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Summary. The inclusion functional of a random convex set, evaluated at a 
fixed convex set K, measures the probability that the random convex set 
contains K. This functional is an analogue of the complement of the distri- 
bution function of an ordinary random variable. A methodology is de- 
scribed for evaluating the inclusion functional for the case where the ran- 
dom convex set is generated as the convex hull of n i.i.d, points from a 
distribution function F in the plane. For  general K and F, the inclusion 
probabili ty is difficult to compute in closed form. The case where K is a 
straight line segment is examined in detail and, in this situation, a simple 
answer is given for an interesting class of distributions F. 

1. Introduction 

Recently there has been great interest in the formulation of a general theory of 
random sets. Kendall [9] and Matheron [10] both provide a definition of a 
random set via a measure on a space of sets. Let ~ denote the collection of 
closed subsets of IR k and S denote the usual Borel a-field of subsets of ~ .  A 
random set X is defined as a measurable map from an abstract probability 
space (O, ~ ,  ~ ' )  into (~ ,  S) with ~ being the induced probabili ty measure on 
S. 

For  such random sets Eddy and Trader [4] introduced the inclusion 
function Gx given by 

Gx(K)=Pr(Kc_X) for K s ~ .  

For random sets this function plays the role of the complement of the distribu- 
tion function of an ordinary random variable. In particular 0_-< Gx <-_ 1, G(~) = 1, 
G is decreasing (K1 ~_K2~G(K1)>G(K2)) and G is lower semi-continuous. In 
addition, under certain consistency requirements, the inclusion functional 
uniquely determines the probability measure ;~. In fact, knowledge of the func- 
tional on the set of compact  subsets of IRd is enough to determine ~ uniquely. 
This follows from Choquet 's  theorem (Theorem 2.2.1 in [10]) and the fact that 
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Gx(K) = 1 - Txc(K) where Tx(K ) = Pr (X c~ K 4= t~) and X c is the complement  of 
X. See also Theorem 5.1 and Corollary 5.3 of [4]. 

In this paper we provide a recipe for evaluating Gx(K), at least in integral 
form, for the important  case where the random set X is generated as the 
convex hull of n points, pa, . . . ,p , ,  in the plane, independently and identically 
distributed according to a bivariate distribution F. That  is, we show how to 
give expressions for the probabili ty that the convex hull of Pl, . . . ,P,  contains 
any fixed compact  set K. For  general K and F the expression for this probabil- 
ity is not easy to compute in closed form, but we give a simple answer for the 
special case of K a straight line segment and an interesting class of distri- 
butions F. 

Finally, we indicate the importance of this problem, for K a polygon, in 
computing moments  of the (random) number of extreme points of the convex 
hull of Pt, ...,Pn. Determining such quantities is crucial in developing the 
statistical properties of data analytic techniques based on convex hulls. For 
references to the uses of convex hulls in statistics see [6]. 

2. The Probability that the Convex Hull of  P l , . . . ,  P,, Contains K 

In this section we show that the problem of evaluating the probability that the 
convex hull of p , , . . . , p ,  contains a fixed compact  set is equivalent to a 
coverage problem in geometrical probability. Write co (Pl, ..., Pn) for the convex 
hull of Pl . . . .  , pn- 

Jewell and Romano  [7] considered the following two problems: 

i) drop n points Pl = (x l ,  Yl), ..., p ,=(xn,  y,) in the plane independently and 
at random according to the bivariate distribution F(x, y). Find the probabili ty 
G} that a fixed disc is contained in co(p1 . . . .  ,p,); 

ii) let H(E, m) be a bivariate distribution on [0, ~] x [0, 2~]. Place n random 
arcs on the circle of circumference 2~z where the lengths ( a , - . . , ~ ,  and mid- 
points m~,.. . ,  m, of the n arcs are chosen according to a random sample of n 
independent observations (Yl,ml),...,(En, m,) drawn from the distribution H. 
Find the probabil i ty S~ that the circumference of the circle is completely 
covered by the n arcs. 

The two problems are apparently unrelated but, in [-7], it was shown that 
they are equivalent in the sense that if H is prescribed, then S~ = G~. where H* 
is a bivariate distribution in the plane derived from H via a simple transfor- 
mation. Conversely if F is prescribed then G~v=S'~. where F* is a bivariate 
distribution on [-0, ~z I x [0, 2~] derived from F. Subsequently, in [7], a general 
integral formula was given for G} for any distribution F thus solving both 
problems. 

Now let K be any fixed compact  convex set in the plane and consider the 
more general case of problem (i) where we wish to determine the probability 
G"v(K) that K_~co(pl . . . .  ,p,). Thus G~ above is G"v(K), for K a disc in the 
plane. We now show that the problem of evaluating G"v(K) is also equivalent to 
problem (ii). 
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First, consider the support  function of a convex set in the plane. The 
support function, bK, of a compact  convex set K in the plane is a continuous 
function on the unit circle defined by 

bK(y)=sup{k. %:% is the unit vector in the direction 7}. 
kEK 

There is a one-to-one correspondence between the collection of compact con- 
vex sets in the plane and the collection of support functions. If K is a single 
point k with polar coordinates (r, 0) then bK(7)=rcos(7--0)  for ys[,0,2n]. 
Moreover,  if K is the convex hull of the set of points {kg}, then bK(y)=supbui(7); 

i 
i.e., the support  function of the convex hull is just the pointwise maximum 
of the support  functions of the k~'s. For further details on support functions 
and their use in studying random convex sets we refer to [-3~ and the references 
given there. 

A trivial, but important,  consequence of the definition of a support function 
is that a convex set K1 is contained in another convex set K2 if and only if 
bKl(7)<bK2(~ ) for all ~ [ 0 , 2 7 @  In particular, if K 1 is a fixed comapct con- 
vex set and K 2 is the convex hull of a random sample of n points (rz, 0z), 
i=  1,2, ..., n, then the condition that K 2 contains K 1 is 

bK~(7)<max{r~cos(7--O~):i=l,...,n} for all 7e[0,2~]:  

We also require some terminology borrowed from Rogers [,12]. Let K be a 
fixed compact  convex set and suppose P is some point exterior to K. Consider 
a line through P which does not hit K. This line can be rotated in a clockwise 
sense about P until it hits K. This (unique) line is called the clockwise critical 
line (CCL) from P to K. If the CCL is oriented from P to K then K will lie to 
the right of the CCL (see Fig. 1). Similarly there is a (unique) anticlockwise 
critical line (ACCL) oriented from P to K such that K lies to the left of the 
ACCL. 

Now draw both the CCL and ACCL from P to K and, without loss of 
generality, suppose the origin 0 is interior to K. To both the CCL and ACCL 
there correspond angles ~Pl and ~P2, respectively, formed by the perpendiculars 
OH1 and OH2 with the fixed direction 0x (see Fig. 1). 

We will call 01 the clockwise critical angle (CCA) and 02 the anticlockwise 
critical angle (ACCA). 

AC I_ 

Fig. 1 
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Lemma. Let K be a compact convex set containing the origin and let P =(r, O) be 
a point exterior to K. Then {7:bK(y)<rcos(7--O)} is an interval, modulo 2re. I f  
the interval is considered as an arc on the unit circle then the arc's clockwise and 
anticlockwise endpoints are the CCA and A CCA respectively. 

Proof. Consider the set of all lines passing through P. These lines can be 
indexed by the angle ~ formed by the perpendicular from the origin to the line 
with the fixed direction 0x. Call the line indexed this way L0. Thus the CCL is 
L01 etc. It is clear that br(Oa)=rcos(Oa-O) and bK(~tz)=rcos(O2-O ). If we 
mark the points ~kl, ~t2 on the unit circle, then for ~ lying between 0~ and 
O2(i.e, ~ lies on the clockwise side of 02 and the anticlockwise side of ~1) the 
line L 0 does not hit K. This follows from the definitions of the CCL and 
ACCL. In this situation b r ( 0 ) < r c o s ( 0 - 0 ) .  Alternatively for ~ lying elsewhere 
on the unit circle the line L 0 passes through K and then bK(O)_->rcos(~,-0). 
The convexity of K requires that the set of ~9 with bK(O)>rcos(O--O) is a 
connected set, i.e., an interval (modulo 2~). 

Let p~, ..., p, be chosen independently from the distribution F, and let b~(7) 
= bp,(7) for i=  1,... ,  n. For distributions F with no support in K, the immediate 
consequence of the lemma and preceding comments is that the event 
bK(7)~max{bi(~): i = l , . . . , n }  for all 7~[0,2~] is equivalent to the event that 

i 

the circle of circumference 2n is covered by a random sample of n arcs when 
the clockwise and anticlockwise endpoints of the arcs are identically and 
independently distributed according to a distribution function Ho. The distri- 
bution H0 is the joint distribution of the CCA and ACCA relative to K that is 
induced by a point P chosen according to F. Note that H0 depends on both F 
and K. 

In order to use the results of [7] we need the joint distribution H(Y,m) of 
the length and midpoints of the arcs rather than Ho. This is easily computed. 
Below we indicate how to evaluate H from F and K and, in Sect. 4, the 
particular case when K is a straight line segment will be explored in detail. 

For  distributions F with no support in K we have thus established that G"v(K ) 
=S~,  a coverage probability, where H is derived from F and K according to 
the above description. The value of S~ can then be computed, in principal, 
from the results of [7] described at the beginning of this section. For  distri- 
butions F with support in K we must replace F(x) in the above with FK(x), the 
conditional distribution of F given that xq~K. In this case we have 

G}(K)= ~ GJv~,(K)pJ(1-p)"-J(~) 
j=o 

where p = PrF(xCK). 

3. The Derivation of H from F and K 

The description of H in terms of F and K depends on a construction of 
Crofton [2]. In particular, when K has a smooth boundary, we give the 
Jacobian of the transformation P=(x ,  Y)--*(Ol, ~'2) where ~01, ~2 are the CCA 
and ACCA of P relative to K, respectively. The point P=(x , y )  is chosen 
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according to F, and is assumed to be outside of K (see Fig. 1). The angles 
01, 02 uniquely determine the point P. We wish to express the distribution of 
01,02 in terms of F and K. 

Let tl ,  t2 be the distances from P to the points of tangency of the CCL and 
ACCL, respectively. Let w be the smaller angle formed by the CCL with the 
ACCL at P. Then it can be shown that dxdy=(tl t2/sinw)dO~d02 (see [13, 
p. 26-27] for details). 

There is no simple expression for the length Y and midpoint m of the arc in 
terms of 01 ,02  that applies for all possible values. However, it is easy to verify 
that d01 dO2=dddm. Also note that w = ~ - d ,  (see Fig. 1). Thus 

dx dy = (t 1 t2/sin d) dd dm. (1) 

We note that (1) often holds for convex sets K which do not possess tangents 
at every point of the boundary. 

In addition to the Jacobian, we also need to express the coordinates x ,y  
(and tl,  t2) in terms of d, m. This is complex and requires detailed knowledge of 
the boundary of K. For  K a disk or point, it is easy. The more complex case 
where K is a straight line segment is described in Sect. 4. 

To complete the evaluation of H we must also describe the support of the 
distribution in [-0, re] x [-0, 2zc]. When the support of F is K c and K is a disk, 
the support is the whole rectangle. However, this need not be the case for more 
complex K. An example when the support of H is never the whole rectangle is 
given when K is a straight line segment (see Sect. 4). 

There is an interesting class of distributions whose definition arises from 
this parametrization of the coordinates of P. Define the class of distributions F 
with no support in K to be circularly symmetric about K if the marginal 
distribution of m after the change in variables from (x, y) to (d, m) with Jacobian 
given by (1) is uniform on [0, 2~z]. The mass of such distributions is uniformly 
spread "around"  K in terms of the CCA and ACCA. In the special case where 
K is a single point this is just the class of distributions spherically symmetric 
about the point. 

4. The Straight Line Segment Case 

In this section we provide formulae for G"v(K) when K is a straight line 
segment and evaluate such expressions for a family of distributions F. In the 
conclusion we indicate the importance of the case where K is a polygon in the 
determination of statistical properties of the convex hull of Pl . . . . .  P,. 

Initially, for simplicity, let K be the straight line joining the points P~ =(1, 0) 
and P 2 = ( - 1 ,  0). Let F be a continuous distribution function on the plane. We 
wish to evaluate G"v(K). Suppose P is dropped in the plane according to F. 

Although K does not satisfy the conditions used in Sect. 3 it is easy to 
verify that (1) still holds. For  example, if y > 0, the CCL is the line through P 
and/11. Then 1 - x = y  tan 01 and 1 + x =  - y  tan 02. Differentiating both these 
equations with respect to 01 and 02, and solving for the appropriate partial 
derivatives yields (1). A similar analysis shows that (1) holds if y<0 .  
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We now investigate the boundaries in f -m space which describe the image 
of the transformation of the coordinate system (x, y) to the coordinate system 
(~,m). The simplest approach is to describe the level sets of f and m in the 
plane. The level sets of ~ correspond to the level sets of 0 2 - 0 l  and the level 
sets of m correspond to level sets of ~1 +~2 .  

Analysis of the level sets of ~ 2 - ~ 1  yields the following description of the 
level sets of ~. For  a fixed fo, consider the two circles kyZ++_2y+kxZ=k where 
k = tan ~o. The locus of points (x, y) which lead to constant Y = f0 is the part  of 
the circle kyZ+2y+kxZ=k with y > 0  and the reflection of this part  of the 
circle through the Ox axis. The remaining arcs of the two circles correspond to 
the level set of # = r c - ~  o. This accounts for the level sets of f for 0<#<zc .  
Note that the level set of Y=rc/2 is just the circle with center the origin and 
radius 1. For  f = 0 the level set is the line y = 0. 

A similar analysis yields the level sets of m. Let v = t a n 2 m  and consider the 
rectangular hyperbola, vy2+2xy-vx2+v=O, which passes through PI and P2. 
A given value of v corresponds to four different values of m. The four sections 
of the hyperbola according to whether xX0,  yX0,  represent the level sets 
corresponding to these four values of m. 

The special case v=0 ,  ___oe yields the level sets of m for the values 0, re/2, 
~, 3rc/2, and re/4, 3~/4, 5~z/4, 7rc/4. Points on the line joining P1 and P2 
correspond to the value m = ~/2 but Y = 0. 

It  is straightforward to use the information on the level sets to ' show that 
for a fixed ~, m ranges over the two intervals [(rc-~)/2, (rc+E)/2] and 
[(3rc-#)/2, (3~+~)/2].  As # moves from 0 to ~ this describes the region, N, of 
f - m  space which is the image of the transformation of the coordinate system 
(x, y) to the coordinate system (f, m). The region is illustrated in Fig. 2. 

CN 

2~ 

3T~/ZT~ 

0 ~: L" 

Fig. 2. The shaded region ~ corresponds to the image of the x - y  plane under the transformation 
(x, y) -~ (~, m) 

We return to the evaluation of G}(K). In Sect. 2, 3 we determined that 
G"v(K)=S"H where H is the joint distribution of ~, m induced by F(x,y) in the 
prescribed manner. We also have 

sin ~P 
dH(•, m)= dF(x((, m), y(Y, m)). (2) 

tl t2 

and H is supported on the region ~ .  
Now, in [7] it was shown that S~=G~.(D)  where D is the disk of unit 

radius center at the origin, and H*(R, O) is the distribution on the plane with 
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support outside D derived from H(f ,  m) via the following transformation 

zc-E -1 
(3) 

The support  of H* is the image of N under this transformation, i.e., the set ~ *  
of (X, Y) in the plane such that IYI > 1. 

From (2), (3) we have 

dH*(R, O)= (R/2)(R 2 - 1)1/2(sin ~/tl t2) dF(x(R, 0), y(R, 0)). 

With a little algebra, working from Fig. 1 with K a line segment gives 

t 1 t 2 = e 2 ( e  2 sin 2 0  -- 1)/(R 2 - 1) 
on the support  of H*. 

We now have a complete description of H* in terms of F and we can 
provide a formula for G~.(D) using the results of [7]. First we need some 
notation. 

(R~e) 
Fig. 3 

Consider a point (R,O) in the plane, chosen according to H*, and the 
corresponding arc on the unit circle supported by (R, O) as described in Fig. 3. 
For each point (Ri, Oi), let Li be the directed tangent from (Ri, Oi) to the unit 
disc with the disc on the right of Li. Let cg k be the event that there are gaps 
after (in a clockwise sense) each of the first k supported arcs, having selected 
only the first k of (Ri, Oi) according to H*. Let C k describe the k-dimensional 
region where (R1, O1), ..., (Rk, Ok) must fall for cgk to occur. Given c~k, let Nk be 
the event that the subsequent ( n - k )  points do not cover any of those gaps, i.e., 
each of (Rk+ 1, Ok+ 1), ..., (R,, O,)6Bk =D1 c~... ~Dk where D i is the half-plane to 
the right of Li. Then Theorem 4.1 of [7] gives 

G~.(D) = 1 + ~ ( - 1)k(f,) S"" S[ ~ dH*] € dH*(R1,01).., dH*(Rk, Ok). 
k = I C k  B ~  

In general, when the support of H* is the complement of the disk, each event 
% occurs with positive probability. However, in the case under consideration, 
H* has support  confined to the region N* described above. With this con- 
straint there can be gaps after at most the first two supported arcs, i.e., Prn,(~k) = 0 
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for k>2 .  This is easily seen, since there cannot be a gap after each of two 
supported arcs, corresponding to points (R, O) with R sin O >  1. The same 
holds if R sin O < - 1 for both points. Thus there can be gaps after at most two 
arcs, one corresponding to a point with R sin O > 1, the other corresponding to 
a point with R sin O < - 1. Thus the above formula simplifies to: 

G"F(K) = G"H,(D)= 1 --n ~ [ ~ dH*] "-1 dH*(Ri, O1) 
Ci B1 

+ [n(n - 1)/2] ~ S 1- ~ dH*]"- 2 dH*(R~, 0 ~) dH*(R2, 02). 
C2 B2 

(4) 

The parametrization of Ba, B2, C1 and C2 is straightforward but complicated. 
Again there are simplifications due to the restriction of the support of H*. Full 
details are given in a technical report from the University of California 1-8] 
which is available from the authors. 

Section 5. An Example 

The formula (4) above, together with the appropriate parametrizations, give a 
formula for G"F(K) when K is the straight line segment joint ( - 1 ,  0) to (1, 0). 
Exact computation for finite and for general distribution F is formidable. The 
main value of (4) may be in providing a method to evaluate asymptotic values 
of G"v(K) as n--, oe. Here, for a special class of distributions F, we evaluate 
G"F(K) for finite n. This is the class of distributions which are circularly 
symmetric about a straight line segment according to the definition in Sect. 3. 
The densities are given by: 

dF(x, y) = c(t 2 t2/W) f (Tc - w) dx dy 

where f is an arbitrary positive integrable function on [0, 7r] and c is the 
appropriate integrating constant. For  a given (x, y), the values of tl ,  t2, w are as 
shown in Fig. 1 with K the straight line segment joining ( - 1 ,  0) to (1, 0). In the 
coverage version of the evaluation of G"v(K) we have dH(d, m)--2cf(d)dY dm on 
~,  (see (2)). Thus the joint density only depends on d and the marginal 
distribution of m is uniform on [0, 2~z]. This makes the computation of S~ 
=G~.(D) simpler. We compute S~ for the simplest distribution in this class 
where f is a constant function. Then 

and 
dF(x, y)=(1/2~z)(t~ tZ/lyl) dxdy, (x, y)~N2 

dH(d, m) = 1/7~ 2 dd din, (d, m)e~. 

Thus the lengths and locations are uniformly distributed over the region ~.  
Note that the following computation of S~ provides an example of a coverage 
problem where the lengths and locations of the arcs are not independent. This 
is the first such example for which explicit coverage probabilities have been 
evaluated for finite n. Examining the region N indicates that for this distribu- 
tion /-/, the average arc length near location m = 0  and rr is larger than near m 
= 7z/2 and 3 ~r/2. 
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We evaluate expression (4). Using the parametrization of B1 and B2 with a 
tedious amount of complex calculation yields: 

dH*(R, O) = (3/4) - (fl~/rc z) 
B1 

I ~H*(R, O)=((Pa +/~2)/~)-((/h +/~2)2/2~2) 
B2 

where flj=mj-(~'J2),  (]=1,2). For details see [8]. Then using the parametri- 
zation of Ca and C2 given in [8], we obtain 

f [ I dH*]"-adH*(R1, O1)= ~ ((3/4)-(fl~/rc2))"'adH*(R 1, 0 a) 
C~ B~ C~ 

1 
= 2 - 2 ( " -  1) ~ (3 - t 2 )  n-1 dr; 

0 

~S[S dH*] "-2 dH*(R~, O~)dH*(R2, O2) 
C2 B2 

= ~ [ ( ( i l l  "4- f12)/Tr) - -  ( ( i l l  "4- f l2)2 /2  7C2)] n -- 2 d H , ( R 1 , 6 )  1) d H * ( R 2 ,  6) 2) 
c2 

1 2 
= 4 ~ ds ~ t 2 [(S + t) -- ((S + t)2/2)] "-2 dt. 

0 0 

Hence 

G"F( K) = S~ 
1 1 2 

= 1 - -  ( H / 2  2 (n-- 1)) f (3  - -  t2 )  n - 1  dt -~- 2 n(n -- 1) f ds y t z [(s + t) - ((s + 02/2)] "- z dt. 
0 0 0 

Table 1 lists the value of this probability for small values of n together with 
S•o, S~, for comparison, where dHo(g, m) is the uniform distribution on [0, ~] 
x [0, 2~] and dHa(#, m) is the distribution of uniform locations m and fixed arc 

lengths #=  2n/3 which is the mean arc length under distribution H. 

Table 1. Coverage probabili t ies 

n S~n = G'r(K) S"no S'n~ 

3 0.017 0.030 0 
4 0.069 0.092 0.037 

Section 6. Conclusion 

We have shown how to compute G"v(K) when K is the straight line segment 
joining P1 =(1,0) and Pz = ( -  1,0). For general P1 =(xl,Yl), P2 =(x2,y2) the above 
methods can be used following three simple transformations: 
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(i) translate so that ((xl + x2)/2, (Yl + y2)/2 becomes the origin; 
(ii) rotate so that P2 P~ is parallel to the 0x axis; 

(iii) shrink (or magnify) so that 10P~[ = ]0Pz[ = 1. 

The Jacobian of the composition of these transformations ~b is d2/4 where d 
=]P1P2[. Since the convex hull of n points contains P2P1 if and only if the 
convex hull of the n transformed points (after application of qS) contains the 
line r joining ( ' 1 , 0 )  to (1,0), we have G"v(P---2P1)=G"v.(T) where dF* is the 
distribution of q~ (x, y). 

Finally, we indicate an important application of the case where K is a 
straight line segment. Let N be the number of extreme points of the convex 
hull of n points identically and independently distributed according to F. Let q 
be the probability that the first point Pl is not an extreme point of the convex 
hull. Then E(N)=n(1 -q) .  Formulae for E(N) for fixed values of n and in the 
limit, as n--, o0, are given in [-11, 5, 1]. At present no formulae are known for 
var(N), even asymptotic. Note  that v a r ( N ) = n q ( 1 - n q ) + n ( n - 1 ) q 2  where q2 is 
the probability that neither of the first two points Pl,P2 are extreme, i.e., Pl 
and p2eco(p3 . . . .  , p,). In the current notation 

q2 = ~SG} - 2 (p21)1) dF(p 1) dF(p2). 

Although the difficulty of evaluating G~-2(p2pl) makes evaluation of q2 for 
finite n a formidable problem, it is hoped that the methods of evaluating G~(K) 
described in this paper will make an asymptotic analysis of q2 and hence 
var(N) possible. The same ideas can be extended to give formulae for the 
higher moments of the number of extreme points. 
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