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On Optimal Stopping Rules
By

Y. S. Caow and HErRBERT RoBBINS*

1. Introduction

Let y1, y2, ... be a sequence of random variables with a given joint distribu-
tion. Assume that we can observe the y’s sequentially but that we must stop some
time, and that if we stop with y, we will receive a payoff #, = fr(y1, ..., ¥n).
What stopping rule will maximize the expected value of the payoff ?

In this paper we attempt to give a reasonably general theory of the existence
and computation of optimal stopping rules, previously discussed to some extent
in [1] and [12]. We then apply the theory to two particular cases of interest in
applications. One of these belongs to the general domain of dynamic programming;
the other is the problem of showing the Bayesian character of the WALD sequential
probability ratio test.

2. Existence of an optimal rule

Let (2, %, P) be a probability space with points o, let #F1c Fac... be a
non-decreasing sequence of sub-g-algebras of &, and let x;, 2, ... be a sequence
of random variables defined on 2 with H|2,| < co and such that 2, = x4 (w)
is measurable (% ,). A sampling variable (s.v.) is a random variable (r.v.) { = ¢ (w)
with values in the set of positive integers (not including + co) and such that
{t(w) = n} € F, for each n, where by {...} we mean the set of all w for which
the indicated relation holds. For any s.v. { we may form the r.v. x; = (o).
We shall be concerned with the problem of finding a s.v. { which maximizes the
value of E(x;) in the class of all s.v.’s for which this expectation exists.

We shall use the notation z+ = max (z,0), x~ =max (—z,0),sothat x =2+ — 2,
To simplify matters we shall suppose that E (sup ,}) < oo; then for any s.v. ¢,

K

2 =< sup z,, and hence — oo < F(x:) < E(sup z;}) < co. Denoting by C the

n 7
class of all s.v.’s, it follows that E (z;) exists for all ¢ € C but may have the value
— 00,
In what follows we shall occasionally refer to [I] for the details of certain proofs.

Definition. A s.v. ¢ is regular if for all n =1, 2, ...
(1) t>n = B(w)| Fp) > .
Note that if ¢ is any regular s.v. then

B(@) = [a;+ o = [21 + o1 = B(m) > — o0.
g=1} {¢>1 =1 £>1
* Research supported in part by National Science Foundation Grant NSF-G14146 at
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Lemma 1. Given any s.v. t, define
= first integer j = 1 such that E (x;| F;) < u;.

Then t' is a s.v. and has the following properties:

(a) t' is regular,

(b) ¢ <t,

(e) E(xy) = E(x) .

Proof. If t = n then E(x;| %) = @, so that ¢’ < n. Thus ¢ < ¢ < oo, and
hence (b) holds. For any 4 € &#,,

(o) o0
(2) J'xt"—*z j'xjgz fE(x”ﬂ'ﬁ:jxt
At'zny  j=nAdA{'=j} J=n A{'=7} Ay zn}

Putting » = 1 and 4 = Q, (2) yields the inequality (c). Finally, from (2) and
the definition of #'.
' >n = E(wy|Fn) = E(x| Fu) > 2,
which proves (a).
Lemma 2. Let ty, 3, ... be any sequence of regular s.v.’'s and define

Tr=max (f1,...,4), T=supt =limz;.

7 i—>00

Then the ©; are reqular s.v.’s, 71 < 19 =+, and

3) max (B, ..., Bx,) < E(x,) < Ex
Moreover, if P(t < oo0) =1 then v is a regular s.v. and
4) By = lim E(x;) = sup Exy,.

1—>00

rie) =

Proof. For any ¢,»=1,2,... and any 4 € #, we have

o =S (v (5 )55 ( Jen o+ Jo | = e

Azl j=n \A{u=72l1} Ad{m=7<li+1} j=n \A{rn=j=t+1} Alti=<l41}/ A{ni=n}
Hence, since 71 < 72 < --+, it follows that
(5) w2 n=> B, | Fu) LB @, | Fn) S E@,,| Fa) = .

Since #; is regular and 71 = ¢;, it follows that
hh>n=x, < B, |Fn)=B@,|Fn) < B, | Fn) <

By symmetry,
t;>n = B (@,| Fn) > xa, j=1...,1,
and hence
78 > n = B(®r,| Fn) > 2,
so that each 7; is regular. Setting n = 1 in (5) we obtain
(6) B(x,|F1) = B (x| F1) < B, |F1) =,

so that Ew)<B(w)<B@)<

and by symmetry E@)<E(@), j=1,..,1,

which proves (3).
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Turning our attention to v we observe that since z; = lim #;,, and since

i—>oco

E (sup 2r) < H(sup zy) < oo,

n
we have by Fatou’s lemma for conditional expectations [2, p. 348] that
(7) E(x;|Fn) = limsup E (27,| Fr).
Hence by (5) and (7),
T>n=>1>n forsome i=u,<B@wy|Fn) <E @ |Fn) =
alimsupE(xTi]fn) > Xy => E’(x,[f/"'n) > Xy,

t—>00

so that 7 is regular. Finally, from (6) and (7) we have

E (x| F1) = E (2,| F1),
so that (4) holds.
Corollary 1. Let ty be any s.v., and let C(to) denote the class of all s.v.’s t such
that § =< ty. Then there exists a s.w. v € C(ty) such that

(8) E () = sup B (zy).
teC(l,)

Proof. Take any sequence t1, £z, ... of s.v.’s in C(fp) such that
sup K (x;,) = sup & (z;) .
i teC(te)

By Lemma 1 we may assume that the #; are regular. Set T = sup #;; then 7 € C(f)
and the conclusion follows from Lemma 2.

Corollary 2. Suppose there exists a s.v. 1o such that

9 E(w,) = sup B (x;) .
teC
Choose any sequence t1, s, ... of reqular su.’s such that
(10) sup B (xz,) = sup K (),
@ teC

and set T = sup ;. Then
)
(11) 7 < 7o,

so that T s @ s.v., and
(12) B () = sup B (zy).
teC

The s.v. v thus defined does not depend on the particular choice of tq, t1, b2, ...,
since by (11) and (12) i is the minimal s.v. T such that (12) holds.

Proof. By Lemma 1 of [1], # =< 7¢ for each %, so that (11) holds, and (12)
then follows from Lemma 2.

Lemma 3. Assume that
(13) Ty = T, — Xy

3*
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’
where x,,, x, are measurable (F ) for each n, and are such that

(14) E[sup (z,)*] = B < oo,
K
(15) z, =20, limz, = oo,
n—>00

Let t1,ta, ... be any sequence of sw.’s such that
(16) Ex)=K> — oo,
and set T = lim inf#;. Then P(t << c0) = 1.

2—c0

Proof. For any integers ¢ and m,
o= [@,—e)=] (sup(e)* —infal) < B— [uwn,
{ts =m} {t: =m} {tizm} n jizm {t: =m}
where we have set
Wy = Inf x]f' .

jizm
Since
[xti é B:
{t <m)
we have
K<E@w)<2B— [wn.
iz m}
Let 4; = {inf; = m} c {t; = m}; then since w, =0,
j=1
K é 2B - J‘wma
A

and letting ¢ — oo we have
K§_2B—fwm§_23—fwm.
{t =z m} {r = oo}
Let m — oo; then since

0w =ws <-+- > liminfa, = co,
—>00

it follows that
J'oo Z=2B— K <o,
{r =00}
8o that P(7 = o00) = 0.
Lemma 4. Under the assumptions (13), (14), (15) of Lemma 3, there exists a s.v. T
such that

(17) E(z;) = sup E (x) .
teC
Proof. Let t1, t2, ... be any sequence of s.v.’s such that
(18) sup E (x:,) = sup E (xz) .
2 teC

By Lemma 1 we may suppose that the #; are regular and therefore that
E(xy) = E(x1) > — co.
Set
Ty =max(ly,...,4), T=supf =1Ilmn7;.

7 {—>o00
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By Lemma 2,
E(xy) = E (23) = E(x1),

and 71 < 175 < +--. By Lemma 3, P(7 < o0) == 1. Hence by Lemma 2,
(19) E (ar) = sup B (x,),

K]

and (17) follows from (18) and (19).
The main results so far may be summarized in the following theorem.

Theorem 1. Assume that E (sup z;}) < oo.
n

(i) Choose any sequence &1, ts, ... of regular s.v.’s such that
(20) sup B (z;,) = sup E (z;)
D teC

(this can always be done), and define the r.v.
(21) T=supi;.
v
Then P(t < o0) = 1 if and only if there exists & s.v. Ty such that
(22) E(x,,) = sup B (%),
teC

and T is then the minimal s.v. satisfying (22).
(i) Assumptions (13), (14), (15) are sufficient to ensure that P(t << co) = 1.
Proof.
(i) If P(r << o) =1 then by the argument of Lemma 4,
B(xy) = sup E (%) .
teC

And if any s.v. 7o exists satisfying (22), then P(r < o) = 1 by Corollary 2 of
Lemmas 2, and t < 10.

(ii) Follows from Lemma 4.

The main defect of Theorem 1 is that it gives no indication of how to choose
a sequence of regular s.v.’s #1, 2, ... satisfying (20). We now turn our attention
to this problem.

3. The rules sy and s

Let Cx denote the class of all 5.v.’s ¢ for which ¢ << N. We shall first show
(cf. [3]) how to construct a certain regular s.v. sy in Cy such that

(23) E(x;,) = sup £ (x) .
teCy
To do this we define for each N = 1 a finite sequence of r.v.’s A7 , ..., f¥ by re-
cursion backwards, starting with 8%, using the formula
(24) By =max[z,, BB, 1| Fn)], n=1,...,N; pYij=—oo.
Thus

(25) %:ma‘x[xlv: —*oo] =N,
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and BY is measurable (#,). We now define

(26) sy = first » =1 such that g = x,.
Note that

@7) = Ty

and, since ¥ = xy,

(28) sN=N,

so that sy e Cy. Moreover,

(29) SN>n:>E(ﬁnN+1|5’;n)= Y > %,
and

(30) EBy, | Fa) =By, all n=1,...,N.

From [1, Lemmas 1, 2, 3] applied to the finite sequence 7, ..
that sy is regular, since

(31) sy >n = B (2| Fn) = B (B3| Fn) Z B2 >
and that

(32) E@,)=EQPBY)=EBY)=E(@) all teCy.
Thus the sequence s1, sz, ... has the following properties:

(33) sy is regular, sy <N, (23) holds,
and, since 01 cCsc..., it follows that

(34) E@)=E@,) = Ex,) = _ivﬁm E(x,,).
It is easy to show by induction from (24) and (25) that

(35) oy =fy SV =

Hence from (26) we have

(36) l=s1=s=",

and we define

(37) s=supsy =limsy < 4 0.
N N—co
Lemma 5. If P(s << o0) =1, then
{(38) E(xs) = lim E (xs,,) .
N—>oo

., B¥ it follows

Proof. By (33) and Lemma 2 applied to the sequence sq, sz, ... .

Lemma 6. If  is any s.v. such that

(39) lim inf {2, = 0
n—oo {t>mn}

then

(40) lim B (xs,) = B () -

N—oo
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Proof. Set
41) tv = min (f, N) e Cy.
Then
(42) [ = Blee,) — [an < Bosy) — [on < B @) + [
t<m 3N @>m !

Letting N — oo it follows from (39) that (40) holds.
Corollary. If x;, < cn® for some ¢, o = 0, and if H(t*) < oo, then
lim B (xs,) = B (x).
N-—>o00
Proof. From Lemma 6 and the relation
x, gofn“ §cft°‘—>0.
{t >n} {t >n} {t>n}

Theorem 2. Assume that
4 7’ * £
Ly =Ty — Xy =&, — Xy,

where all the components are measurable (F ) and

(43) Bfsup (@,)*] = B < oo,
n
(44) 0=z <ay <--, lima, =oo,
~—> 0D
(45) the (xF)~ are uniformly integrable for all n,
and
(46) ¥ <cax,  for some 0 <c¢<<oo.

Then s = sup sy is a s.v. and
N
E (x5) = sup E (v;) = lim B (x5,) .
teC N—o0
Proof. For any s.v. t we have from (44) and (46) that for £ > N,

oy = (@¥)T — @F)" —aF* = — [(@F)" +cxy],
80 that
(47) Jay = [[@) + car'].
g>vy @SN
Now if E(x;) + — oo then from (43)

E(x)=E@w)— E(@) < E@w") < B<oo,

so that E(z;) and hence E(z;’) is finite. From (47) and (45) it follows that (39)
holds. From Lemma 3, P(s << o0) = 1, and hence from Lemmas 5 and 6,

E(xs) = lim B (x5,) = E (%) .
N-—oco
Since this is trivially true when E(x¢) = — oo the result follows.
It is of interest to express E(xs,) explicitly. To do this we observe that by
the submartingale property (30),
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N N-—1

B, =B(p)=2  [Pi=2  [Bi+ [B¥
n=1 {sy=mn} n=1 {sy=n} {sy>N-1}
N—2

(48) <Z fﬂg“F fﬂ%—l‘{"jﬁ%—l

n=1 {sy=n} {sy=N-—-1} {sy>N-1}

N-2 .
=5 [B+ [Base= (A =BG

n=1 {sy=n} {s§y>N—2 {55 >0}
But since E (B2, v =B (BT it follows that
(49) B (wsy) = E(BY).
Thus under the conditions on the x, of Theorem 2,
(50) E (x5) = lim B (x5,) = lim E(BY).
From (35) the limits e e
(51) fu = lim B

exist. By the theorem of monotone convergence for conditional expectations
[2, p. 348] it follows from (35) that

(52) E(Bp|Fn) S BB Fa) =20 = B(Ba| Fu)

and hence from (24) that the §, satisfy the relations

(53) Bn = max[xy, E(Bn1|Fa)], n=12,....
Define for the moment

(54) s* = first 4 = 1 such that z; = f;.

We shall show that

(55) s* =supsy=s.

N
For if s* = n, then by (54) «; << f; for ¢ =1, ..., — 1, and hence for suf-
ficiently large N, z; < B for i =1,...,n — 1, so that sy = n. Hence s =n

and therefore s = s*. Conversely, if s = n then for sufficiently large N, sy = =,
and hence z; < B for i =1,...,n — 1 so that ; < B for i =1,...,n —1
and therefore s* = n. Thus s* = s.

We may now restate Theorem 2 in the following form.

Theorem 2. Assume that the hypotheses on the xy, of Theorem 2 are satisfied. For

each N =1 define BY, BY, ..., BN by (24) and set

(56) 8= first i =1 such that z; = f; = lim g¥ .
Then s is a s.v. and e
(57) E (%) = lim E (8} = sup E (z;) .

N—oo teC

This generalizes a theorem of ARROW, BLACKWELL, and GIrsHICK [3].
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4, The monotone case

If the sequence of r.v.’s z1, 2, ... is such that for every n =1,2, ...,
(58) E(xp1 l F ) = %p = H(Tp4a ] Fat1) = Tp11,

we shall say that we are in the monotone case (to which [1] is devoted). In this case
the calculation of the sy defined by (26), and of s = sup sx, become much simpler.
N

Lemma 7. In the monofone case we may compute sy and s by the formulas

(59) sy =min[N, first n =1 such that E(xnps1|Fn) < @al,

and

(60) s=supsy = first n=1 such that E(rps1|Fn) < 2p.
N

Proof. (a) we begin by proving that in the monotone case,forn=1,2,..., N—1,
(61) E(xnﬂlﬁn)éxn :>E(/3n+1lyn)§xn-

For # = N — 1 this is trivial, since 85 = ®,. Assume therefore that (61) is
true for n =5+ 1. Then

E(x]'l'll‘d/-}) éx] :>E(xj+2lﬁj+1) §$j+1 .
E(ﬁﬁ‘zlff'f‘l) = i1 = ﬁﬂl = Zjt1 =
BB 1| Fg) = E(@n | Fy) <y,

which establishes (61) for »n = j.
(b) Recall that by (26),

(62) sy =first % =1 such that ﬁff =x,.
Define for the moment
(63) sy =min[N, first n =1 such that E(xps1|Fn) < a4].

(c) Suppose sy = n < N. Then by (61), E(8Y., IJ < xp, so that gy = z,
and hence sy < n = sy. If sy = N then also sy = sy. Thus sy < sy always.

(d) Suppose sy = n =< N. Then E(ﬂnHIJN) = zg. Slnce BY. | = 241 it fol-
lows that B (xp.1 ]J’ < x,,. Hence sy < n and therefore Sy = sN.

It follows from (c) and (d) that sy = sy, which proves (59), and (60) is im-
mediate.

5. An example

Let y, y1, y2, ... be independent r.v.’s with a common distribution, let %,
be the o-algebra generated by v1, ..., yn, and let

(64) Zp =max (Y1,...,Yn) — 0n
where we assume to begin with only that the @, are constants such that

(65) 0= a1 <ag <<+



42 Y. 8. Cuow and HERBERT ROBBINS:

and that £yt < co. Set

(66) My = MaX(Y1,...,Yn), bn=aps1—ap>0.
Then
Tpil = Myl — Op+l == Mu11 — Op — by = Tp + (Ynr1 — Ma)T — by
Hence
(67) E(@n11|Fn) — 20 = E[(y — mn)*] — by

Define constants y, by the relation
68) El(ly — yu)]=bn

(
(graphically, b, is the area in the z, y-plane to the right of ¥ = y, and between
z=1 and 2z = F(y)). Then it is easy to see from (67) and (68) that

(69) E(@pi1|Fu) <o ifand only if my = ya.
We are in the monotone case when
(70) by by -,

For if (70) holds, and if E(xy41|F u) < @n, then by (68), m, = y, and hence
Mptl = My = Y = Ya+l, 50 that B(zyia| Fpi1) = @pr1. We can therefore as-
sert that when (70) holds

(71) sy =min[N, first » =1 such that my, = ya],
and
(72) s =supsy ==first n =1 such that my; = y,.

N

An example of the monotone case is given by choosing a, = cn® with ¢ > 0,
o = 1. When o = 1 all the y, coincide and have the value y given by

(73) Ely —y)/=c.

For 0 < « << 1 we are not in the monotone case and no simple evaluation of
sy and s is possible.
It is interesting to note that if we set

(74) Tn = Yn — an
instead of (64), then, setting u = Ey,
(75) E(xn—l-llgin)—;cn:#—bn_‘yn;

and we are never in the monotone case. However, for ¢, = cn we have by the
above,

(76) s="first m =1 such that m, =y

=first » =1 such that y, =y.
Thus

(77) Xs = Mg — €§ = Y5 — €8 = Xy,
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while for any s.v. f, since ¥, < %5, we have
(78) Zt g Xt.

It follows that
sup B (z;) < sup B (x;),

teC teC
and that if the distribution of the y, is such that
(79) E(xs) = sup E(zy),
teC

then also
E () = sup E (z1).
teC
We shall now investigate whether in fact (79) holds, and for this we shall use
Theorem 2. Write

7 4 * **
Ty =MaAX (Y1, ..., Yn) — Op =1L, — X, =&, — X,

where we have set

(80) %, = MAX (Y1, ..., Yn) — Gn/2, X, =an/2,

o =max(y1, ..., Yn), X ¥ =ay.
Assume that the constants a, are such that
(81) e -
Then (44) and (46) hold, and to apply Theorem 2 it will suffice to show that
(82) Esup[max(y1,..., Yn) — @nf2] < oo
and that the r.v.’s "
(83) [max(y1,...,¥s)]" are uniformly integrable.
The latter relation is trivial as long as E|y| < oo, since
[max(y1,....¥n)]" = y1-

It remains only to verify (82).

To find conditions for the validity of (82) in the case

Ay =cn%, c,ou>0,

we shall need the following lemma, the proof of which will be deferred until later.

Lemma 8. Let w, w1, wa, ... be independent, identically distributed, non-negative
r.v.’s and for any positive constants ¢, « set

z = sup[max(wy, ..., wy) — cn*].
Then i
(84) Pz <<oo) =1 if and only if E(wl*) < oo,
and

(85) forany >0, E(@EV8) < oo ifandonlyif E(wl/e+l/6) < oo,
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Now suppose that the common distribution of the ¥, is such that

(86) Ely| < oo, E[(yt)+*] <eo.

Then et ons
sup [max (ys, ..., y) — | = sup [max(yy, ..., y3) — 5,
n 13

so that by (85) for g =1, w = y+,

Esuplmax(yl,...,yn)— c;z“] < o0,

n

verifying (82). Thus, if a, = ¢n® (¢, & > 0) and if B|y| < oo and B[(y+)1+%] < oo,
then defining the s.v. s by (56) we have

E (xs) = sup B ().
teC

This generalizes a result of [1], where it was assumed that & = 1, to the more
general case o > 0. See also [, 6, 7] for the case « = 1.
A gimilar argument holds for the sequence

Ty = Yp — cNE,

replacing max (y1, ..., ¥s) by yn in (80).
We may summarize these results in
Theorem 3. Let y, y1, ¥z, ... be independent and identically distributed random
variables, let ¢, o be positive constants, and let
Ty = MaX (Y1, ..., Yn) — CN*, &y == Yy — CHE,

Then if Bly| < oo, E[yH)H] < oo

there exist s.0.”s s and s such that

E(xs) =sup E(x:), E ;) =supk(a).
teC teC
Foroa=1,

§=="first n=1 suchthat max(yi,...,¥%n) = Vu,

where yy 18 defined by
E{(y — yu)*] = c[(n 4+ 1)* — n*].
Proof of Lemma 8. If w is any r.v. with distribution function F, then F (w) < oo

is equivalent to Z[l — F(n)] < oo, which in turn is equivalent to the con-
1

vergence of HF (n). Hence E(wl/%) << oo if and only if HF (n%) converges.
1 1
Now for u > 0 let

Guy=Pir=<u)=DP é wi < 0%+ ul]= P[m m{wz<n°‘—|—u}]

i=1 n=1

D} uDS

Il
~

[, {w én“+u}]=ﬂF(n“+u)-

%

il
t‘h"‘

It follows that lim G (u) =

U—>co

and only if HF (n*) converges; thus (84) holds.
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To prove (85), we have E(z) < oo if and only if n G (n) converges. Hence
1
[4, p. 223], E(21/6) < o is equivalent to

(87) § ilog Fnf + m*] > — oo for some ng such that F(n8) > 0.

Now .
fdmflogF (n8 + m*) dn = flog Flu duf vl/ﬁ 1y — o)1y,
1oy 140 nf

Hence (87) is equivalent to

—o0 < flogF dufvllﬁ 1w —v)/a-ldy =B (%, %) foul/“ﬂ/ﬁ*l log F(u)du,
ul 0 ng

But E (wl/*+1/8) < oo is equivalent to

— oo < [log F(i8/2+6) 4 1;%5 [ wle1/8-1 log F () dut,
nlf 1B plfxt 116

which proves (85).

6. Application to the sequential probability ratio test

The following problem in statistical decision theory has been treated in [8, 9,
3, 10, 11]. We shall consider it here as an illustration of our general method.

Let 41, y2, ... be independent, identically distributed random variables with
density function f with respect to some o-finite measure y on the line. It is desired
to test the hypothesis Hy:f = fo versus Hy:f = fi where fo and f; are two
specified densities. The loss due to accepting H; when H, is true is assumed to
be a > 0 and that due to accepting Hp when H; is true is b > 0; the cost of
taking each observation y; is unity. A sequential decision procedure (8, N) pro-
vides for determining the sample size N and making the terminal decision 8; the
expected loss for (4, V) is

acg + Ho(N) when Hy is true,

boy + E1(N) when Hj is true
where
wo = Po(accepting H1), o1 = Pj(accepting Hy).

If there is an a priori probability = that Hy is true (and hence probability
1 — & that H; is true) the global “risk’ for (4, N) is given by

r(m, 8, N) = mt[aoo + Bo(N)] + (1 — @) [bay - By (N)].

For a given sampling variable N it is easy to determine the terminal decision
rule ¢ which minimizes r (7, 6, IV) for fixed values of a, b, and z. For the part of
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r (7, 0, N) that depends on ¢ is (omitting symbols like du (y1) ... du(ya))

naa0+(1—n)boc1=7za§ ffo (1) .- fo(yan) 4

n=1 {N=n,accept H,}

F—mbS  [fuln) .. )

n=1 {N =mn, acceptHn}

=S [min[rafoly) ... folya), (1—2)bfi(ya) ... f1(Wn)]
n=1 {N=n}

oo

=2  [min[ga, (1 —an)b][wfo(y1) .. folyn) +

n=1 {N=n}

+ (=) fily1) ... f1(yn)]s
where
nfoly1) -« folyn)
foly1) -« fo(yn) + (L — w) fr(y1) ... f1(ya)

For the given sampling rule V define ¢’ by

T = T (Y15 -+ Yn) =

{ accept H1 if N=n and aze < (1 —my,)b,

accept Ho if N=n and mpa> (1 —m,)b.
Then
wacy (8, N) + (1 — w)bar (8, NY = mane (', N) -+ (1 — ) boy (6, N).

Hence to find a paﬁ' (d, N) which for given &« minimizes r(x, 4, N) (a “Bayes”
decision procedure) amounts to solving the following problem: for given 0 <z <1
let y1,92,...,Yn, ... have the joint density function for each n equal to

wfolyr) .- folyn) + (1 — @) f1(y2) - f1(yn),
where fp, f1 are given univariate density functions. For given a, b > 0 let

h(t) = min[at, (1 — £)] 0=t<1),

g —= 7T

— _ mfolys) - folyn)
= Tl Un) = Ry oy + (= m Al T =
Ty == 2 (7ty) = — h(7y) — n (n=0).

We want to find a s. v. s such that E (z;) = maximum. The problem is trivial if
@ or b is =1 since then 2(f) << 1 and %y < x, for all n, so that E (x;) = max.
for s = 0. We shall therefore assume that ¢ > 1, b > 1.

We observe that the assumptions of Theorem 2 are satisfied by setting

Xy =z, — x, = @ — w*
fox ab
. 2 = = — (7). (ogh(nn)g——a+b>,
z =af=mn,
50 that s = sup sy is the desired s.v. Thus Theorem 2 guarantees the existence

N
of a Bayes solution of our decision problem.
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To find the (minimal) Bayes sampling variable s requires that we compute the
quantities S5, BY, ..., BN for each N = 0 (note that in the present context we
are allowed to take no observations on the y; and to decide in favor of Hy or H;
with xg == — k(). We have

BY = max [z, E(BY 1| Fn)]l, n=0,1,...,N; fys1=—oo,
and by Theorem 2’

s=1first n =0 such that xnzﬁnzlimﬂf,v.
N—oo
Observing that
S Tafo(yn+1)
" T foynr1) + (1 — ma) fi(ymet)

it follows easily that

ﬁﬁ(yl,...,yn)zyﬁ(nn), n=0,1,...,N+1,
where

PO =max | =00 = n, T (o ) Bho) 0= DA

(n=0,1,...,N); p¥i1(t) = — oo.

Now set
gy ity=—»¥t)—n, n=0,1,...,.N+1.
Then
Ny s N
gn (&) = min[A(f), Gy () + 1],
where

N PN tfoly) -
G, (f) —_Lgn T = (0 —0A [tfoly) + (1 — O f1(y)]

for n =0,1,..., N with
g%Jrl(t) =00,
Obviously,
In () =gnt1(t), gn ) Z gt () for n=0,1,....N+1,
so that
lim g¥ () = gn (t) = g (t) exists.

N—>co

By the Lebesgue theorem of dominated convergence,

() = min[h(t), G(t) + 1]

where
00 = [0 (o ) o @) + A = DA).
And
BE W1, ... Yn) = 3 (7ta) = — gy (wa) — 7,
so that

Bu=lim B = — g(mn) —

N—oo
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and hence
s=first n =0 suchthat g(my)="nh(m,); Ex)=po= —g(n).

We shall now investigate the nature of the function ¢ () which characterizes s.
If a function a(f) is concave for 0 <¢ =<1 and if

_ tfo(y) , _
a()=Ja (tfo(y) S (y)) [to ) -- (1 — O 1 @)1,

then it is an easy exercise to show that A (f) is also concave on 0 =< ¢ < 1. Since
R (t) is concave, g (f) = h(t) is concave, and hence G (t) is concave. Hence by
induction all the g (f) and GY(t) are concave, as are therefore g(t) and G(t).
Note also that

Now put
wuly=at—G@)—1,

) =b(1l—t)—G@E) —1,
a(t)y =h() — G(¢) — 1 = min [eg (), o2 (#)] -
Then for a, b > 1,
21(0) =a2(l) = —1<0,
wu{(l)=a—1>0,
w2 (0)=5b—1>0.
Since G(t) is concave, G(0) = G(1) = 0, and atf is linear, there exists a unique

number ' = z’(a, b) such that

<0 for t<a
o1{); =0 for t=a' <%§W'< 1)-
>0 for t>x

Similarly, there exists a unique number &'’ = n'’ (@, b) such that

>0 for t<a”

o2(t){ =0 for t=an" (0<n"§1—%)-

<0 for t> n'

Hence
s=first » =0 suchthat ¢(mwy)=~"~(s)

=first =0 suchthat &h(m,) < G(my) -1
=first % =0 such that either o;(m,) or wa(my) =0

=first n=0 suchthat n,<xa" or =, =xn".

I 7" <a then s = 0. If 2’ < &/’ then s is the first n = 0 for which 7,
does not lies in the open interval (%', #''), and the decision procedure is a Wald
sequential probability ratio test.
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