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Summary. Branching annihilating random walk is an interacting particle 
system on 2g. As time evolves, particles execute random walks and branch, 
and disappear when they meet other particles. It is shown here that starting 
from a finite number  of particles, the system will survive with positive 
probability if the random walk rate is low enough relative to the branching 
rate, but will die out with probability one if the random walk rate is high. 
Since the branching annihilating random walk is non-attractive, standard 
techniques usually employed for interacting particle systems are not appli- 
cable. Instead, a modification of a contour argument by Gray and Griffeath 
is used. 

1. Introduction 

In this paper we will study an interacting particle system, called the branching 
annihilating random walk. This model is a Markov process with transition rates 
which are determined by a parameter. We will show that, depending on the 
choice of parameter  value, two different types of long-term behavior are possi- 
ble, which we call extinction and survival. Finding, classifying and understand- 
ing models with these kinds of behavior is one of the major problems in 
interacting particle systems (see Griffeath [3], Liggett [41, or Stroock [5"1). Our 
model is one of the first such examples which fails to have a certain monoton- 
icity property known as attractiveness (see below). 

The model is easy to describe. The state space is the set of finite subsets of 
Z. We will use the notation ~ for the state at time t. This state is thought of as 
the set of sites in Z which are occupied by particles at t ime t. The set ~7 is the 
set of vacant sites at time t. Each particle can do two different things. After an 
exponential holding time with mean 1, a particle will give birth to a new 
particle at one of the two neighboring sites. This is called branching and the 
two neighboring sites are equally likely to receive the offspring of a particle. 
Also, after an exponential time with mean 1/p, where p > 0  is a parameter, a 
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particle moves to one of the two neighboring sites. This is called jumping (or 
random walking), and the particle is equally likely to jump to the left or the 
right. Thus, the term "branching random walk." The branching and jumping 
actions of each particle are independent of one another, and all particles act 
independently except when two particles at tempt to occupy the same site. If a 
particle lands on a site which is already occupied, either by jumping there or 
as the result of branching, then both particles disappear, i.e., are annihilated. 
Thus, if two particles are at neighboring sites, it is possible for both sites to be 
vacated simultaneously (if one particle jumps on the other), or for only one site 
to be vacated (if one particle has an offspring which jumps to the site of the 
other particle). Fig. 1 in the next section shows one possible realization of this 
process and the different types of movement  which can occur 1. 

The main question that we wish to study is: are there values of the 
parameter  p for which the process has a positive probabili ty of survival, that is, 
such that 

P(~-t 4: r for all t > O) > 0 

for some non-empty (finite) initial state? We will show that there is survival for 
all sufficiently small p > 0 ,  and we will also show that the probability of 
survival is 0 for large p. 

The annihilating feature of the process (~) makes it different in an impor- 
tant way from nearly all models for which the survival question has been 
answered. (The centered long-range contact process in Bramson and Gray [1] 
is another example.) For many models, the presence of more particles increases 
the lifetime of the process in a strong sense. Such models are called attractive. 
More precisely, an attractive model is one in which the addition of an extra 
occupied site to the state of the process does not decrease the exponential rate 
at which any of the vacant sites become occupied, nor does it increase the rate 
at which the other occupied sites are vacated. The process (~) studied here is 
not attractive - the addition of a new particle at a vacant site may in time 
reduce rather than increase the total population. 

Previous methods for proving survival have relied heavily on the monoton-  
icity properties possessed by attractive systems. However, by considerably 
modifying the technique used in Gray  and Griffeath [2], we can show survival 
for small p for the branching annihilating random walk. While it would have 
been preferable to invent an entirely new technique (desperately needed for 
non-attractive systems), we feel that this line of reasoning provides some hope 
for future progress. Moreover, it can also be applied to the problem in [-2] to 
provide a much shorter, more accessible solution. 

2. Comparison to Sums of i.i.d. Random Variables 

We will show here that for small values of p, there is a tendency toward 
growth at the ends of the set it. As a result, the width of it will tend to 

1 Our interest in branching annihilating random walk was kindled by an address by Ulam [-6], in 
which much more general multitype branching random walks involving annihilation and coales- 
cence of different types of particles were mentioned in conjunction with elementary particle physics 
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increase, which favors survival of (it). This tendency holds up as long as the 
position of an end does not change too much at one time. We deal with the 
problem of large changes in the next two sections. 

To illustrate various ideas, we provide a picture of a realization of the 
process (~t). The initial state is the singleton {0}, and on this particular sample 
path, the process dies out after 15 transitions. The figure is drawn on a space- 
time graph with the time exis running upward. The vertical lines represent 
occupied sites in space-time. The times tl ,  t2, . . . ,  tl 5 are transition times. 

In this figure, jumps occur at times tl ,  t3, tT, t9, t14 and t15. The last three 
of these are with annihilation. Branchings occur at the other times, two of 
which (at times t 6 and t 11) occur with annihilation. 

We will concentrate on the width of ~,  that is, the distance from the 
leftmost particle to the rightmost particle plus 1. We first note that when this 
width is 1 (when it is a singleton), the process cannot die out before the width 
increases to width 2. Furthermore, when it is a single particle, it may jump 
around some (as it does at time tl in the picture), but it must eventually 
become a pair (as at time t2). Next, we see that the width can increase by at 
most 1 unit at a time, and that this can happen in two different ways, through 
a jump or through branching, illustrated by the transitions at times t3 and t~3, 
among others. The width can decrease by 1 unit, also in two different ways - 
see times t7 and t~l. Finally, the width can decrease by 2 or more units, and 
this always happens in the same way, via a jumping annihilation, as at times 
t9, t14 and tls.  

To further analyze the behavior of the ends, we define a process which is 
essentially the width of it: let 
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Wt = the width o f  it if it is not a singleton or the empty set 

= 2 if it is a singleton 

= 0  if ~t=0.  

We have defined Wt to be 2 when the width of  it is 1 to simplify the statements 
of  results below. Also, recall the comments  above concerning it when it is a 
singleton. 

If  we ignore increments in the width that  are larger than 2 units, there is a 
sense in which Wt is domina ted  from below by a r andom walk with positive 
mean. To make this precise, let z 1, z 2 . . . .  be the transit ion times of the process 
(W 0. (If there are only n times, let ~,+1 = z , + 2  . . . .  = oe.) Let 

N = m i n { n e 7 l : W ~ o = 0  or W~-W~,  1 < - 2 } .  

Define i.i.d, r a n d o m  variables Y1, Yz, Y3,..- such that  

P(Y, = - 2) = 32/1600 

P(Y, = - 1) = 751/1600 

P(Y, = 1)= 817/1600. 

Also assume that  the Y,'s are independent  of  the process (it), and let 

X , = W ~  -W~,_ 1 if n < N .  

= Y, if n > N .  

We may now state the main  result of  the section. 

Proposit ion. / f  p < 1/100, then Jor all m~7., 

P(X~ + X 2 +  ... +Xn<=m)<P(Y1 + Y2 + ... + Y,<m). 

Proof. Since the X, ' s  can only take on the values 1, - 1 ,  - 2 ,  it is enough to 
prove that  

P ( X ,  = i l X l ,  X2,  ..., X , _  1) < P(Y, = i) (1) 

for i =  - 1 ,  - 2  and p < 1/100. We will instead prove that  for all such p 

P ( X n =  --21{ . . . . .  n<N)<=2p (2a) 
and 

P ( X , =  - 11~ . . . . .  n < N ) <  15/32+p/16.  (2b) 

Since X , =  Y, for n > N ,  the s trong Markov  proper ty  and the definition of  I1, 
imply that  (1) follows from (2). 

Demonstration of  (2a). First note that  the condit ional  probabilities in (2) are 
zero if W~, 1=2, since n < N  and since the process (Wt) never takes the value 1. 
So we can assume that  W~,_1>2. To prove (2a), we determine the max imum 
rate at which Wt can decrease by 2 and the min imum rate at which it can 
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increase by 1. A decrease by 2 can only be due to a jumping annihilation at 
either end of it, so the maximum rate is 2p. The minimum rate of increase is 1 
+ p, due to branching and random walk at either end. It follows that 

P ( X , =  -214  . . . .  n<N)<=2p/(1 + 3p) <2p .  

Demonstration of(2b). Transition rates which vary with the state. We will prove 
(2b) in somewhat the same fashion that we proved (2a), although a little more 
care is now needed. As before, we will consider the rates at which various 
changes in W~ occur. However, we no longer can ignore the way in which these 
rates depend on the state of the process. These rates depend in a crucial way 
on whether the sites next to the ends are occupied. 

If the site next to an end is occupied, then Wt will change by - 1  if the 
particle next to the end branches onto the end particle. (See time t l l  in Fig. 1.) 
Otherwise, Wt can change by - 1  due to a jump toward the middle of the 
occupied set by the end particle. (See time tv in Fig. 1.) In the first case, the 
rate is 1/2 for each end to which the case applies, in the second it is p/2. As 
always, the rate at which Wt increases is 1/2+p/2 at each end. 

We will find it useful to do some further conditioning. Let 

d = the position of the left end of ~ . . . .  

r = the position of the right end of ~ . . . .  

E =  the event that the change that occurs at time z n occurs at the left end. 

Applying the strong Markov property and the rates given above, we see that 

1 1 
P ( X , =  - l l ~ .  1, n < N , E ,  and the site ( + 1  is occupied at time z 2 ) < 2 ~ - p  < ~ 

and 

P <p .  
P(X~= - l [ ~ n  I , n < N , E ,  and the site f + l  is vacant at time z2)_<_l + 2 p  

It therefore follows that 

P(X~= -11~  . . . . .  n < N , E )  

<�89 1 is occupied at time z ;  I~ . . . . .  n < N,E)  

+ p P ( E +  1 is vacant at time ~, ]~,,-i, n<N,E) .  (3) 

Conclusion. We need to bound the first conditional probability on the right 
side of (3) away from 1. We will show 

P(~+ 1 is vacant at time z2 I~ . . . .  n < N , E ) >  1/16. (4) 

Application of (4) to (3) then shows that 

15 p 
P ( X , = -  I[~ . . . . .  n < N , E ) < ~ + ~ .  

A similar computat ion works for the right end of ~ .  1 and so (2b) follows. To 
prove (4), we start with the case in which ~ .  , contains the site ~+1 .  We 



452 M. Bramson and L. Gray 

compute the probabili ty that the particle at Y + I  is first annihilated (before 
time z,) and then the particle at f branches to the left or jumps before the site 
~ +  1 is reoccupied. The rate at which the particle at ~ +  1 is annihilated is at 
least 1/2 (due to branching of the left end particle). The total rate at which the 
left end position changes is no more than 3p/2 + 1, so the probability for the 
first step in the above procedure is at least 1/(3p+3)>4/15 when p < l / 4 .  For  
the second step, the rate at which the left end particle branches to the left or 
jumps is 1 /2+p ,  while the site f + l  becomes reoccupied (by branching from 
either side or a jump from the site f + 2 )  at a rate no larger than 1 +p/2. So the 
conditional probabili ty for the second step (given the first step) is at least (1 
+ 2p)/(3 + 3 p) > 4/15 when p < 1/4. Multiplying the two probabilities one ob- 
tains the lower bound (4/15)2>1/16. The computat ion for the case where i~, 1 
does not contain the site f +  1 is the same as in the second step just computed 
above, and so one obtains the lower bound 4/15 > 1/16 that Y+ 1 is vacant at 
time z2_ 1 in this case as well. Together, these two bounds imply (4), which 
completes the proof  of the proposition. D 

If it were not possible for the increments of (Wt) to be less than - 2 ,  
Proposition 1 would imply survival of (it) for p < 1/100 since the width would 
then grow faster than a random walk with positive mean. In the next two 
sections, we will develop the techniques needed for dealing with the greater 
changes in (Wt). 

3. Tree Sets 

We start by defining a "thickened up" version of the occupation set in space- 
time: let 

T =  {(x, t)elR x [0, oe): [ x -y [  < 1~2for some Y~it} .  

We call this set the tree set of the process (it) because it shares certain features 
with trees from graph theory, as we shall see. In Fig. 2, we have drawn the set 
T for the same realization used for Fig. 1. The shaded region is T. 

Certain crucial times related to the tree set are labeled on the right side of 
the figure. The time labeled "1"  (time ts) is called a separation time. The times 
labeled 2 and 3 (times t 9 and t15) are called terminal times. The terminal times 
are those times at which either the width of it decreases by more than 2 or the 
process dies out. The separation times can be described rigorously in terms of 
the shape of the outside boundary of T. They occur wherever the outside 
boundary of T contains a U-shaped piece formed by one horizontal and two 
vertical line segments (the horizontal segment is labelled H in Fig. 2). 

In Fig. 2, T is connected and bounded. The event that T is bounded is 
almost surely equivalent to the event that the process (it) dies out. The 
connectedness of T is dependent partly on the initial state. If the initial state is 
a set containing no vacant sites between the two ends, then T is always 
connected. Since any non-empty state can be reached from any other non- 
empty state, we have the following useful criterion: 

P(i t  = r for some t > O) < 1 (5 a) 
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for all non-empty initial states iff 

P( T is bounded and connected)< 1 (Sb) 

4. Survival 

In this section, we prove that branching annihilating random walk survives 
with positive probability for a sufficiently low random walk rate. 

Theorem 1. For sufficiently small p > 0 and all non-empty initial states, 

P(~t = ~ for some t > O) < 1. 

Pro@ We will make use of the equivalence in (5). It is convenient to ab- 
breviate (5b) by letting 

A = {T  is bounded and connected}. 

An important quantity in our proof will be 

K = the number o f  separation times. 

If T is bounded, K is almost surely finite. We will prove by induction on k 
=0,  1, 2,... that for sufficiently small p there exist positive constants C and R, 
with R < 1, such that for all initial states of width E (i.e., f = m a x  ~ o - m i n  ~o 
+1), 

C p R  ~ 
P(A and K_-<k)< ~2 (6) 
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Since the right side of (6) is independent of k, we see upon letting k ~  Go that 
(5b) follows from (6). 

The case K = O. 

We first recall that 

W ~ , = d + X I + X 2 +  ... +Xn for n < N ,  (7) 

where r ,  and N are defined in Sect. 2. For K = 0  there are no separation times. 
If the tree is connected, it is easy to check that its width therefore never 
decreases by more than 2 units. Consequently, on A, the number  of times that 
the process (~g) hits the value 2 is bounded by the random variable 

M = the number of integers n such that 

X1 + X 2 +  ... + X , =  - d + 2  
if K = 0 .  

The event that the process (4,) dies out implies that there is some time at 
which the width becomes 2 units and then the two remaining particles disap- 
pear due to a jumping annihilation. Each time the process reaches a state with 
width 2, the probabili ty that such an annihilation occurs before the width 
changes to 3 is 0/(20+1),  as can be computed directly from the rates. One 
concludes from the strong Markov property that 

P(A and K = O ) < p E M / ( 2 p +  1)<pEM.  (8) 

Now, recall that EYe>0 for Y, defined as in Proposition 1. It therefore 
follows from Proposit ion 1 and a simple large deviation estimate on P(111 + ... 
+ Y , < - d + 2 )  that there exist positive constants C and /~, with R < I ,  such 
that 

EM < CR t -  2 

whenever 0 < p < 1/100. Set R = [ / R  and 

C = (2 C/R4) (sup Rtd2). 
d g l  

Because of (8), 
P(A and K = 0 ) G  CpRt /2d  2 (9) 

which implies (6) for k=0 .  (We will need the extra factor of 2 in the de- 
nominator.) 

The Inductive Step 

The Basic Idea. We will let C and R be as in the previous paragraph, and 
assume that (6) holds for fixed p > 0  and for 0 < k < m ,  where m>0 .  We will 
show that under this assumption, (6) holds for k = m  for p chosen small enough 
(where the bound on p does not depend on m). By (9), it is sufficient to prove 

P(A and 1 <_K<_m)< CpRt /2d 2. (10) 
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Our approach will be basically the following. If l<_K<_m, there is a 
smallest separation time, which we will call 0. At time o, a gap occurs in the 
set of occupied sites that splits the population of particles into two sub- 
populations which remain separated after time 0 by at least one vacant site. In 
Fig. 2, this gap has length 1 and appears at site 1 at time t3. In general, the 
gap may have length 1 or 2, and it may appear at any site or pair of adjacent 
sites between the two end particles. 

Thus, after time 0, the process (it) can be conveniently viewed as two 
separate processes which start on either side of the gap, with o playing the role 
of the initial time for these processes. With this point of view, we can define tree 
sets T1 and T2 for these two "sub-processes" in the same fashion as before. It is 
not hard to see that if T is bounded and connected, then so are T1 and T2; in 
fact, they are the closures of the two connected components of the set T 
c-~{t>a}. These new tree sets have a total of K - 1  separation times, so if 
K < m ,  they each have strictly less than m branch times. We will be able to 
apply the inductive hypothesis to the two subprocesses. In doing so, we must 
avoid the temptation to use the strong Markov property to restart the process 
at time o, since o is not Markovian. 

Terminology. We will say that ~t has an i-gap if 

and either 

or  

mini~+ir  

min it + i - 1 ~ it 

min ( t+  i+  l~ i ,  

m i n i t + i + 2 ~ .  

Thus an /-gap is a gap of 1 or 2 vacant sites that starts i sites from the left end 
of it. Any transition that produces an / -gap  will be called an i-transition. Note 
that an /-transition occurs at time o for some unique i strictly between 0 and 
W~. We will say that the process is permanently separated by an /-gap at time s 
if iS has an /-gap and if the part of the process which starts to the left of the 
/-gap at time s is separated from the part of the process which starts to the right 
of the /-gap at time s by at least one vacant site for all times t>s .  If T is 
bounded and connected and K > 1, then the process is permanently separated 
by an /-gap at time a, where i is the (unique) integer such that a is the time of 
an /-transition. This permanant separation is the separation into two subpro- 
cesses described in the previous paragraph. Note that the shifted process (~t) 
=(~+t) ,  t>0 ,  is permanently separated by an /-gap at time 0 for the same 
value of i, and that the tree set of (~t) has exactly two bounded components 
and strictly less than m separation times when the tree set of the original 
process is connected and has at most m separation times. We define 

Ai = {the process is permanently separated by an/ -gap  at 

time 0 and T has exactly two bounded components}. 

~ ~ be the successive times at which i- Executing the Basic Idea. Let ol,o2, a3,... 
transitions occur. Then by the strong Markov property and the fact that 0 <  zN 
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when K > 1 (see Sect. 2 for the definition of TN), 

P(A and 1 - < K < m ) =  ~, 
j -  
~, ~" P(A, 1 < K < m, a = a ~, and We =j) 

1 

j = 3  i = 1  n = l  

__< ~ ~ p~o(al < rN, W~ =j,  4~ = 4) P~(Ai and 0 < K < m). 
j = 3  i - - 1  n = l  ~ 

(11) 

We have been careful to indicate initial states by subscripts in the last term. 
The innermost summation is taken over states 4 that have an /-gap and that 
satisfy m a x 4 - m i n 4 + l = j .  For  such 4, we will now estimate P~(Ai and 
0__<K<m). 

Let 

4~ =particles in 4~ descended from particles on the left of the i-gap 
in the initial state ~. 

42 =particles in ~t descended from the remaining particles in 4. 
T 1 = the tree set of (41t). 
T 2 = the tree set of (42). 

If the process is permanently separated by an /-gap at time 0, then T1 c~ T2 = r 
Under the restriction that Tac~T2=r the two processes (~)) and (42) remain 
separated by at least one vacant site at all times, so they have the same 
probability law on this restricted part of the probability space as two inde- 
pendent branching annihilating random walks under the corresponding restric- 
tion (i.e., that they remain separated, or equivalently, that their tree sets are 
disjoint). It follows from the inductive hypothesis that 

Pc(Ai and 0 < K < m ) <  {CpRi] ( CpRJ-i-2 < 9CzpzRJ-z  
\ i 2 ] \ ( ( j - i - 2 )  v 1) 2 ) =  ~ " 

(12) 

We have used the facts that T1 and T2 each have strictly less than m separation 
times if T does, and that the initial states 410 and 42 have "widths" (in the sense 
of the process (Wt) defined earlier) of at least i and ( j - i - 2 )  v 1 respectively. If 
we plug (12) into (11) and sum over ~, we obtain 

P(A and l<-K<-m)<= ~ j-1 (9C2pZRJ-2) E E < w4 =J). 
j = 3  i = 1  i2 ( j - -  i) 2 n = l  

(13) 

Estimating (13). We first estimate the innermost sum in (13). Since a site can be 
vacated at a maximum rate 1 +2p,  this is bounded above by 1 + 2 p  times the 
expected Lebesque measure of the set of times t < ~U such that Wt =j. The rate 
at which Wt changes is always more than 1, so this measure is bounded by the 
expected number of times the process (W~) visits j before time rN- As in the 
derivation of (9), we can reason that for t<zN, (Wt) can be compared with a 
process of sums of i.i.d, random variables with bounded increments and posi- 
tive mean, so that this expected value is bounded above by 
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C/~ i- j  if j < f  

C if j>~,  

where f =  Wo and C and/~  are chosen as before. If we substitute this bound in 
for the bracketed quantity in (13) and recall the relationships between C, R, C 
and R, we obtain the following: 

9C3p2(1 +2p)  
P(A and 1 _< K-< m)_-< R2 

(t~l.= J-~i Re q-j~e= i ~  Rj ). (14) 
j 3i= i2(j-i)2(E-J) 2 i 2 ~ i )  2 

Since 
j-1 1 16 
i~1 i2(J--02 < ~2, 

the quantity in (14) is less than 

144C3p2(l+2p)(e~lR2 a= t j2(~,_j)2 Re ~_a__~ R ~ ) . =  

which is less than 
Mp2R~/f 2 

for some constant M which does not depend on p < l ,  f or m. If we choose 
p < C/2M A 1/100, then (10) follows, which completes the proof of the inductive 
step, and hence of the theorem. [3 

5. Extinction 

In this section we show that branching annihilating random walk dies out with 
probability one for a high enough random walk rate. 

Theorem 2. For sufficiently large p and any finite initial state io, 

P(i t=O for some t > 0 ) =  1. (15) 

We will find it convenient to introduce the processes (if) and (c~,) as- 
sociated with (it) so that for x ~ 0 ,  

i f  = those particles in it which are descended from the particle at x at time 0, 
cif-- those particles in it which are descended from particles not at x at time 0. 

Of course, i~ 'wc~=i t .  To demonstrate Theorem 
demonstrate the following proposition. 

Proposition 2. For sufficiently large p and for X~io, 

2, it is enough for us to 

E[i~[ < 1/2. (16) 
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Theorem 2 follows from Proposition 2, since summing (16) over Xe{o implies 
that 

EIr <�89 
and therefore by induction, that 

1 
EI~4.1 <~1~ol, 

This quantity --+ 0 as n ~ c~, which implies (15). 

Proof  of  Proposition 2. We first introduce the following notation. Let 

a = t ime  at which (el) first branches or becomes extinct, 

= time at which (~)  branches again ( =  ~ if (~f) becomes extinct first), 

A1 =event  that c r < 4 - e ,  

A z = e v e n t  that z > a + e ,  

A3 = event that no particle from (el) meets any particle from (c~,) in (a, a +  e]. 

Here e < 1 and will be further restricted later on. 

We may partition the space of realizations of ~ so as to write: 

E[~l  = E [-1311; A]] + E Hr A1 n A~] + E[1 ~ l  ; A1 c~ A2 c~ A~] 

+ EEI~NI ; Aa n A2 c~ A3]. (17) 

We proceed to show that each of the four quantities on the right is small: the 
first three because the associated events have low probability, and the fourth 
because ~] = r is usually the case here. 

E[-I~,]I;A]]. It is not difficult to show that (l~fl), t > 4 - e ,  is pathwise domi- 
nated by an appropriate  version of the binary branching process (Zt_4+~) 
having initial state Ir Therefore, 

E [1~[ ; A]] _-< EEZ~; A]]  = e~E[Zo ;A]]  --- e~E vl~kl~4- ~1 ; A]]. 

Each particle in (if) branches at exponential rate 1, and so 

P(A~) < e -  (4 - ~). 

Since I~[-~l = 1 under A], it follows that 

E [ I~ I  ; A]] < e-~4- =~) < 1/8 
for e <  1/2. 

E[I~.~I; A ~ n A ~ ] .  One can employ the strong Markov  property to show 
that (1r is pathwise dominated by an appropriate  version of (Zt) with initial 
state 1~1. Therefore, 

E[[~]l; A 1 n A~] <EUZ4_~; A~ ~A~2 -] (18) 
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which, since (Zt) is increasing and ~ < 4, is at most  

E[Z4;AlnA~2J=e4E[Zo;AjnA~J=e4E[I~'~I;AlnA~2]. (19) 

Since [~-~'l _-< 2 for t < r and each particle branches  at rate 1, 

P(A~) < 2(1 - e-~). 

Because t{~[ < 3, it therefore follows f rom (18) and (19) that  

E[I~%I; A1 c~ A~] < 6(1 - e-~) e 4. 

Choosing ~ > 0  small enough, one obtains  

EEI~I ;  A1 c~ AS] < 1/8. 

E [ ] ~ [ ; A a  chA2nA~]. Under  A2, (~ )  has either two distinct particles in (a, a 
+ e] (if (~ )  branches  at a) or  none at all. Therefore,  

P(A 1 c~ A 2 c~ A~) < p((c ~) hits a simple r andom walk start ing 

at x with j u m p  rate p in (~, a + ~ ] ;  ~=#0) 

+ P((C~f) hits a simple r a n d o m  walk start ing 

at x, with j u m p  rate p and which jumps  

at a, in (a, cr + e] ; ~ + 0, cr < 4 -  e). (20) 

Let G(s)=probability ( ~ )  and the first r a n d o m  walk hit by t ime s. Then the 
first quant i ty  on the right is at most  

co cO 

P(a~[s-e,s); ~'~.O)dG(s)<=e~ dG(s)<=e, (21) 
0 0 

since particles branch  at rate 1. On the other  hand,  one can check that  the 
probabi l i ty  that  a r a n d o m  walk with j u m p  rate p +  1 has s imul taneously  no 
more  than  4e(p + 1) j umps  in any interval of length e in [0, 4] is more  than  1 
- g  for p >4 /e  2. This is true in par t icular  for [c r ' -~ ,  or), where a '  is the hitting 
t ime in the second quant i ty  on the right of  (20). (Set a ' = o o  if (~ )  and the 
r a n d o m  walk do not  hit by t=4 . )  Therefore,  since a (under ~=t=0) can be 
viewed as the first j u m p  of a r a n d o m  walk with j u m p  rate 1, 

P(a~[a'-  8, a')) < 4e + e= 5e. (22) 

Together ,  (21) and (22) show that  

P(Al c~A2nA~)<6~. 
Under  A2, I~x+~]<2, and so 

E[[~x+~[; A1 AAznA~3] < 12e. 

Reasoning  as in (18) and (19), it follows tha t  for e < e - 4 / 9 6  and p>4/e ~, 

E[I~41;A~ c~A~chA~] <=e4E[I~+d;A~ ~A~c~A~] 

< 12e e 4 < 1/8. 
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E [ I ~ ] [ ; A l c ~ A 2 c ~ A 3 ] .  Either ~ = r  or  1~1=2; in the latter case the two 
neighboring particles execute simple r a n d o m  walks with j u m p  rate p, and do 
not  branch or  meet any particles f rom (c~7) in (o-, a +  el. Therefore, 

E x = [1~+ ~[; A 1 c~ A 2 ~ A3] < 2P(simple r a n d o m  walks at neighboring 

sites with j u m p  rate 1 do not  meet by time ep).  

By the recurrence of simple r a n d o m  walk, this quant i ty  --*0 as p--. oo, and is 
therefore < e - 4 / 8  for p chosen large enough. Reasoning again as in (18) and 
(19), it follows that  

EEl ~,~1; A1 r A 2 ~ A3] ~ e4E[ -]ix+ ~l; A1 N A 2 ~ Aa[ < 1/8 

for sufficiently large p. 

We conclude with a few comments  on Theorems 1 and 2. Theorem 1 states 
that  in dimension 1, branching annihilating r a n d o m  walk survives with positive 
probabil i ty if p > 0 is small enough,  whereas Theorem 2 states that the process 
dies out  with probabil i ty 1 for large p. One can of  course extend the definition 
of  branching annihilating r a n d o m  walk to dimensions d > 2  in the obvious 
manner,  and ask about  analogues of Theorems 1 and 2. It is possible to 
extend Theorem 1 to higher dimensions by projecting down onto the line xl  
= x 2  = . . .  = x a .  It can be shown that  the one-dimensional  projected process has 
the same kind of  growth properties that  were derived in Sect. 2, and the tree 
a rgument  of  Sect. 4 goes th rough  with slight modifications. Theorem 2, how- 
ever, is a consequence of  the probabil i ty of  eventual return to the origin of  a 
r andom walk being greater than 1/2. Theorem 2 therefore also holds in d = 2 ,  
but  its p roof  is inapplicable for d > 3 .  (In three dimensions, the probabil i ty of 
return is ~0.35.) It would be interesting to show that  there is always a positive 
probabil i ty of  survival for d > N for some N (which may  be 3). Also, it would 
be interesting to have some statement  on the survival of branching annihilating 
r a n d o m  walk at values p intermediate to those for which Theorems 1 and 2 
hold. In  particular, one might  wish to show that  there is a critical Po for which 
P <  Po implies survival and p > Po implies extinction of  the process. 
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