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1. Introduction

In many stochastic particle systems arising in applications, it seems reasonable as a
first approximation to neglect the interaction between particles. (We may e.g. think
of thin gases or of low density traffic.) The particles will then move with constant
velocities, and the evolution of the system will be given in a space-time diagram by a
random collection of straight lines, a so called line process. Thus the problem of
studying the asymptotic behavior of non-interacting particle systems is equivalent
to that of studying the asymptotic properties of line processes under translations.
The main purpose of the present paper is to investigate this problem under various
types of general assumptions.

A first result in this direction was given by Breiman in [2]. Later on, Stone [19]
pointed out that Breiman’s theorem follows in extended form from a general result
of Dobrushin [4]. The extended version, to be referred to below as the Breiman-
Stone theorem, states in essence that, if the initial distribution is stationary under
translations and such that the velocities are independent of the positions and
independently chosen according to some fixed absolutely continuous distribution,
then the process of positions converges in distribution as time tends to infinity to a
mixed Poisson process, (cf. [3, 6, 9, 21] and Theorem 6.5.9 in [15]).

If we remove the independence assumption (which is rather artificial since, if
independence occurs, it will normally be destroyed immediately [ 14]), the classical
argument fails, and we have to rely on entirely different methods. For the sake of
motivation, note that if the state (positions and velocities) of a space stationary
particle system converges in distribution, then the limit has to be stationary in time
also, and hence must correspond to a line process which is stationary under
arbitrary translations. Such processes were considered by Rollo Davidson (§§2.1
and 2.4 in [ 7]), who conjectured that every stationary second order line process in
the plane which has a.s. no pairs of parallel lines is a Cox process, i.e. a mixture of
Poisson processes. (He actually considered stationarity under arbitrary rotations,
but it is equivalent to consider translations only [11].) Although Davidson’s
conjecture is false as stated [13], it becomes true under additional regularity
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restrictions, as was shown by Papangelou (§2.7 in [7] as well as [16], see also [17,
11]). Papangelou’s method is based on the fact that Cox structure of a line or point
process follows from the invariance (under suitable transformations) of the
corresponding conditional intensity [16, 12]. Thus the problem of establishing the
Cox nature of a line process is reduced to that of proving a.s. invariance of a
(sufficiently smooth) random measure on the space of lines. Problems of the latter
kind have been treated extensively by Davidson and Krickeberg (§§2.4-2.6 in [7],
see also [17, 11]).

The present approach to the corresponding convergence problem is similar.
Thus we show in § 3 that the asymptotic Cox nature of a line or point process follows
from the asymptotic invariance of the corresponding conditional intensity. Given
this result, it remains to look for conditions for a random measure on the space of
lines to be asymptotically invariant. Three different approaches to this problem are
presented in §§4-6, the first depending on local invariance (a smoothness condition
of independent interest, to be studied separately in §2), the second on mixing. Our
third method uses randomization, in the sense that the system is considered at a
sequence of random epochs. One of our main results (Theorem4.1) provides a
common extension of the Breiman-Stone theorem and of the best known
conditions for a stationary line process in R% d=3, to be Cox.

In order not to overload our exposition, we shall only consider the case of lines,
although most results admit (usually trivial) extensions to flat processes in general.
In most cases, no new proofs are needed, since every flat process can be identified
with the corresponding marked line process of intersections with a suitable fixed
flat [11]. Thus all we need is to check that our results below remain true for marked
line processes. Only results related to Theorem 3.2 in [11] seem to require a direct
approach.

We further remark that our results apply to certain one-dimensional systems of
colliding particles, as defined by Harris [8]. In fact, if the collisions are elastic, the
colliding particles will interchange their velocities, so the space-time diagram will
be identical with the one for non-interacting particles. Assuming the initial state to
be given by a space and hence also time ([11], Lemma 2.2) stationary Poisson
process, and the associated independent velocities to have mean 0, Spitzer [18]
proved that the path of a fixed particle converges in distribution under appropriate
successive scale reductions towards a Brownian motion. Since the stationary
Poisson processes are exactly the limiting processes we obtain in the ergodic case,
our results imply that a similar convergence takes place under much more general
initial conditions, except that we have to consider the path of a particle during the
time interval [T, 00) and to let T— oo at a suitable rate along with the scale
reductions. (This is because, in an obvious sense, the paths depend continuously on
the corresponding line process.) This contrasts with a counterexample in {20] for
the case of fixed T.

Throughout the paper we shall assume some familiarity with the basic
concepts and terminology of random measure theory, for which we refer to [10].
We shall also use the notations of [10] without further explanation. Note in
particular that #(S) denotes the class of bounded Borel sets in S, and that
(IM(S), A (S)) and (N(S), #°(S)) denote the measurable spaces of R, -and Z , -valued
Radon measures on S. If no confusion is likely, we shall write 8, IR, .#, 9t and A" for
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brevity. Convergence in It and 9t is with respect to the vague topologies (—%-),
and convergence in distribution (—%-) is defined accordingly [1]. For random
measures, we shall further say that £, > in L, if &, f — & fin L, for all fe Z(S), the
class of continuous functions on § with bounded support. Note also that Bu
denotes the restriction of the measure u to the set B. Some further conventions are
to write B¢ and ¢ B for the complement and boundary of B, ¢, for the Dirac measure
at x, var for absolute variation, < for absolute continuity, £ for equality in
distribution, and #(-) for the linear subspace spanned by (*). We assume all
random eclements under consideration to be defined on some fixed probability
space with probability P and expectation E. Some special notations for line
processes will be introduced at the beginning of §4.

2. Local Invariance and Related Concepts

In this section we introduce some classes of measures on R% random or not, which
apart from being of independent interest will be basic for the subsequent work. We
also consider certain classes of ordered sets of measures with indexset T=N or R .
Throughout this section we assume that u is a linear subspace of R* of dimension
=1.

Let us first consider a family y,eIMM(RY), teT, of uniformly totally bounded
measures. We shall say that the g, are globally asymptotically u-invariant, if

limvar(y, «v—u, *v+46,)=0, xeu,

11—

for every absolutely continuous probability measure v on R% For u=RY this
coincides with the notion of “weak asymptotic uniformity” in §6.4 of [15], and it is
further seen to be equivalent to condition (2.4) in [19]. Choosing the coordinate
vectors X,,...,x, in R such that u=%(x,,...,x,) and writing C, for the cube
spanned by the vectors hx,, ..., hx,, it may be seen from the proof of Satz6.4.1 in
[15] or Lemma 1 in [197 that the above condition is equivalent to

lim [|p,(Cp+%)—p(Cp+x+hx)dx=0, h>0, i=1,.. Kk (1)
t— 00
and by [19], the integration here may even be replaced by summation over all
xe(hZ).
Given any measure peTM(RY), we shall further say that y is locally u-invariant if

limh=*f|p(Cp+x)—pu(C,+x+hx)|dx=0, i=1,... .k BeZ. 2

h—0 B

Comparing with (1) and writing a,(x)=tx, it is seen that (2) is equivalent to global
asymptotic u-invariance of (B u)a,” ! for every bounded rectangle B. (By Lemma 2.2
below, this remains true with Be 4 arbitrary.) Note in particular that the equivalent
conditions for (1) given in [15] and [19] yield useful criteria for (2).

The last definition carries over to random measures 7 on R as follows. Writing
I+ || for the norm in L, (P) or L,(P) respectively, we shall say that # is first (second)
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order locally u-invariant, if

limsuph=*{ |n(C,+x)|dx<o0, Be, (3)
h—-0 B

and if moreover

lim A= |n(C,+x)—n(C,+x+hx)|dx=0, i=1,....,k, BeA. (4)
h—0 B

Note that, by Jensen’s inequality, the L, versions of (3) and (4) are more restrictive
than thosein L. In the L, case, (3) simply states that EyeI. The corresponding L,
version will be examined in detail at the end of this section.

The classes M, M and M, of absolutely continuous, locally u-invariant and
diffuse measures on R? are related as follows.

Lemma 2.1. For any u={0},

M, M <=M, (5)
and here both inclusions are strict. Similar relations hold for the corresponding classes
of random measures satisfying (3).

In the present proof and throughout the paper, we shall use the Minkowski
(type) inequality

I§1X @1 pd)l <FIX @) udo),

valid for arbitrary measurable processes X. For a proof in the L, case, note that by
Fubini’s theorem and Schwarz’ inequality

I§1X @)1 u(dn)]
=EJIX O ud))?)?=(TEIX(s) X (1)| p(ds) p(de)*"?
=(fIX G IX @ pds) pd)*? =X @) pd1).
Proof of Lemma 2.1. The inclusion on the left of (5) is a particular case of Lemma 2.2
below, (see Theorem 5 in [197] or Satz6.5.10 in [15] for a direct proof in the non-

random case), while the one on the right follows (in the random case and hence in
general) from the fact that, by Minkowski’s inequality and Fatou’s lemma,

liminfh=? { |n(C,, +x) —n(C,+x+hx)|| dx
70
2 liminf [~ {|9(C,+x) —n(C, +x+hx)| dx|
h—0

2 |[liminf A~ {{n(C,+x)—n(C,+x +hx) dx|| 22 [} n{x} I
h—0 T

To prove that both inclusions are strict, let us first consider the case whend =1.
Letting &,,&,,... be independent random variables with P{{,=1}=P{{,=
~1}=1/2, and writing

@«

nlzzn_lz_nén: 7’2:23_”6;19
n=1

n=1
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it may be seen that yu; =P#7 ! and u, = P 7, * both belong to M\ M, and that u, is
locally invariant while u, is not. Examples for general d and « may be constructed
from y, and u, by forming products with Lebesgue measure on R?~!. []

In the next two lemmas, we shall prove two closure properties of M™ and its
stochastic counterparts which will be of constant use in subsequent sections.

Lemma 2.2. Let ¢ and n be random measures on R satisfying (3), and suppose that 1
<& Then n is first (second) order locally u-invariant whenever £ is.

Proof. We give a proof in the second order case only, the first order case being

similar but simpler. For simplicity of writing, assume without loss that & is

supported by some fixed bounded set. We may then take B=R“ in (3) and (4).
First we prove that, if 0<#,<n with n,—%># as., then

lim limsup h ™ [ |n(C,+x)—n,(C, +x)| dx=0. (6)
0

n—w h—

To see this, note first that, in the proof of (6), h may be restricted to the sequence 2%,
keN, since if 27 * "1 <h<27* =W,

h= 4 J n(Ch+2) =1, (Cy+ )| dx 290 = [ [n(Cyy +x) =1, (Cy +X)] dx.

But for such 4, Minkowski’s inequality shows that the expression on the left of (3) is
non-decreasing as i — 0. Letting ¢ >0 be arbitrary, and writing ¢ for the limit in (3),
it follows that, for h=2"* small enough,

h= n(C,+x)] dx>c—e.

By dominated convergence, we hence obtain for this particular h and for n large
enough

h= [, (Cy+ ) dx>c—e.
Using the monotonicity once more together with the fact that 5, <y, we get

lim liminfh=? [ |I,(C, +x)| dx=c. (7

n—wo h-0
From the inequality #,<# it is further seen that, for any Be3%,
IlnB—n,BlI>=linBil*+|n,BI|>~2EnBn,B= |nB|*— |, B|*
=(|ln Bl + i, BI)(In Bl — |n, B} =2 [n B{ (In Bl — ll1,BI),
so by Schwarz’ inequality
=0 [ I(Cy+3) —0,(Cy + )] dx
Y20 { n(C, 212 (In(Cy+ X)]| = 1, Cy ) )2 dx
<Y2(h [ In(Cy x| dx)'?
(W I (Cy+ )] dx—h™f n,(Cy+x)I| dx)'2.
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By (7) and the definition of ¢, the expression on the right tends to zeroas h=2"% -0
and then n— oo, which completes the proof of (6). Note in particular that we may
take as n, a random measure with uniformly bounded £-density. By Minkowski’s
inequality, we may thus assume from now on that <&

Let us now consider any fixed bounded measure p on R?. We shall prove that the
class € of rationally valued simple functions over the set of rectangles determined
by rational coordinates is dense in L, (u). Since every element in L,(u) may be
approximated from below by simple functions, it suffices to show that every
indicator function may be approximated in L, (1) by elements in . But this is easily
seen by a monotone class argument. [n particular, any function in L, (1) which takes
values in the interval [0, 1] may be approximated by ¢-functions with the same
property. Let f,,f,,... be an enumeration of all such functions in %.

Applying the last result to L,(¢) for any fixed outcome of &, it is seen that
infvar(n—f,£)=0 a.s., so writing #, for the first measure among f, ¢, k=1,...,n,

minimizing var(n —f, £), we get

lim var(n—n,)=0 a.s.
Here it should be noticed that the minimizing index k is measurable, and hence that
1, is a random measure for each n. Write £, =¢—|n—n,|, where |y —»,| B=var(Bn
—B#,), and note that (6) applies to £ and £,, yielding

lim limsup 5= |9(C,, +x) —1,(C, +x)|| dx
0

n—>o©  h—
< lim limsup b= [ |£(C,+x)— £,(C,, +x)| dx=0.
n—w h—O0

Hence, by Minkowski’s inequality, it suffices to prove (4) with # replaced by 1, for
fixed n. By the definition of 5, it is then enough to show that I £ satisfies (4) for any
fixed rectangle I. But this follows from the fact that £ has a.s. no mass on any fixed
flat which is not w-invariant. (To see this, apply the right-hand inclusion in
Lemma2.1 to a suitable projection of £&) [J

To state the next closure property, say that a transformation f: R —R? is
locally affine, if f has a unique inverse f ~*, and if f and f ~! have continuous first
order partial derivatives forming matrices with non-zero determinants. We shall
further say, for brevity, that f is u-preserving, if the class of u-parallel flats is
invariant under f.

Lemma2.3. Let f: R*—R? be locally affine and u-preserving. Then the random
measures y and nf 1 are simultaneously first (second) order locally u-invariant.

Proof. We shall only consider the non-random case, the random case being similar.
Hence suppose that ueI®. We have to verify that

im A= [ 1uf = (Cy+x)—puf =1 (Cy+ ho+x)|dx =0,
C

h—0

where v is anyone of the vectors x,, ..., x,, while C is an arbitrary compact set. The
Jacobian of f being bounded, it suffices to prove that

lim h“’cf,qu‘I(Ch+f(X))—uf'I(Ch+hv+f(X))l dx=0, @)

h—0



Line Processes and Non-Interacting Particles 71

where C'=f~1C. Fix an ¢>0, and let x,eC’ be arbitrary. Let f, be the affine
transformation with the property that the values at x, of f and its first order partial
derivatives coincide with the corresponding quantities for f,. Define

Ci=fo HCy+f(xo) =%,  V'=h""[f5 " (hv+[f(x0) —x,],

and write (6 Cp),,, for the set of points at a distance <&k from 0 C;,. Since f is locally
affine, the relations

STHCH () A(Cl+x) (8 Cl)yy +x
and
FHC,+hv+f(x) A(C+hv'+x)=(0Cy),, +hv +x

hold for all x in some neighbourhood B of x, and for all sufficiently small #>0.
Letting {B,} be a finite disjoint covering of C" by sets B of this type, we get

A= [ uf =G+ f () —f ~HCyHho+f (X)) dx

—h= Y [ 1y +x) = u(Cl+hv' +x)] dx|
Sh™ ) [ [0 Cilen+X) + u((0 Cp)y+ho' +x)] dx

i B;

NEZ(M*vh,£+:u*Vh,£*5~hv’)Bi~SZ:uBi:8:u o
13 1

as h— 0 (provided p 6 B;=0), where v, , denotes the uniform distribution over the
set —(0C}),,- Since moreover

limh=?3" | |u(Ch+x)— p(Cp+hv' +x)| dx =0
h=0 i B;
by (2), it follows that the left-hand side of (8) is bounded by ¢ C’. To complete the
proof, it remains to let e —»0. []
We proceed to introduce still another notion of asymptotic invariance. The
random measures #,, t€ T, are said to be first (second) order asymptotically u-
invariant, if for all fe #Z,(R? and xeu,

lif{{sup [, f 1] <o, }im Ine f= (05 n) f11=0. ©)

(The same definition applies to arbitrary subgroups u.) Under (9), the family {5,} is
automatically relatively compact in distribution as t — o, and every limit is a.s. u-
invariant. The following simple lemmas will be useful below.

Lemma 2.4. Let § be a bounded random element in R* which is independent of n, for
each t. Then n, and 54 x4, are simultaneously first (second ) order asymptotically u-
invariant.

Proof. If n, is first (second) order asymptotically u-invariant, then so is dy*#, by
Fubini’s theorem and dominated convergence. To prove the converse, assume
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without loss that the support of P 9~! contains the origin, and suppose for k=1 or 2
that &, =7, is k-th order asymptotically u-invariant while #, is not. Then (9) fails for
some f and x, so we get for some sequence t,— co and some >0

i|nlnf—(5x*ntn)f”>83 nEN'

Writing f,= f(+ —y), it is further seen from the L,-boundedness of #, and the
uniform continuity of f that

=<z IGm) =A<,

for all t and for all y belonging to some neighbourhood G of the origin. Hence, by
combination,

£
16y %1, ) f— 6y, xm) S >3 neN, yeG.

But by Fubini’s theorem, this yields the contradiction
&
1(0g%1,) f— (O xxn,)f | EE(P {9¢G)' >0, neN. O

Lemma 2.5. Let v,,v,, ... be probability measures on R* with uniformly bounded
supports and such that v,—-9d,. Then n, is first (second ) order asymptotically u-
invariant iff v, =y, is so for every n.

Proof. Since clearly

(O % (vax 1)) f = (05 % 1) (v, % f),

the “if assertion” follows from the L, (L,) boundedness of #, and the fact that v, * f
tends uniformly to f for all feZ., while the “only if assertion” holds since fe %,
implies v, * fe#,neN. [

We conclude this section with a closer study of (3).

Lemma 2.6. If (3) holds in L,, there exists a measure ||\n|| e M satisfying

Il f=lim = fln(Cy+x)| f(x)dx,  feZ, (10)

and moreover, |nf| Zln|f holds for any measurable f =0. Finally, diffuseness of
lnll implies that y is a.s. diffuse.

If y < p for some non-random measure e and if Y =d#/dp, then it is easily
verified that ||»| <u with density ||Y|. This shows in particular that (10) is
equivalent to |4 *v,|| —— |4, where v, denotes the uniform probability measure
on C,.If |[n] exists and is diffuse, we shall say that # is L,-regular. Note that second
order local u-invariance implies L ,-regularity for any fixed u. We finally point out
that Lemmas 2.1-2.3 have obvious counterparts for L,-regularity in place of local
invariance.
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Proof of Lemma 2.6. Let {C, ;} be a null-array of partitions of R into cubes of side
27" andlet % denote the ring of all finite unions of cubes C,, ;. Further introduce, for
fixed n, the measure u, €M assigning mass [n C,,[| to the midpoint (say) of C,; for
all j. By Minkowski’s inequality, the sequence p,U is then eventually non-
decreasing for every fixed U e %, and it is easily seen from (3) that the limit is finite.
A simple approximation then shows that u, f converges for each fe#,. But this
means that y, —2-> some u €. It may further be seen by a simple approximation
argument based on Minkowski’s inequality that the right-hand side of (10) is
asymptotically equal to p,f as h— 0 and n— co. Thus (10) holds with |n| =pu.

This relation being valid for any choice of origin in R%, we may assume the C, ;to
be |1]|-continuity sets. For any U € % we then obtain g, U — [5| U, which implies
In Ul £ |7l U by Minkowski’s inequality. Now the class & of #-sets satisfying the
latter inequality is clearly closed under monotone limits, so by a standard
monotone class theorem (A2.2 in [10]) we get Z=4. Thus, by Minkowski’s
inequality, |4/ <% f holds for simple functions f =0 over %, and the final
extension to arbitrary measurable functions f =0 is accomplished by monotone
convergence.

The last assertion follows easily from CebySev’s inequality and Theorem 2.5
in [10]. O

Added in Proof. As will be shown elsewhere, ||#| exists iff < Ex a.s. and moreover ||drn/dEn] is locally
En-integrable. In this case, # is second order locally invariant iff Ey is locally invariant.

3. Conditional Intensities

Let ¢ be a simple point process on R%, and denote by { the conditional intensity of &,
as defined in [12]. As shown by Papangelou [16, 17] and myself [12], a.s.
invariance of { in some fixed direction implies that £ is a Cox process directed by {.
It is actually enough to require { to be h-invariant for any fixed h e R*\ {0}, provided
that ¢ satisfies the regularity condition (Z) in [12]. Define # as in [12], § 3.

Lemma 3.1. Suppose that & satisfies (X), and let y be an a.s. h-invariant random
measure on R%. Then {=y a.s. iff ¢ is a Cox process directed by .

Proof. Suppose that { is a.s. h-invariant, and assume without loss that h
=(1,0,...,0). Let &* be a point process on [0, 1) x R? obtained from ¢ by attaching
independent marks to its atoms according to the uniform distribution on [0, 1), and
note that £* has conditional intensity 4 x 7, where A denotes Lebesgue measure on
[0, 1), (ctf. the proof of Theorem 4.2 in [12]). Let us further define the mapping f of
[0, 1) x R? onto itself by

S, xy, o, x)=0c,—[x,] [x ] +u, x5, ... xz),  uel[0, 1), xq, ..., X,€R,

and note that £*f ! has conditional intensity (1 x 1) f ~1. Now the latter random
measure is clearly a.s. x-invariant, and so we may conclude from Theorem 5.1 in
[12] that &*f —* is a Cox process directed by (4 x#) f ~*. Since f is 1 — 1, it follows
that &* is a Cox process directed by 4 x 1, and so ¢ is a Cox process directed by #,
and we get {=#. The converse assertion is obvious. [
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The remainder of this section is devoted to some continuity results related to
Lemma 3.1. Suppose that T=N or R ,and let £, t € T, be simple point processes on
R? with conditional intensities {,, t € T. Given any random measure {, we write Ctor
a Cox process directed by {. We further denote by 2, the completed remote g-field
of £, i.e. the P-completion of () a(B¢&). The 5, are defined as in [12], §3.

BeA
We first improve and extend Theorem 5.2 in [12]:

Lemma 3.2. Suppose that the ¢, satisfy (%), and that {,—some { in L, where E
is a.s. diffuse, 2,-measurable for each t and such that {R*=0 or o a.s. Then &,—>{.

In the applications we have in mind, &, is the state (in the phase space) of our
particle system at time ¢, and it is assumed that ¢, is h-stationary for some
he RN\ {0}. Suppose we can show in this case that {,—{ in L, for some a.s. h-
invariant random measure {. The measurability hypothesis of the lemma is then
fulfilled, since every {-event A is &-measurable for arbitrary ¢ and as such a.s.
invariant under h-shifts of £,. Hence it can be approximated by sets in o(B¢&,) for
any fixed Be 4, which implies that A€ 2,.

Proof. First suppose that { is non-random. Since { is diffuse, the atom sizes of
{, must tend to zero, so 5,—{,—£-0 by (3.3) in [12], and we get #,—{ in L,
since En, = E{,—{. Defining & by randomization as above and using Theorem 5.2
in [12] it follows that & —4-(Ax{), and so ¢,—4-{, as asserted.

In the general case, note that the assumed convergence implies that

Thus, given any sequence T’ < T tending to infinity, there exists some subsequence
T” such that, for fixed fe#,

E[ILF—Lf1](]—0 as.  (teT™).

Since this can be made valid with a common exceptional null-event for any
countable family of functions fe %, and hence for all fe %, we may assume that
{,—(in L, (teT”) a.s., conditionally on {. It may further be seen from the
measurability assumption and from the definition of conditional intensities as a.s.
limits that {, remains a.s. the conditional intensity of £, even after conditioning on {.
Applying the assertion for non-random {, we may then conclude that ét%f
(teT") a.s., conditionally on {, and by dominated convergence, this implies the
corresponding statement for the unconditional distributions. Since T’ was
arbitrary, it is seen from Theorem 2.3 in [1] that the convergence remains valid
along T. []
We shall also establish a condition for &, to be asymptotically Cox.

Lemma 3.3. Suppose that the &, satisfy (X) and that n, is first-order asymptotically h-
invariant. Then {&,} is relatively compact in distribution, and all its limit points are
Cox processes directed by h-invariant random measures.

Proof. By assumption, E&,B=E{,B is bounded for every Be %, so the relative
compactness of {£,} follows by Lemma 4.5 in [10]. Assume that ¢, —4>y ast — o
along some sequence. In proving that y is Cox, we may assume that the #, are a.s.
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diffuse, since we may otherwise consider the corresponding randomized point
processes & defined in the preceding proofs. In that case, , solves the integral
equation in §3 of [12], i.e.

E[E,B; &—0, ,eM1=E[,B; {,eM], Be®, Met, teT,

where 7, 5 denotes the position of a randomly chosen atom of B, if any. Hence,
writing B'= B+ h, the asymptotic invariance of n, is seen to imply

IE[étB; ét_ért,BEM]*E[étB/; ft_ért,BfEM]I
=|E[(7,B—n,B); {,e M]|=Ely,B—n,B|—0, (1)

at least for rectangular B,

Now suppose that y 0 B=y 0 B'=0and y¢dM as. Then the integrands on the left
side of (1) tend in distribution to the corresponding expressions with y in place of &,
and with 75 and 7 in place of t, ; and 7, p respectively, T, being the position of a
randomly chosen atom of By. If moreover M = {u: u(Bu B') £k} for some k< oo,
we hence obtain {rom (1) by uniform integrability

E[xB; x—9,,e M]=E[yB’; y—06,, e M],

or equivalently, since Ey exists by the Fatou type lemma of weak convergence
theory [1],

[Plr,—0,e M} Ex(ds)= | P{y,—5,eM}Ey(ds), (2)
B

B+h

where y, is distributed according to the Palm distribution of y relative to the point s,
(cf. [10]). By monotone convergence, the boundedness assumption imposed on M
may now be removed, and (2) may then be extended to arbitrary Be 4 and M e A
by a standard monotone class argument.

By the a.e. uniqueness of Palm distributions, it is seen from (2) that P (y,— ) ~*
is a.e. h-invariant in s. Since moreover Ey is h-invariant by (2), it follows from
Lemma 4.3 in [11] that y is a Cox process of the stated form. [J

For our needs in § 6, we extend the last two results to the case of random indices.
For this randomization to make sense, we add the assumption that the measure
valued random process ¢,, t € T, be measurable.

Lemma 3.4. Let t,,1,, ... be T-valued random variables independent of {£,}. Then
Lemma 3.2 remains true with {,—{ and ¢,—%{ replaced by {, —{ and &~
respectively. Similarly, the conclusion of Lemma 3.3 remains true for £, provided the
&, are Ly-bounded and satisfy (X) while n, is first order asymptotically h-invariant.

Proof. In case of Lemma 3.2, we may proceed as in the proof of that lemma to
reduce to the case of non-random {z,} by conditioning on {z,} (rather than on {).

To prove the randomized version of Lemma 3.3, let p be a metrization of the
weak topology in the space of point processes on R¢ and denote by % the class of
Cox processes on R? directed by h-invariant random measures. Since the sequence
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¢, is L;-bounded and hence relatively compact in distribution, and since more-
over % is closed (cf. Exercise 4.5 in [10]), it is enough to prove that

p(PET, €)—0. 3)

For this purpose, consider an arbitrary subsequence N’ < N, and proceed as in the
proof of Lemma 3.2 to show that, for n belonging to some further subsequence
N"<N',n, isa.s.first order asymptotically h-invariant, conditionally on {z,}.(This
is where we need the L, -boundedness of {£,}.) Thus it follows by Lemma 3.3 that (3)
is conditionally true, in the sense that

p(B,€)—0 as. (neN"), 4)

where P=P ¢ 1. (Note that p(P, %) is a measurable function of ¢, because of the
assumed measurability of {£}.)
We now choose a specific metric of the form

p(PE1L,Py~Y)= 3 27 |Eg(H—Eg, )l (5)
k=1

where the g, are suitable vaguely continuous and uniformly bounded functionals

on . This p being bounded, it is seen from (4) that

Ep(P,%)—0 (neN"). (6)

Let us further choose a dense sequence {Q,} in %, and write P™ for the first
distribution among Q,, ..., Q,, minimizing p(P, Q,) for fixed t. Introducing a
random element ™ with distribution B™, we get by (5)

p(PE O Sp(EE, BRI =D 27" [EL&i(E,) —& (&

SEY27[E[gi(&.) —gl& [, =Ep(B,, B,
k

the measurability requirements needed here being trivially fulfilled. By (6), the
right-hand side tends to 0 as m — o and then n— co along N”. Thus (3) holds for
neN”, and since N’ was arbitrary, it remains true for ne N.

We finally remark that the assumption that (X) be fulfilled, which was made
throughout this section, can usually be removed by considering instead of the
processes &, their p-thinnings &, which will automatically satisfy (¥), provided that
p<1. Morcover, &, and & will simultaneously converge in distribution to Cox
processes. A similar remark applies to the assumption that all point processes
involved be simple. (Cf. the proof of Theorem 4.4 below.)

4. Results in Case of Local Invariance
The remainder of the paper will be devoted to line processes in R?, where d is a fixed

integer = 2. By a line process we mean a point process ¢ on the space L of lines in R,
(cf. [7, 11, 16]). Already this definition requires a parametrization of L, the most
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convenient one for our purposes being the phase representation [ 13, 147, according
to which a line is represented by its point of intersection ¢ with a fixed hyperplane u
(i.e. a (d—1)-dimensional affine subspace of R%, and by its direction p, the latter
being defined as the rate of change in g when u is moved in the direction of its
normal. (Note that lines parallel to u have no such representation. This restricts the
choice of u.) In this way, £ may be regarded as a point process in R?>“~ 1), We shall
always assume that £ is a.s. simple and locally finite, the latter meaning that the set
of lines going through a bounded region always carries finite mass.

Regarding £ as a point process, it is clear how to define the corresponding
conditional intensity {, and further how properties of { like a.s. invariance, first
order asymptoticinvariance, and L,-convergence towards an a.s. invariant random
measure ecnable us to draw conclusions about &, using the results of §3. Since
conditions ensuring asymptotic invariance etc. have independent interest (cf. §§ 2.4
and 2.6 in [7], and also [11]), we shall forget about the connection with (discrete)
line processes, and consider arbitrary (locally finite) random measures 7 on L. The
application of our resuits to line processes is usually left to the reader. In that
connection, note that strict stationarity of £ carries over to {, and further that E{
= E& whenever E&eIN, (cf. Theorem 4.2 in [12]).

As in [11], we shall write @, for the set of k-dimensional linear subspaces of R,
and put & =u @,. Similarly, &, (u) and &(u) will denote the corresponding sets of
subspaces of u e @. For any x € L, we write nx for the element in ¢, which is parallel
to x, and refer to mx as the direction of x. We assume once and for all thatue @,_,
and ve @, and further that H is a closed subgroup of R% The letter y is reserved for a
unit vector in R perpendicular to u. Convolutions correspond by definition to
addition in the basic space R% Note in particular that convolution by &, is
equivalent to translation by x. Otherwise, measures on L and @ should usually be
thought of as defined on the phase space R*“~1 and its p-projection R*~*. This
applies in particular to the notion of local invariance. Note that, by Lemma 2.3, the
choice of reference plane u is immaterial for the definition, as long as un~*u=0 or
nn~tu=0 a.s. respectively. In the general case, local v-invariance is by definition
equivalent to local x-invariance for any set of lines x spanning v.

Ify is strictly H-stationary for some H spanning u, then the a.s. u-average 77, of
exists in the sense of the pointwise ergodic theorem (though it may be infinite), and
it is easily seen that 7, = E[#].#,], where .Z, is the o-field of all u-invariant #-events.
In case of L,-stationarity, the corresponding L ,-average 7, exists according to the
mean ergodic theorem [ 57, and 77, equals the projection of # onto the Hilbert space
spanned by all u-invariant linear #-functionals. Since these averages must coincide
a.s. if both exist, we shall henceforth use 77, as a common notation.

Most results for general random measures # on L will be given in two versions,
one involving strict stationarity, first order local and asymptotic invariance, strong
mixing, L,-convergence, etc., the other involving the corresponding L,-concepts.
In order to avoid repetitions, and also to stress the analogy between the two cases,
we state both versions together with the modifications in the L,-case within
parentheses. As in § 2, it will be convenient to use | - || as 2a common notation for the
norms in L (P) and L,(P). Two further conventions are to write p for Euclidean
distance and 2 for Lebesgue measure,

The remainder of this section is devoted to results obtainable under local
invariance conditions. Our main result for this case is given first:
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Theorem 4.1. Assume that veu= ¥ (H). Further suppose that n is strictly (second
order ) H-stationary, and such that (By)n~ ' is first (second ) order locally v-invariant
for every Be #(L). Then 6, %v is first (second ) order asymptotically v-invariant as
p(x, u)—00. In the second order case we have even d xn—1, in L,, provided that
v=u and nn~u=0 a.s.

Note that, by Lemma 2.2, the conditions of local invariance, here and in similar
cases below, need only be verified for a fixed covering class of open sets Be Z(L).

Proof. If 9 is independent of # and uniformly distributed over the quotient group
u/H, then 4 =5 becomes strictly (second order) u-stationary. (Here 64 *# may be
defined in different ways, but our statement remains true for any reasonable choice
of definition.) To see this, it suffices to consider the case d=1, to take H=Z and to
let 9 be uniformly distributed over the interval [0, 17. If in this case # is strictly H-
stationary, we get for any non-negative measurable functional f on (L) and for
any reR,

Ef (0, gxM=EELS(S,,5*n)I9T=EELSf (05 *m)|I]
=EELSf (05 +mI9]=Ef (35 %),

where §'=r+ 9 —[r+ 3], which is seen to be distributed as 9, independently of .
Thus J, * 17 is indeed strictly stationary. In the second order case, we may apply the
same argument to functionals f of the form

fw=@B)uC), B,Cek(L).

Next note that, by Lemma 2.2, the first (second) order local v-invariance carries
over from # to &4 * . Hence, if the first assertion of the theorem is known to be true
in the case H =u, we may conclude that é4_ . ## is first (second) order asymptoti-
cally v-invariant, and by Lemma 2.4, this remains true for d +». A similar
argument applies to the second assertion. We may thus assume from now on that H
=u. Under this assumption, it is further clear from the stationarity of # and the
invariance of 77, that the assertions need to be proved only for x of the form ¢y with
t>0.

Now suppose that the theorem has been proved for n'=(n~'u)n=0 a.s., and
consider the general case. We may then apply our theorem to the projection onto u
of the restriction #z=(u+By)x' for arbitrary Be #(R) to conclude that # is
asymptotically first (second) order u-invariant under u-translations. Since it is
further strictly (second order) u-stationary by assumption, it is in fact a.s. u-
invariant, and this implies the desired asymptotic invariance of é,,*#’. We may
thus assume without loss that sz~ 'u=0, which enables us to use the phase
representation based on u.

Let v be an absolutely continuous probability measure on R?~* with density f,
interpret v as a distribution on u, and write for brevity (v x d,) *y=v=#. Then
clearly

(v=n)(BxC)=fn,Cdq, B,CeBR'"), (1)

B

where {1} is the measurable, M(R?~")-valued and strictly (second order)
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stationary random process on R?~! given by
n,C= djlf(q—s)n(dst), geR*', CeZ(R™Y. (2)
Rd-
By a simple geometric argument,

—~B
(0, xvEn)(Bx C)=(vx1n) {(q,p): pe t+qu},

and similarly for 6,,, *v=*n, sev, so by (1), Minkowski’s inequality and the
stationarity of {1},

[(0ry =04y s % vin](Bx C)

len (-en ()
<ton (22)- en (222

e (55 n (5

Now itis seen from (2) that 5, is first (second) order locally v-invariant, and hence so
is Cy, on account of Lemma 2.2. Thus the right-hand side of (3) tends to zero as
t— oo, at least for rectangular B. A similar argument shows that [(,, * v +#)(B
x C)|l is bounded as t — co. Thus 6, * v + 1 is first (second) order asymptotically v-
invariant, and hence so is ,,*# by Lemma 2.5, since v was arbitrary.

Turning to the second assertion, suppose we can show that

lim sup (|(6,, *v,*n—7,)A=0, A=BxC, 4)

r—oo i

for any rectangles B, Ce Z#(R‘~'), where v, denotes the uniform probability
measure over C,. Combining (4) with the fact that, by the second order asymptotic
invariance,

lim (6, * (v, ~vi) *m A =0, k>0, neN,
t— o0
we obtain

1632, 5 vy, 21 = ) AN Z 118y (viy— V) # ) ALl + (S % v —11,) A — 0

as t— oo and then n— co, and since h was arbitrary, we may conclude that indeed
O, %0 —1,in L,.
Next consider an arbitrary null-array {C,;} of partitions of C, (cf. [10]), and let
p,;€ C,; be fixed. Then
”(5t_v * V& ’7—7]”)(3 X C)”
=l(v,*n—m){(g,p): peC, geB+pt}|
j

+IX 0 xn)ila. p): peC,j qe(B+pt) AB+p,; 1)}
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By Minkowski’s inequality and the second order u-stationarity of #, the first term
on the right is bounded by

; |0, 1 =) [(B+p,;0)x C, 1l =; v, % =7,) (B x C,l.
If the C,; have diameters <, it is further seen that the second term is bounded by
H;(vr *m){(gp): peC,;, 4€(@B), +pt}|
= II;(% #v, # 0B, x C, ][ =|(d;, » v, ¥ n) [(9 B),, x C]|

=18, * M [(@B),., x C1II,

where (9 B),, denotes the gt-neighbourhood of the boundary  B. As ¢ tends to zero
for fixed t, the last estimate tends to [|(4,, * #)(¢ B x C)|| by dominated convergence,
and this expression must be zero for all ¢, B and C, due to the second order u-
stationarity of 5. Thus

sup 1(8;y v, % n—7,)(B x C)| |<hmsupZH(v w0—i,)(Bx C,)l,

and so (4) will follow if we can show that

lim SUPZH(V *n—1,)(BxC,)[=0. ()

For the sake of brevity, define
Y, (5)=n(B+s)xC,), seR™,

and note that the processes Y,; are second order stationary. Let A,; be the
corresponding spectral measures, and write (assuming d =2) Y(e) for the component
of Y,; corresponding to the restriction of 4,,; to the set {x: 0 < |xl <g}. Then it may be
seen from the proof of the mean ergodlc theorem in [5], §§ X.6 and XI.6, that

ZMW*m4mwxcmu

=Ll %) 0= T,

nj

© 2 2 1/2
=z{_s (%@-1@@)) e
gZ{inj{x: 0<|x|<e}+7,,;{x: |x|Ze}Qnure)=*}"?
= IR+ Y17 Qrre) 2312

i
éz 1Y +Q2nre~! Z (Rl

Here the right hand side tends to zero uniformly in n as r — oo and then ¢ — 0, since
supy | Y, il <oo by the definition of second order local invariance, and since
L
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moreover

lim sup Z [Y,2] =0,

e~>0 n

as may be seen by arguing as in the first part of the proof of Lemma 2.2. This proves
(5) for d=2. The proof for general d is similar. []

We next show that, under a somewhat stronger regularity requirement, the
convergence assertion of Theorem 4.1 remains valid in L.

Theorem 4.2. Suppose that ¥ (H)=u, and let ueM(P,) be locally u-invariant with
un~tu=0. Further suppose that n is strictly (second order ) H-stationary and such
that Yy=d(Bn)n~*/dp exists a.s. and satisfies || Ys| du<oo for every Be Z(L).
Then 6, +n—1, in L, (L,) as p(x, ) — co.

Proof. For arbitrary Be (L), it is seen from Minkowski’s inequality and Fubini’s
theorem that

h=2flBn)r~ (Cytx)lldx=h=[ | [ Yp(t) u(dt)]| dx

Cpn+x

<h=ifdx | %00 pd)=h=*]| Y0 pdr) | dx

Cp+x ~Cp+t

= {1 Y5(0)] udr) < co.

Hence it follows from Lemma 2.2 that (Bn)n~ " is first (second) order locally u-
invariant. Since B was arbitrary, the assertion in the second order case now follows
from Theorem4.1.

In the first order case, note first that the assertion need only be proved for v =5 in
place of #, where v is an arbitrary absolutely continuous probability measure on u.
Since v # 1 also fulfills the conditions imposed on #, we may hence assume from now
on that # € A x y a.s. By a simple truncation argument, we may further assume that
Y=dn/d(%x p)is a.s. bounded by some constant. But in this case | || Yy, d u < o0, so
we may conclude from Lemma 2.2 that (By)w~ ! is second order locally u-invariant
for all Be#(L). The assertion now follows from that in L,. []

A more direct approach in the L, case would be to reduce to the case when H
=uwhile x =t y, and note as in the proof of Theorem 3.1 in [ 117 that Y has a strictly
stationary version. Letting B, CeZ(R%"!), we then obtain

(6, # v, 17 —17,)(B x C)H—Hjﬂ(dp) I [0+ g, p—-Y(p)]dql

B+pt

—Hju(dpj[(w )g+pt,p)—Y(p)ldq|

-1

é(jju(dp iH(vr*Y)(q+pt,p)—?(p)lldq

=£u(dp)£ (v, * Y)(g,p)— Y(p)ll dg,

and this last expression tends to zero by dominated convergence as r — o0, since the
integrand is bounded by 2 || Y(g, p)||. In the L, case, the same argument would apply,
provided we could show that Y has a second order stationary version. However, 1
don’t know whether the last statement is true in general.



82 0. Kallenberg

The L, version of Theorem 4.2 was shown above to be a special case of the
last assertion in Theorem 4.1. In fact, the two statements are essentially equivalent,
provided that the stationarity of # is known to be strict. To see this, define

LE[B+9)x Onln~!,  (=r?[{ds, I=lim{",
Cr

r—oo

and let {C,;} be a null-array of partitions of C. By monotone convergence and
Jensen’s inequality, we get

Evar((” -0 =E lim },|(("—0) C,;l=1im } (" ~0) C,ly

n—>00 j n—w

ssup 2 IC7 =0 €yl

Thus, by (5) and the second order local invariance,

lim E var({® —{)=0.
Letting X (s) denote the total mass of the {-singular component of {, and noting
that the corresponding quantity for (" is X =(v, * X)(0), it follows by stationarity
that

EX(0)=EX®=1im EX® < lim Evar({""—{)=0,
and so {,<{ as. Thus the ergodic components of # satisfy the hypothesis of
Theorem 4.2.

From this argument it is further seen that, if the measure # in Theorem 4.2 is
strictly stationary and ergodic, then ¢ may always be chosen such that 2 x p=1,,.

The last two theorems yield improvements in various directions of Theo-
rems 3.1 and 3.2 in [11]:

Theorem4.3. Let #(H)=R" and suppose that v is strictly (second order) H-
stationary and such that (By)n~ ' is first (second ) order locally v-invariant for every
Bed(L). Then v is a.s. v-invariant. If moreover

P{#(v,nx,nx)=k,  ‘~[Faen’}=1, (6)

then n is a.s. R%invariant.

Proof. First proceed as in the proof of Theorem 4.1 to reduce to the case when H
=R The first assertion is then an obvious consequence of Theorem 4.1, (cf. the
second paragraph in the proof of that theorem). It remains to prove the second
assertion for v R% If ve®,_,, our assertion follows from Lemma 2.2 in [11], since

by (6)
P{nxd¢u, xeLae n}=1

Thus by (6) it remains to assume that ve®,_,.

Consider the phase representation based on some ue®,_, with u>wv. (By (6),
any such u is permissible.) Write (¢, p)=(¢’,4",p.p"), where ¢’ and p” are the
projections of g and p on v. According to the first part of the theorem, # is a.s.
invariant under arbitrary ¢”-translations, which means that #={x 1 a.s. for some
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random measure { on R%, Interpreting (¢, p’) as the phase parametrization of the set
L of lines in R? and p” as a mark, { becomes a random measure on the space L
x R4~2 of R~ 2-marked lines in R?. (It is instructive to show how { may be obtained
directly as a suitable projection of #.) We shall apply Theorem 3.2 in [11] to
conclude that { is a.s. invariant under ¢'-translations. This will clearly vield the
asserted a.s. invariance of #.

First we need to verify that { is strictly (second order) stationary under arbitrary
translations. In the first order case, let fe.Z,(R) and teR be arbitrary, and choose
Be#(R*~?) such that 2B = 1. By Fubini’s theorem and the strict stationarity of #,
we get

@y * O f={fd—p't.p){(dq dp)=[f(¢g —p't,p) A(B+p"1) {(dq dp)
={[fd—p t.p)15(q" ="ty n(dqdp)=(5,, * n)(f x 1)
Ln(fx1p=(f 2B=L(],

which implies that { is strictly stationary. The proof in the second order case is

similar.
It remains to show that the condition

P{Z(nx,;,mx,)=R? (x;,x,)e(ll xR~ H*ae (*} =1

in [11] is fulfilled, i.e. that the p’-projections of { are a.s. diffuse. Suppose on the
contrary that there exists with positive probability some aeR with {n~*{a} >0.
The latter relation implies (in a self-explanatory notation) that

n°{(d1,01,4,5.02): Py =p>=a} *0,

and from p’| =p’,=a it follows that

og’p(va77:(Q13pl)5TE(qzapZ)):’g( a(pla 1)9 (pza 1))
=% (v,(a,p},1),(a, D5, 1))=Z(v,(a,0,1)) + R

Thus we get
P {n*{(x;,x,): & (v,mx;,mx,) £ R} +0} >0,

which contradicts (6). []

The results for smooth random measures here and below may be combined in
an obvious way with the results of §3 to yield corresponding statements for point
processes on the space of lines, i.e. for non-interacting particle systems. The
resulting corollaries are omitted. Less obvious is the fact that Theorem 4.2 yields
the following strengthened version of the Breiman-Stone theorem. (Though most
results in this paper extend to the case of marked random measures and point
processes, this is the only place where marks are used explicitly. They are assumed
to belong to some fixed locally compact second countable Hausdorff space K.)

Theorem4.4. Let ¥ (H)=u, and suppose that a system of marked particles on u is
given at time zero by an H-stationary K-marked point process &, with a.s. finite sample
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intensity. Further suppose that the particles move with constant velocities which are
chosen independently according to some mark dependent absolutely continuous
distributions u,, ke K, where p, is a measurable function of k. Then the resulting
process & of positions and associated marks and velocities converges in distribution as
time tends to infinity towards a Cox process directed by ,.

The main improvements consist in the consideration of the process of both
positions and velocities rather than that of positions alone, and further in the
allowance for the velocities to depend on the relative positions of neighbouring
particles. As will be seen from the proof, it is enough to require absolute continuity
of the y, with respect to some fixed locally invariant measure. To attain asymptotic
Cox structure, local invariance is then needed in one direction only.

Proof. By Exercise4.5 in [10], we may replace ¢, in our argument by a
corresponding p-thinning &, for some pe(0, 1). We may further attach independent
marks to the atoms of &, e.g. according to the uniform distribution on [0, 1], and
consider the resulting point process &3 on u x K x [0, 1]. This simplifies our proof,
since £ is automatically a.s. simple and satisfies the conditions (£} and (Z*) in [12],
(cf. the proof of Theorem 4.2 in [12]). For the sake of brevity, we assume that &,
itself has these properties. We may further assume that E £, is locally finite, since we
may otherwise consider the ergodic components of £ separately.

Writing {, for the conditional intensity of &,, the conditional intensity of £
becomes

(B=[{,(dq,dk) m(dp)={*B, BeB(LxK). (7)
B

Anticipating the proof of (7), we get

(BOn~ ' C=[{o(dq.dk)(Cp)dp), BeB(LxK), CeB(R'"),

and since g, is absolutely continuous for every keK, it follows that (B{)n~" is a.s.
absolutely continuous for fixed Be#(Lx K). By Lemma 2.2, the (B{)n~"' are then
first order locally invariant, so Theorem 4.2 applies, yielding 6, { —{,in L. Since
{,=¢&,, the asserted convergence may now be inferred from Lemma 3.3.
Toprove(7), let us first assume that d =2. Since () and (2*) hold by assumption,
it is seen that {,, coincides with the solution #, of the integral equation in §3 of [12]
(with & replaced by &,). In proceeding from &, to &, we introduce an intermediate
process &' to be defined like &, except that the g, are replaced by Lebesgue measure

on [0, 1]. Putting

fp,k)=sup{x: y(—o0,x]1<p}, pe[0,1], kekK,

we then define ¢ = & f ~*. For this construction to make sense, we have to prove that
f is jointly measurable in p and k. Taking this for granted, it is easily verified that £
has the desired distribution. By the remark concluding §3 in [12], it is further seen
that ¢ has conditional intensity

(=ELLfHEfI=E[FIE=0F as,

in conformity with (7), (' being the conditional intensity of &).
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Since f is increasing and right continuous in p for fixed &, the desired
measurability will follow if we can show that f(p, k) is measurable in k for fixed p.
But this follows from the assumed measurability of {1} and from the fact that, by
the diffuseness of y,

(ks £(p, k)< 1) = {k: sup {x: (= 00, X] £p} <1} = {k: gy (— o0, £]> p).

For d = 3 we may proceed inductively, considering one component at a time of
the rate vector p=(p,, ..., p;_ ;). Thus, after m steps, we choose k'=(k, p4, ..., p,,) as
our new mark and replace g, by its conditional distribution i, given that the first m
components of pareequaltop,, ..., p,,- By the measurability of u, and the definition
of conditional distributions, the measure y; will automatically be measurable in k/,
and so the preceding argument applies at each step, eventually leading to (7). [

By a similar argument, the main result of Jacobs in [9] follows (in a
strengthened form) from our Theorem 4.1. Indeed, the present approach shows that
most of her assumptions are redundant.

We conclude this section with a different kind of extension of the Breiman-Stone
theorem. It turns out that the conclusion of asymptotic Cox nature remains valid
under the weaker assumption of diffuseness of the velocity distribution. The
hypothesis of local invariance is only needed to ensure that the limits are mixtures
of stationary Poisson processes.

Theorem 4.5. Let ¥ (H)=u, and suppose that a particle system on u is given at time
zero by an H-stationary point process &, with a.s. finite sample intensity. Further
suppose that the particles move with constant velocities which are chosen inde-
pendently according to some diffuse distribution p. Then the resulting process & of
positions and associated velocities is relatively compact in distribution as time tends to
infinity, and the limit points are all Cox processes.

Proof. By an obvious truncation argument, it is enough to prove the theorem for
processes with bounded sample intensity. Let us first assume that £ is u-stationary.
Then E£ becomes invariant under arbitrary translations (cf. Lemma 2.2 in [117),
which implies in particular that J,,* ¢ is relatively compact.

Next, given &, let n,, m,, ... be the conditional probabilities for the lines of &
(when regarded as a line process on R¥) to pass through B,=B —t y for some fixed
Be#(R%). Since pis diffuse, the m; must be bounded by some constant p, which tends
to zero as t — oo, Now it follows from item 1.5.8 in [15] that the restriction of & to
the set L(B,) of lines hitting B, differs in variation from a Cox process by at most

2EY n2<2p,EYm;=2p,EE[L(B,)|¢0]=2p,EL(B)
—2p, E(8,, * &) L(B)=2p,EEL(B)—O.

Hence, if 6, * & —4 5 some { as t — co through some sequence, then L(B){ must be a
Cox process for every B, which implies the asserted Cox structure of { itself.

When ¢, is only known to be H-stationary, we consider the u-stationary process
£* obtained from £ by randomization as in the proof of Theorem 4.1. We may then
argue as before, except that the invariance of E£* plus the estimate {B<E*(B
+u/H), Be #(L), replace the invariance of E&. [
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5. Results under Mixing Conditions

Our present aim is to show that results similar to those of §4 are obtainable under
suitable mixing conditions in place of the previous local invariance assumptions. In
addition to the general assumptions and notational conventions introduced in §§1
and 4, we shall need some further definitions.

A random measure # on L is said to be second order v-mixing, if

, EnB,nB
limsup — 122 <1 (0/0=1),
p(ry By, 7wy B2)— 0 EWB1 EnBZ

7, being the v-projection operator in the phase space. (In this connection, v is
regarded as a sub-space of the space of positions rather than velocities.) We shall
further say that # is strongly v-mixing, if

limsup sup |P(4,nA4,)—PA;PA4,|=0
r—o  Ag1,Az
with the supremum extending over all pairs of events A, and A, which may be
defined in terms of B, n and B,# for some B,, B,e#(L) with p(n,B,,=,B,)>r.
Given any family 5, £ 2 0, of random measures on L, we shall say that #, is first
(second ) order asymptotically non-random, if

li?isup I, f1 < o0, tlim I fY N =0, feZ(L), 1)
the superscript s denoting symmetrization. Clearly (1) implies that {#,} is relatively
compact in distribution and that every limit point is a non-random measure.

For brevity, we shall often write @ for ®,\ &, the set of directions which are
not parallel to u. Whenever convenient, we shall further identify @] with u without
further notice. In particular, the v-projections of ueM(P)) are by definition the
projections on v of By, Be#(u), when regarded as measures on u.

Theorem 5.1. Let ue(®P)) with diffuse v-projections. Further suppose that n is
strongly (second order ) v-mixing and that, for some probability measure v on R, the
density d(n = v)/d(u x ) exists a.s. and is uniformly integrable (L,-bounded ). Then
8, =7 is first (second) order asymptotically non-random as p(x,u)—»o0. If n is in
addition first (second ) order H-stationary, then d, *n is further first (second ) order
asymptotically H-invariant.

Proof. We shall only consider the case when x =t y,te R. Theé modifications required
in the general case are obvious.

Suppose it is known that J,,* 5 * v is first (second) order asymptotically non-
random. Then so is 6, * 1 = (Bv) for every B €% (RY, since the assumption on # * v
carries over to 1 *(Bv). Letting B be open and decrease towards a point in the
support of v, it may be seen as in the proof of Lemma 2.5 that J,, * 1 is first (second)
order asymptotically non-random. In proving the first assertion, we may thus
assume without loss that v=4§,. By Lemma 2.5, the same assumption can be made
in the proof of the second assertion.
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Let Y be a jointly measurable version of dn/d(ux A), and assume that
1Y(x)]| £c< oo for all x. By Minkowski’s inequality, we get for any fe%Z, (L),

1@y =) fII= 1T Y () f(x =t 0)(ux D@ STNY ) f (e —£9) % 2)(dx)
Scffe—ty)px dx)=c[f(x)(nx Ndx) <o,

proving the first relation in (1) for #,=46,,*n. .

In proving the second relation in (1), we shall first consider the L -case. Since Y
is then assumed to be uniformly integrable, there exists for every ¢>0 some
constant b >0 such that ||(Y(x) —b), || Se¢for all x, and it is clearly enough to prove
the second half of (1) for the random measure with density Y A b, or rather to assume
from the beginning that Y <b. Put b=1 without loss, and note that in this case 5, <
x A for all t. Now suppose that 1, —%~ some { as t — oo along some sequence T.
Then

P{f>(uxAf=liminfP{n, f>(ux ) [} =0, feF(L),
teT

so { is also bounded by pux A
We next obtain for any B, Ce (R 1)

(0, xMBx Cy=n{(g,p): peC,qeB+tp}, 2

which is clearly a (measurable) function of [(B 4+t C) x C]#. Writing p, for distance
in the v-direction, we get for any C,, C,e%(R*") with p,(C,, C,)>0

P (B+tC,B+tCy)=tp,(C,+t 'B,C,+t ! B)~1p,(C;, Cy).

Assuming that {3(B x C,)={0(B x C,)=0a.s,, it follows from the strong v-mixing
property of # that the events {{(B x C,)<r,} and {{(B x C,)<r,} are independent
for ail but at most countably many r,, r,=20. Hence {(Bx C,) and {(B x C,) are
independent, and since they are further bounded by constants, they must be
uncorrelated. Thus the projection {, of the random measure [(B x C){]Jn~* onto v
has uncorrelated increments. Since (, is further bounded by the corresponding
projection of [(B x C){(Ax w)]n~'=(AB)(Cp) and is therefore a.s. diffuse, we may
conclude from Exercise 7.16in [10], p. 96, that {, is a.s. non-random. Hence so is { (B
x C), and B and C being essentially arbitrary, it follows that { itself is a.s. non-
random. Thus (1, f)* —4 0, and so, by the uniform integrability,

fim (. /)11 =0, feZ(L). 3)

Since {5,} is relatively compact and (3) has been shown to hold for every convergent
subsequence, (3) must remain true for T=R .
Turning to the L,-case and assuming without loss that ¢=1, we get for any
feZ (1%, writing Y, for the (u x A)-density of #,,
EnZf=E[[Y,() Y,(s) £ (r, ) (u x 2)*(dr ds)
=[JEY,(N Y,(s) S (r,s)(ux 2)*(dr ds)
SO 1Y ) (wx ) @drds)S(ux )2 f.
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If y,—%>{ as t— o0 along some sequence T, it follows by Fatou’s lemma that
E (%< (ux 4)* Since the v-projections of u are diffuse, it may then be seen from
Cebysev’s inequality that the v-projections of { n~! are regular in the sense of
[10], and hence a.s. diffuse by Theorem 2.5 in [10].

It may next be seen from Fatou’s lemma and the uniform integrability of 5, B for
fixed B (which follows from the L,-boundedness) that, for arbitrary B, C,,
CZE'@(Rdﬁl)a

E{BxC){(BxC,)—E{(BxC)E{(BxC,)
<liminfE#, (Bx C,)n(B x C,)—lim Ey,(Bx C,)En,(Bx C,)
teT teT

=liminf(E,(B x C,)n,(Bx C;)—En,(Bx C,) En,(B x C,)}.

teT
Noting that, for i=1,2,

En(Bx C)=|n(Bx C)| £[4,, x(Ax w](Bx C)
=(Axp)(BxC)=2AB uC,<w,

and making use of (2) and the second order v-mixing of #, we obtain
ECBXxCHUBXC)sELBXC)EUBXC,).

But this implies in turn that the increments of the v-projection {, of [(Bx C){]n~*
are non-positively correlated for all B and C. Since {, was shown above to be a.s.
diffuse, it follows as in Exercise 7.16 of [10] that {, is a.s. non-random. Hence so is {
itself.

Let us now consider an arbitrary closed {-continuity set Be (L), and define

D={(x,y)eB*: p,(nx,my)=0}.

Consider B? as a topological space in the relative product topology, and note that D
is closed. Given any ¢>0, there exists by dominated convergence some open set
G > D such that (ux )2 G<e. Any point in B2\ G is contained in the interior of
some product set B’ x C’, such that {0B'={3C’'=0 and the closure of B'x C’ is
disjoint from D, Since the set B\ G is compact, it may be covered by finitely many
such sets B, x C,,..., B, x C,, say, which may clearly be assumed to be disjoint.

By the second order v-mixing and uniform integrability, we get for j=1,...,n

limsup En?(B; x Cj)glimsup‘EntBjEnt C,=(*(B;x C),
teT

teT
SO

limsup E(y, B)* =limsup En[| J(B;x C))uG]
teT 7

teT

<limsup[) E#n}(B;x C)+EnG]

teT j

chZ(Bjx Cl+(uxA* G B +e.

Since ¢ was arbitrary, we obtain

limsup E(r, B)> <({ BY™
teT
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Conversely, we get by Fatou’s lemma

liminf E(y, B)* 2({ B)?,
teT
and so, by combination, E(r, B)> — ({ B)* (te T). Since moreover (1, B)> —4- ({ B)?, it
follows that , B is uniformly square integrable. Hence so is (, f)* for every fe Z.(L).
The proof of (1) may now be completed as before.

In proving the second assertion, note that stationarity implies invariance for
non-random measures, and conclude that every limiting measure of #, is H-
invariant. The first (second) order asymptotic invariance now follows from the
uniform (square) integrability established above. []

If H=u in the last theorem, it may be seen as in case of Theorem4.1 that
0,, % —1, in L (L,). However, no uniform integrability is actually needed for the
L, version of this result, and in the L, case, the absolute continuity can essentially
be weakened to L,-regularity:

Theorem 5.2. Let 1) be strictly (second order ) u-stationary, strongly (second order ) v-
mixing and of first order. Further suppose that, for some peR(®)) with diffuse v-
projections, (By)n~'<p as. (that |(By)n~'| exists with diffuse v-projections),
BeZ(L). Then 6,y —1, in L (L,) as p(x,u)— co.

Proof. We may clearly restrict our attention to the case x=ry, t>0. In the L case,
let Ac(R*" ') with 24 >0, and put v=A L. Define Yy=d(Bn)n~'/d y. Writing 4,
=(q—A)x R?~!, we get by (1) and (2) in §4 for any B, Ce&B(R* 1)

(v n)(B x C)=1§;ﬂ[(q—A)>< C]dq=£dq£(Aqn)n‘1(dp)

=£dq£YAq(p) u(dp).

This shows that vy <y x 4 with density

Y(g,p)=Y, (p), g peR‘"L

q

Asin[11], we may choose a strictly g-stationary version of Y. In that case, | Y(q, p)|
=|Y,,(p)ll exists a.e. and is independent of g. We shall prove that 6, * 7 is first order
asymptotically u-invariant. The asserted convergence will then follow as in case of
Theorem 4.1.

As in Theorem 5.1, the asymptotic invariance need only be proved for v« in
place of 1, so we may assume without loss that v=4,. For fixed r >0, let #% be the
random measure with (u x A)-density Y Ar, and conclude from Theorem 5.1 that
d,,%n™ is first order asymptotically u-invariant. This property carries over to
d,, * 1, provided we can show that d,,  (n —#)) tends to zero in L, uniformly in ¢ as
r—o0. To see this, let B, CeZ(R*~") be arbitrary, and conclude from Fubini’s
theorem and the stationarity of Y that

H[ézy*(n——'?(”)](BXC)H=H£#(dp) | (Y(g,p)—7). dq|

B+tp

=£#(dp) § H(Y(qyp)—rhi!dq:gu(dp) § 1Y ©,p)—n), [ dq

B+tp B+tp

=/1B£ I(Y(0, p)—r) I u(dp).
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As r— o0, the last integral tends to zero by dominated convergence. —

In the second order case, let B and C be rectangles in R~ 1, let £ > 0 be arbitrary,
and choose a finite partition {C;} of C such that all diameters are bounded by e.
Fixing p;e C, for all j and writing B,, for an gt-neighbourhood of B, we get for any
teR

16y xm(B x C)| = (8, xn)(B x [ J C)
={2 2 E@,#m*(B*x C;x C)}17?

{2 Y@y =B x C)| (3, * m(B x Cy)|}'/

i

=216, =mBx Chl=3 [n{peC;qeB+pi}|
= In{peC;,qeB+(p—p)t}I £3. lIn{peC; qeB,}|

=2 1B, x CHI (B, x R mn~1 C.

Choosing e<t~!, we thus obtain the uniform bound

sup 16,y % B x O < [(By x R*=H)mn~| C < 0.

We may now proceed as in case of Theorem 5.1 to show that J,, # 1 is second order
asymptotically u-invariant. The asserted convergence will then follow as in the
proof of Theorem4.1. [

The preceding argument shows incidentally that, if [|(By#)m~!|| exists for all
Be4(L), then 4, * 7 is uniformly integrable as ¢ — co. If 5 is further known to be u-
stationary, then the intensity of ,, *# is t-invariant by Lemma 2.2 in [11]. Thus
0, %1 —4,0 is impossible in this case, unless #=0 a.s. This remark is somewhat
related to the open question of Davidson stated in [7], §3.7, whether (in our
notation) d,, * ¢ —4, 0 can occur for a non-vanishing u-stationary line process £. (Of
course, many results of this paper give rather precise information about the
asymptotic behavior of J,,* ¢ or d,,*n under specific assumptions. However,
nothing seems to be known in general.)

The present methods yield surprisingly strong results in the case of “time”
stationarity:

Theorem 5.3. Let u be strictly (second order) y-stationary and strongly (second
order ) v-mixing. Further suppose that nn~'u=0 a.s. and that the v-projection of
(Bn)r~tis a.s. diffuse for every Be B (L). Then n is a.s. non-random and y-invariant.

Proof. Proceeding as in the proof of Theorem 5.1, it is seen that, for any Be #(L), the
increments over disjoint rectangles of the v-projection of (By)n~! are independent
(uncorrelated). Since this projection is further a.s. diffuse by assumption, it follows
by Exercise 7.16(7.15) in [ 107, p. 96, that # B is a.s. non-random. Hence so is 7 itself,
since B was arbitrary. But in this case, stationarity and invariance are equiva-
lent. 3
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Again it is obvious how our theorems for “smooth” random measures may be
translated into statements about point processes. Note, however, that a direct
approach may sometimes yield stronger results:

Theorem 5.4. Let & be a strictly y-stationary and strongly v-mixing point process on L
with 1~ *u=0a.s., and suppose that, for every Be (L), the v-projection of (BE)m™*
is a.s. simple and has no fixed atoms. Then ¢ is a Poisson process with y-invariant
intensity.

Proof. Proceed as in the proof of Theorem 5.3 to show that, for every fixed BeZ(L),
the v-projection &, of (BE)n~ ! has independent increments. We may thus conclude
from Corollary 7.4 in [10] that £, is a Poisson process. In particular, the random
variable & B is Poisson for every B, and so it follows from Satz 1.3.12 in [15] that £ is
a Poisson process. Finally, the y-invariance of E£ follows from the y-stationarity of
¢ O

Added in Proof. Some results related to Theorem 5.4 above have been obtained, independently,
by R.L. Dobrushin and Ju. Suchov.

6. The Method of Randomization

In this section we shall investigate the asymptotic behavior of &y %1, where 9y,
3,, ... are random elements of R? which are independent of # (though not
necessarily mutually independent), and whose distributions (or certain projections
of them) are globally asymptotically invariant. Results along these lines have some
merits from the point of view of applications, since it may often be most natural to
consider the evolution of a system along a sequence of random epochs. Note in
particular that, in the important case when the 3, form a random walk in R%, P 3!
is globally asymptotically invariant as n — oo iff P 87! is non-lattice, (cf. item 6.5.4
in [15D.

However, our main motivation for studying random translations is the fact that
results for this case yield interesting information about the case of non-random
translations. Let us e.g. suppose that # has bounded intensity and that 6,_% 5 — 17, in
L,. Then we get for every fixed feZ (L)

ELI(8y, #n— ) /19,10 in L,,

and turning to a suitable sub-sequence N’ < N, we can make this hold in the sense of
a.s. convergence. By the familiar diagonal procedure, the same type of result holds
with a common exceptional null-set for any countable class of functions. A simple
approximation argument then yields the same result for the entire class % (L), i.e.

ELI0, *n =) f1|9,1 >0 (neN’), feF(L), as.
But this is clearly equivalent to
6, *n—17, inL, (neN) {x,}eR® ae P{3,} "

Specializing to the case when 3, =¢, 3, where the t, are real numbers while 3 is a
random clement of R? satisfying 2 <P 9~ 1<, we get

5t,.x*’7_’77u in Ly, xeR’ ae. A,
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whenever t, — oo rapidly enough. Similar conclusions may be drawn in the cases of
L ,-convergence and of first (second) order asymptotic invariance.

In our statements and proofs we shall still adhere, without further comments, to
the notational and other conventions listed in §§1 and 4. Given any we @, we shall
further write w' for the orthogonal complement of w.

Theorem 6.1. Let ueIR(®,) be locally v-invariant and such that
L0, x1,%)=R%  (x1,x,)eP} ae p’.

Further suppose that n is strictly (second order) H-stationary and that, for some
probability measure v on RY, the density d(n + v)/d(u x J) exists a.s. and is uniformly
(square) integrable. Finally suppose that the ¥ (H)-projections of P37 are
globally asymptotically invariant. Then 64 7 is first (second ) order asymptotically
R-invariant. If % (H)=ue®,_,, we have even o, *n—1j, in L (L,).

Proof. Arguing as in the proofs of Theorems 4.1 and 5.1 respectively, we may first
reduce the discussion to the case when H =% (H)=w while v=4,. By Lemma 2.5,
we may further assume that the v-projections &, of 3,, neN, satisfy

var[P(3,+x)~' =P 3 -] >0, xew'. ‘ 1)

Inthe L,-case, we may finally truncate the density as in the proof of Theorem 5.1, so
even in this case we may assume that 5 is second order w-stationary, and that Y
=dn/d(u x A) is uniformly square integrable. It is thus enough to prove the L,-
version of the theorem.

First we show that (6, *#)B is uniformly square integrable for fixed Be Z(L).
By Fubini’s theorem, it suffices to prove the uniform square integrability of (6, * #7) B
for non-random x. For fixed £ >0, choose ¢ >0 so large that E[(Y(s))?; Y(s) > c] <e,
seL, and write ' and " for the random measures with densities Y Acand (Y—c),,
respectively. Abbreviating 4, = (6, * #) B and similarly in case of primes, and putting
b=(ux 1) B, we get for any r>0

Eln2;n,>r1S2E[n2n,>r]1+2E[*; 0, >7]
L2022 P{n, >r}+2En 2 <2(be/r)? n ) +2 Inf )%

Since, by Minkowski’s inequality,

7l élj; 10, % Y (s)[| (ux A)(ds) <bsup || Y(s)]

and similarly for |#7|, we thus obtain
Elnz:n,>r1S2b%[(be/r)? sup [ Y(s)* +e].

As ¢—0 and r— o0, the right-hand side tends to zero, which yields the desired
conclusion.

By Fubini’s theorem and the second order w-stationarity of , we next obtain for
any BeZ(I?) and xew'
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|E(ds, .. %1 B—E(8y, % 1)> B|=|E(Jg, , x*n)* B—E(dy, x1)* B
<supE(6 *n)?B-var{P(¥,+x)" ' =P ~1},

which tends to zero by (1). By the uniform square integrability of d4_*n, it follows
that every limit in distribution { is second order w’-stationary. By another
application of the uniform square integrability, it is seen from the w-stationarity of »
that { is in fact second order R%stationary.

Next we show that { € ux A as. Indeed, choosing ¢ >0 so large that, for fixed
e>0, E(Y(s)—c), <e, seL, and defining %" and #” as before, we get

Oy *n' Zc(uxA) as, E(dg *n")Ze(ux ).

Choosing a sub-sequence N'cN such that §, =(n’, ") —%>some ({', (") with
C’+C”i<:, and using Fatou’s lemma, we hence obtain

'Sc(ux i) as, E=Ze(uxAi).

Thus, writing {, for the component of { which is absolutely continuous with respect
to ux A, we get

E((—-{)=e(ux i),

and since ¢ was arbitrary, this yields {={, a.s., as desired.

By Lemma?22 and Theorem4.3, the stationarity and absolute continuity
established above imply that { is a.s. R%invariant. The asserted second order
asymptotic invariance of &, * 7 now follows from the uniform square integrability.

To establish the last assertion, we may essentially proceed as in case of
Theorem4.3. [

For d=2, the second order version of the last theorem may be improved
considerably:

Theorem 6.2. Let d =2 and u=% (H). Suppose that v is second order H-stationary and
such that (Bny)n~" is L,-regular for every Be%(L). Further suppose that the u'-
projections of P9, are globally asymptotically invariant. Then 8, _%n—1, in L,.

We shall use a direct argument which 1s related to a method employed by
Davidson and Krickeberg in [7], pp. 64 and 104.

Proof. Asin the proof of Theorem 4.1, we may assume without loss that H =u. Let B
and C be any finite real intervals. Arguing as in the proof of Theorem 5.2 and using
Fubini’s theorem, we get

sup (9, n)(B x C)| <sup (9, +m)(B x C)f| < (B, x Onn | C<oo.

By a simple truncation argument, we may thus assume that 8, is bounded for each .
As in case of Theorem 6.1, we may further assume that (1) holds, and we may finally
identify 8, with its #’-projection &, and put n,=48, 7.

Consider a finite partition {C,} of C into sub-intervals, and fix in each rectangle
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C; x C;apoint (p;;, p;}), to be chosen later. Then we get for any seu (to be identified,
for convenience, with its coordinate along u)

(1, — 65 * m,)(B x C)||?
= |n,(Bx O)|>+ (6, n,) (B x C)\* =2 E(n,x (5,%1,) {B x C)?
=2En,x(n,—8,%n,)(Bx C)?

=23 Y En,(Bx C)(n,~d,%1,)(BxC)
Joi
=2 Y En{peC,, qeB+p3,}(1—3,%n) {peC;, g B+p9,}
iJ
<2). Y |En{peC, qeB+pi;9,}(n—0,xn){peC;, g€ B+p};9,}|
i
+23 Y IEy % (n—8,+m1{(p. p". 4. q"): P'eC;, p"eC,
i

(q’,q")eB*AL(B+(p};—p)%,) x (B+(p{;—P") 3.1+, p")9,}]
=25,425,.

We now choose the points (p;, p}}) so as to minimize S,. Writing p=
[(Bx C)n)m~ ||, we then obtain

Sy =2 L [En*[Bx(B+(pi;—pi)9,)x C;x C]
i j
—En?[Bx(B+(p;;—p{)8,—9) x C;x C/]|

-1
<> Y sup En*[Bx(B+1)x C;x C;] var [P(é)n‘—%) —PS;I]
i t ¥

ij 7 Pij

s —1
YUY (B x ) (B x €l var [P(8, ==} ~Ps, ]
i Pij—Dij

-1
éZZ#Z(Ciij) inf  var [P(9n— /5 N) —PB,II]
i

p'eCi,p’eCy p—p

—1
< | var [P(Sn— ,S > —P9;1]u2(dp’><dp”)'

c2 -

Now the regularity assumption means that y is diffuse, so > {(p’, p"): p'=p"} =0 by
Fubini’s theorem. Thus, by (1), the integrand tends to zero as n— o, a.e. u%, and it
follows by bounded convergence that S; — 0. Note that this holds uniformly with
respect to {C;}.

Next suppose that the intervals C; have lengths <e, and conclude that

S, <Y, 2 E[1, % (1,+ 0, %1,)][(0B?),, % C;x C}]
i
=E[n, % (1,+0,% 1)1 [(0B?),4,x C*].
By dominated convergence and the stationarity of #,, we hence obtain for fixed n

limsup S, <E[7, x (1, +,%1,)1(6B* x C*)=0.

&—0
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Thus [|(n,—d, x,) (B x C)|| =0, and since B, C and s were arbitrary, it follows that
1, is second order asymptotically u-invariant. The proof may now be completed as
in case of Theorem 4.1. [J
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