i l i t y  one 

(3.46) ~n~+z "'" ~n ~ N~H (n = n~ + 1 . . . . .  n~+l) 

except  for a finite n u m b e r  of ]c's. 
Now from (3.43) and  (3.46) we ob ta in  - -  uti]ising t h a t  xN~ c N i x  for x ~ K - -  

t h a t  a lmos t  sure ly  

~1 . . .  ~n @ ~-1 (~v'l (V')) " N~H -~ N l Z - I ( v ' ) N ~ H  c N ~ - I ( v ' ) H  c ~V,'z-l(~ ') 

i . e . ,  

(3.47) 7~(~1 . . .  ~n) e N(V')  

excep t  for a finite number  ofn'  s, if  only  ~-~ (y') e K.  As this is t rue  for any  compac t  
K c G, and  G is a -compac t ,  the  las t  res t r ic t ion  obvious ly  can be omi t ted .  Now i f N  
ranges over  a countable  base a t  the  i d e n t i t y  of G, we ob ta in  t h a t  wi th  p robab i l i t y  
one ~ ( ~  . . .  ~n) -~  ~',  and  the  proof  is complete.  

I f  G is the  add i t ive  group of ~11 real  numbers ,  the  only compac t  subgroup  of  
G is H = {0}. F u r t h e r  ill this  case convergence in law of $~ + $~ + ""  + ~n 
implies  the  same also for ~+1  + ~+2  + "'" + $n, for all k. Thus theorem 3.2 
reduces to the  wel l -known theorem t h a t  for sums $~ + ~ + -. .  + Sn of indepen-  
den t  r a n d o m  var iables  convergence in law and  convergence with  p robab i l i t y  one 
are equivalent .  F o r  an  a r b i t r a r y  group G, however,  there  are some t r iv ia l  cases 
when Jim #1 * / ~ , o . . . - . / ~ n  sure ly  exists ;  e. g., i f  # t  is the  H a a r  measure  ogg on 

n ~ o o  

some compac t  subgroup H c G~ and  S (/~n) c H for eve ry  n, then  # ~ . / ~ 2  * "'" */~n 
#1 ---- (OH, no t  depending  on the  #n'S a t  all. I n  order  to exclude such t r iv ia l  
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cases, i t  is qu i te  n a t u r a l  to requi re  the  convergence  of d i s t r i bu t i ons  #~+1 * #~+2 * 
�9 "'" * #n(n ~ oo) for all  k. 

T h u s  t h e o r e m  3.2 is the  p rope r  genera l i za t ion  of the  above  m e n t i o n e d  t heo rem  
we were looking  for. 

I n  v iew of t h e o r e m  3.2 the  s t a t e m e n t  of t h e o r e m  3.1 can  be s t r e n g t h e n e d  as 
follows : 

I / /or  a sequence 81, 82, ... o/independent random elements o /a  locally compact 
separable group G there exists a sequence al, a2 . . . .  o/ (non-random) elements o/ G 
such that/or some compact set K l im  P ( 8 1 8 2  . . .  8nan ~ K} ~ 0 then this sequence 

can be chosen also in such a way that/or some compact subgroup H c G the sequence 
~182-.. 8nan  i8 convergent m o d  H with probability one and it has a H-uni/orm 
limiting distribution. 

I n  pa r t i cu la r ,  i f  G is c o mp a c t  a n d  ~182 . . .  ~nan does n o t  converge  m o d  H wi th  
p robab i l i t y  one for a n y  choice of  the  an'S a n d  of the  c o m p a c t  sub -g roup  H ~= G, 
t h e n  the  H in  the  above  s t a t e m e n t  m u s t  be  equa l  to G; hence  follows t h a t  in  th i s  
case 81 ~2 . . .  ~n as well  as a n y  8~+18~+2 . . .  ~n h a v e  u n i f o r m  l im i t i ng  d i s t r i b u t i o n  
wv as n -+  c~. I n  fact ,  s ince for some sequence  al, a2, . , . ,  an all 8k+1 ~ + 2  . . .  8nan 
have  some l im i t i ng  d i s t r i b u t i o n  as n ->  ~ ,  which  has  to  be  G-uni form,  i. e., un i -  

form, the  same r ema i n s  t rue  also w h e n  de le t ing  the  an's. F r o m  the  u n i q u e n e s s  
s t a t e m e n t  of  t h e o r e m  3.2 obv ious ly  follows t h a t  the  above  cond i t i on  is also 
necessary  for the  l im i t i ng  u n i f o r m i t y  in  the  descr ibed  sense. This  resu l t  general izes  
a t h e o r e m  of  B~RTFAI [5], o b t a i n e d  for c o m p a c t  A b e l i a n  groups  5, to  t he  non -  
c o m m u t a t i v e  case. 

A d d e n d u m  

After having submitted this paper for publication, I was informed by Profi A. TORTRAT 
that some of the results presented here are closely related to some recent results of his (see 
A. TORT~AT: "Lois de probabflit6 sur un espace topologique completement r6gulier et produits 
infinis a termes ind6pendants dans un  groupe topologique", Ann. Inst. Henri Poincar6, 1, 
217--237 (1965) and ,,Lois et convolutions denombrables dans un groupe topologique", 
Seminar de ealcul des probabilit6s, S6ance du Mardi 2, f6vrier 1965). In  view of this the state- 
ments of our theorems 2.3 and 3.1 are not new (except for the slight generalization, referred to 
in remark 1 to Theorem 3.1), but  the proofs --  based on the concept of the tail idempotent --  
seem to be simpler 6. Our second main theorem 3.2 seems to be new. 

(Added September 17, 1965) 
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