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1. Introduction 

In many stochastic particle systems arising in applications, it seems reasonable as a 
first approximation to neglect the interaction between particles. (We may e.g. think 
of thin gases or of low density traffic.) The particles will then move with constant 
velocities, and the evolution of the system will be given in a space-time diagram by a 
random collection of straight lines, a so called line process. Thus the problem of 
studying the asymptotic behavior of non-interacting particle systems is equivalent 
to that of studying the asymptotic properties of line processes under translations. 
The main purpose of the present paper is to investigate this problem under various 
types of general assumptions. 

A first result in this direction was given by Breiman in [2]. Later on, Stone [19] 
pointed out that Breiman's theorem follows in extended form from a general result 
of Dobrushin [4]. The extended version, to be referred to below as the Breiman- 
Stone theorem, states in essence that, if the initial distribution is stationary under 
translations and such that the velocities are independent of the positions and 
independently chosen according to some fixed absolutely continuous distribution, 
then the process of positions converges in distribution as time tends to infinity to a 
mixed Poisson process, (cf. [3, 6, 9, 21] and Theorem 6.5.9 in [15]). 

If we remove the independence assumption (which is rather artificial since, if 
independence occurs, it will normally be destroyed immediately [ 14]), the classical 
argument fails, and we have to rely on entirely different methods. For the sake of 
motivation, note that if the state (positions and velocities) of a space stationary 
particle system converges in distribution, then the limit has to be stationary in time 
also, and hence must correspond to a line process which is stationary under 
arbitrary translations. Such processes were considered by Rollo Davidson (w167 
and 2.4 in [7]), who conjectured that every stationary second order line process in 
the plane which has a.s. no pairs of parallel lines is a Cox process, i.e. a mixture of 
Poisson processes. (He actually considered stationarity under arbitrary rotations, 
but it is equivalent to consider translations only [1t].) Although Davidson's 
conjecture is false as stated [13], it becomes true under additional regularity 
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restrictions, as was shown by Papangelou (w in [7] as well as [16], see also [17, 
11]). Papangelou's method is based on the fact that Cox structure of a line or point 
process follows from the invariance (under suitable transformations) of the 
corresponding conditional intensity [16, 12]. Thus the problem of establishing the 
Cox nature of a line process is reduced to that of proving a.s. invariance of a 
(sufficiently smooth) random measure on the space of lines. Problems of the latter 
kind have been treated extensively by Davidson and Krickeberg (w167 in [7], 
see also [17, 11]). 

The present approach to the corresponding convergence problem is similar. 
Thus we show in w 3 that the asymptotic Cox nature of a line or point process follows 
from the asymptotic invariance of the corresponding conditional intensity. Given 
this result, it remains to look for conditions for a random measure on the space of 
lines to be asymptotically invariant. Three different approaches to this problem are 
presented in w167 4-6, the first depending on local invariance (a smoothness condition 
of independent interest, to be studied separately in w 2), the second on mixing. Our 
third method uses randomization, in the sense that the system is considered at a 
sequence of random epochs. One of our main results (Theorem4.1) provides a 
common extension of the Breiman-Stone theorem and of the best known 
conditions for a stationary line process in R a, d > 3, to be Cox. 

In order not to overload our exposition, we shall only consider the case of lines, 
although most results admit (usually trivial) extensions to flat processes in general. 
In most cases, no new proofs are needed, since every flat process can be identified 
with the corresponding marked line process of intersections with a suitable fixed 
flat [11]. Thus all we need is to check that our results below remain true for marked 
line processes. Only results related to Theorem 3.2 in [11] seem to require a direct 
approach. 

We further remark that our results apply to certain one-dimensional systems of 
colliding particles, as defined by Harris [8]. In fact, if the collisions are elastic, the 
colliding particles will interchange their velocities, so the space-time diagram will 
be identical with the one for non-interacting particles. Assuming the initial state to 
be given by a space and hence also time ([11], Lemma2.2) stationary Poisson 
process, and the associated independent velocities to have mean 0, Spitzer [18] 
proved that the path of a fixed particle converges in distribution under appropriate 
successive scale reductions towards a Brownian motion. Since the stationary 
Poisson processes are exactly the limiting processes we obtain in the ergodic case, 
our results imply that a similar convergence takes place under much more general 
initial conditions, except that we have to consider the path of a particle during the 
time interval IT, or) and to let T--+ ov at a suitable rate along with the scale 
reductions. (This is because, in an obvious sense, the paths depend continuously on 
the corresponding line process.) This contrasts with a counterexample in [20] for 
the case of fixed T. 

Throughout the paper we shall assume some familiarity with the basic 
concepts and terminology of random measure theory, for which we refer to [10]. 
We shall also use the notations of [10] without further explanation. Note in 
particular that ~(S) denotes the class of bounded Borel sets in S, and that 
(g)l (S), J/g(S)) and (9l(S), ~(S))  denote the measurable spaces of R +- and Z +-valued 
Radon measures on S. If no confusion is likely, we shall write r g)l, rig, 9l and ~ for 
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brevity. Convergence in 93l and 9l is with respect to the vague topologies ( - 4 ) ,  
and convergence in distribution ( ~ )  is defined accordingly [1]. For  random 
measures, we shall further say that ~n --+ ~ in L 1 if ~ , f ~  i f  in L 1 for all f ~ ( S ) ,  the 
class of continuous functions on S with bounded support. Note also that B#  
denotes the restriction of the measure # to the set B. Some further conventions are 
to write B ~ and ~?B for the complement and boundary of B, 6x for the Dirac measure 
at x, var for absolute variation, ~ for absolute continuity, ~ for equality in 
distribution, and S ( . )  for the linear subspace spanned by ('). We assume all 
random elements under consideration to be defined on some fixed probability 
space with probability P and expectation E. Some special notations for line 
processes will be introduced at the beginning of w 

2. Loca l  Invariance  and Re la ted  Concepts  

In this section we introduce some classes of measures on R d, random or not, which 
apart from being of independent interest will be basic for the subsequent work. We 
also consider certain classes of ordered sets of measures with index set T =  N or R+. 
Throughout this section we assume that u is a linear subspace of R d of dimension 
_>1. 

Let us first consider a family /x~lJl(R~), t~T, of uniformly totally bounded 
measures. We shall say that the #, are globally asymptotically u-invariant, if 

l i m  var(#~ �9 v - # ~  �9 v �9 c$~) = O, x~u, 
t ~ o o  

for every absolutely continuous probability measure v on R d. For  u=R d, this 
coincides with the notion of"weak asymptotic uniformity" in w 6.4 of [-15], and it is 
further seen to be equivalent to condition (2.4) in [,19]. Choosing the coordinate 
vectors xl, ...,Xd in R a such that u=•(x  1, ...,Xk) and writing C h for the cube 
spanned by the vectors hx~,..., hxe, it may be seen from the proof of Satz 6.4.l in 
[15] or Lemma 1 in [19] that the above condition is equivalent to 

lim ~ Iflt( Ch + X)-- #t( Ch-t" x + hxi) I dx=O, 
t~O0 

h>O, i=l, . . . ,k ,  (1) 

and by [19], the integration here may even be replaced by summation over all 
x~(hZ) a. 

Given any measure #sgJl(Rd), we shall further say that # is locally u-invariant if 

limh-d~[#(Ch+X)--#(Ch+x+hx~)ldx-=O, i=l, . . . ,k,  B ~ .  
h ~ O  B 

(2) 

Comparing with (1) and writing at(x ) =-tx, it is seen that (2) is equivalent to global 
asymptotic u-invariance of (B #) a~- 1 for every bounded rectangle B. (By Lemma 2.2 
below, this remains true with B ~ arbitrary.) Note in particular that the equivalent 
conditions for (1) given in [15] and [19] yield useful criteria for (2). 

The last definition carries over to random measures ~ on R e as follows. Writing 
fl" II for the norm in LI (P  ) or L2(P ) respectively, we shall say that r/is first (second) 
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order locally u-invariant, if 

limsup h-a ~ ][rl(Ch+X)l I d x <  ~ ,  BeN,  (3) 
h ~ 0  B 

and if moreover 

l imh-e~ Ilrl(Ch+X)--rl(Ch-t-x~-hxi) H dx=O, i = l , . . . , k ,  B ~ .  
h ~ 0  B 

(4) 

Note that, by Jensen's inequality, the L 2 versions of(3) and (4) are more restrictive 
than those in L 1. In the L 1 case, (3) simply states that E r/s 9)l. The corresponding L 2 
version will be examined in detail at the end of this section. 

The classes ~)l~, 91l} u) and 9Jr a of absolutely continuous, locally u-invariant and 
diffuse measures on R d are related as follows. 

Lemma 2.1. For any u ~ {0}, 

~ ~ ~"~ ~ ~d,  (5) 

and here both inclusions are strict. Similar relations hold for the corresponding classes 
of random measures satisfying (3). 

In the present proof and throughout the paper, we shall use the Minkowski 
(type) inequality 

115 IX (t)l #(dt)l[ < ~ [IX(t)LI #(dr), 

valid for arbitrary measurable processes X. For a proof in the L 2 case, note that by 
Fubini's theorem and Schwarz' inequality 

[]~lX(t) l #(dt)[I 

= (E q L x (t) l #(d t))2)1/2 = (S~ E Ix  (s) x (t) j # (d s) # (d t))*/2 
<(~  IIX(s)ll [IX(t)l[ #(ds) #(dt)) 1/2 =~ [IX(t)[I #(dt). 

Proof of  Lemma 2.1. The inclusion on the left of (5) is a particular case of Lemma 2.2 
below, (see Theorem 5 in [19] or Satz 6.5.10 in [15] for a direct proof in the non- 
random case), while the one on the right follows (in the random case and hence in 
general) from the fact that, by Minkowski's inequality and Fatou's lemma, 

liminfh-d S I]tl(Ch + x)- t l (Ch + x +hxl)]l dx 
h ~ O  

> liminf llh-d ~ l ~( Ch + x)--tl( Ch + x + hx~)] dxl] 
h -~ 0 

> ][liminfh-d ~ I t l(Ch+X)-tl(Ch+x+hx~)l  dxll >211~ ~ (x} II. 
h ~ O  x 

To prove that both inclusions are strict, let us first consider the case when d = 1. 
Letting ~1,~2,... be independent random variables with P{~i---1}--=P{~i= 

- 1} -= 1/2, and writing 
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it may be seen that gl = p t/i- 1 and #2 = p qs 1 both belong to 9Jtd\gJ~a, and that #1 is 
locally invariant while #2 is not. Examples for general d and u may be constructed 
from/~l and/~2 by forming products with Lebesgue measure on R e-1. [] 

In the next two lemmas, we shall prove two closure properties of gdl} ") and its 
stochastic counterparts which will be of constant use in subsequent sections. 

Lemma 2.2. Let ~ and r 1 be random measures on R e satisfying (3), and suppose that ti 
4. Then ~ is first (second) order locally u-invariant whenever ~ is. 

Proof We give a proof in the second order case only, the first order case being 
similar but simpler. For simplicity of writing, assume without loss that ~ is 
supported by some fixed bounded set. We may then take B = R d in (3) and (4). 

First we prove that, if 0 < t/n < t/with ~In v ~r/a.s., then 

lim limsup h-a~ Htl(Ch+X)--rl,(Ch+x)H dx=O. (6) 
n ~ c o  h ~ O  

To see this, note first that, in the proof of(6), h may be restricted to the sequence 2-k, 
k~N, since if 2 -k-1 <h<=2-k-h ', 

h-e ~ Hrl( Ch + X)--tl,( Ch + X)] r dx<Zeh ' -e  ~ Htl( Ch, + x)--rl,( Ch, + x)H dx. 

But for such h, Minkowski's inequality shows that the expression on the left of(3) is 
non-decreasing as h --, 0. Letting e > 0 be arbitrary, and writing c for the limit in (3), 
it follows that, for h = 2  -k small enough, 

h-d~ II~/(Ch + x)il d x > c - a  

By dominated convergence, we hence obtain for this particular h and for n large 
enough 

h-~ ~ II~( Ch + x)O I dx > c -  ~. 

Using the monotonicity once more together with the fact that t/, <t/, we get 

lim liminfh -a ~ ]lr/n(Ck +x)11 dx = c. (7) 
~ o 0  h ~ 0  

From the inequality t/,__<q it is further seen that, for any BEB, 

II~lB--tl.Bl{ 2= [Ir/BIj2 + [Ir/.B fl 2 -2ErlB~I.B<-_ Ilr/Bll 2 -  IIr/.B II z 

=(llqBtl + I]~,Bll)(llqU[I- Ilt/,BI[)<2 IIr/Bl[ (][r/B[I- I)I, BI0), 

so by Schwarz' inequality 

h-a ~ Ilrl(Ch q- x)--rl,(Ch + X)] [ dx 

< ] ~ h - d  ~ I)l( Ch + x)ll l/z(llq( Ch + X)[I - II~,( Ch + X)O])l/N dx 

<l /2 (h-dy  II~(Ch +x)ll dx) 1/2 

�9 (h-df~ !l~(Ch+X)i[ d x - h - d ~  II~,(Ch+X)ll dx) ~/2 
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By (7) and the definition of c, the expression on the right tends to zero as h = 2 -k -* 0 
and then n -*  o% which completes the proof of (6). Note in particular that we may 
take as t/n a random measure with uniformly bounded 4-density. By Minkowski's 
inequality, we may thus assume from now on that t/< 4. 

Let us now consider any fixed bounded measure # on R d. We shall prove that the 
class ~ of rationally valued simple functions over the set of rectangles determined 
by rational coordinates is dense in LI(#). Since every element in LI(#) may be 
approximated from below by simple functions, it suffices to show that every 
indicator function may be approximated in L~ (p) by elements in c6. But this is easily 
seen by a monotone class argument. In particular, any function in L 1 (#) which takes 
values in the interval [0, 1] may be approximated by ~-functions with the same 
property. Let f l , f2  . . . .  be an enumeration of all such functions in ~. 

Applying the last result to Ll(4) for any fixed outcome of 4, it is seen that 
i n f v a r ( ~ - s  ~)=0 a.s., so writing t/n for the first measure among fk ~, k = 1, . . . ,  n, 

n 

minimizing var(~/--fk O, we get 

lira var (~--~ , )=0 a.s. 
n ~ o o  

Here it should be noticed that the minimizing index k is measurable, and hence that 
t/~ is a random measure for each n. Write ~n = ~ - ] tl - t/. ], where I t / -  t/n ] B - var (B 
- B  t/n), and note that (6) applies to 4 and ~., yielding 

lira limsup h-e  ~ II tl (Ch + X) -- tl. (Ch + X)LI d x 
n ~ o o  h ~ 0  

< lira limsup h-d~ l l~(Ch+x)--~,(Ch+X)N dx=O.  
n ~ o z ~  h ~ 0  

Hence, by Minkowski's inequality, it suffices to prove (4) with t/replaced by t/, for 
fixed n. By the definition of q,, it is then enough to show that I ( satisfies (4) for any 
fixed rectangle I. But this follows from the fact that ~ has a.s. no mass on any fixed 
flat which is not u-invariant. (To see this, apply the right-hand inclusion in 
Lemma2.1 to a suitable projection of ~.) [] 

To state the next closure property, say that a transformation f :  Re -* R  e is 
locally affine, i f f  has a unique inverse f -  i, and i f f  and f -  i have continuous first 
order partial derivatives forming matrices with non-zero determinants. We shall 
further say, for brevity, that f is u-preserving, if the class of u-parallel flats is 
invariant under f 

Lemma 2.3. Let  f :  R e -+ R  e be locally affine and u-preserving. Then the random 
measures tl and t l f - 1  are simultaneously first (second) order locally u-invariant. 

Proof  We shall only consider the non-random case, the random case being similar. 
Hence suppose that/~egJ~l n). We have to verify that 

lim h-a ~ I#f-i(Ch+X)--I~f-l(Ch+hV+x)[ dx=O,  
h ~ O  C 

where v is anyone of the vectors x~, . . . ,  xk, while C is an arbitrary compact set. The 
Jacobian of f being bounded, it suffices to prove that 

lim h -d (~ l g f -  a (C h +f(x) )  - g f  - l (C  h -t- h v +f(x))  ] dx  = 0, (8) 
h ~ O  C' 
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where C ' = f  -~ C. Fix an e>0,  and let xoeC' be arbitrary. Let fo be the affine 
transformation with the property that the values at x 0 o f f  and its first order partial 
derivatives coincide with the corresponding quantities for f0- Define 

C'h=fo I(Ch+f(Xo))--Xo, v ' = h - l [ f o l ( h v + f ( X o ) ) - X o ] ,  

and write (# C~,)~ h for the set of points at a distance < a h from 0 C~,. Since f is locally 
affine, the relations 

f -I(Ch + f(x))A(C'h + X)C(c~C'h)~h + X 

and 

f -  1(C h +h v + f(x)) A (C'h + hv' + x) c(O C'h)~h + hv' + x 

hold for all x in some neighbourhood B of x o and for all sufficiently small h > 0. 
Letting {B~} be a finite disjoint covering of C' by sets B of this type, we get 

[ h-a S II~f- l(Ch +f(x)) - - # f -  l ( c  h + h v +f(x))l dx 
C' 

- h - d 2  S I~(C'h + x)-~(C',, +hv' + x)ldx[ 
i Bi  

<-_h-dF ~ [~((OC'h)~h + X)+ #((~?C'h)~h +hv' + x)] dx 
i Br 

i i 

as h ~ 0 (provided # ~B~--- 0), where Vh, ~ denotes the uniform distribution over the 
set - ( 0  C'h)~h. Since moreover 

l i m h - d ~  I I#(C'h+X)--#(C'h+hv'+x)]dx=O 
h ~ O  i Bi 

by (2), it follows that the left-hand side of(8) is bounded by e# C'. To complete the 
proof, it remains to let e--* 0. [] 

We proceed to introduce still another notion of asymptotic invariance. The 
random measures th, t ~ T, are said to be first (second) order asymptotically u- 
invariant, if for all f e ~ ( R  d) and x~u,  

limsup I[q, flI < ~ ,  lira ] l t l J - (6~ .  rh)f[] =0.  (9) 

(The same definition applies to arbitrary subgroups u.) Under (9), the family {tlt } is 
automatically relatively compact in distribution as t--, oo, and every limit is a.s. u- 
invariant. The following simple lemmas will be useful below. 

Lemma 2.4. Let 0 be a bounded random element in R d which is independent of r h for 
each t. Then r h and 6 o * t h are simultaneously first (second) order asymptotically u- 
invariant. 

Proof. If t/t is first (second) order asymptotically u-invariant, then so is 6~ �9 t/t by 
Fubini's theorem and dominated convergence. To prove the converse, assume 
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without loss that the support of P O- ~ contains the origin, and suppose for k = 1 or 2 
that 6~ * t h is k-th order asymptotically u-invariant while t h is not. Then (9) fails for 
some f and x, so we get for some sequence t,--+ oe and some e > 0  

Iltl,.f-(ax,tl,n)fll>e, n e N .  

Writing f y ~ f ( "  -y ) ,  it is further seen from the Lk-boundedness of qt and the 
uniform continuity of f that 

I I , l ,(f-L)l i< 4, II(<L*,It)(f-f,)ll< 4, 

for all t and for all y belonging to some neighbourhood G of the origin. Hence, by 
combination, 

N (3,  * 17t. ) f -  (by + ~ * q,.) f N > ~, h e N ,  yeG.  

But by Fubini's theorem, this yields the contradiction 

>~-(P{OeG})llk>O, n s N .  [] 11(~5~ * ~,.) f -  (6S+ x * rlt,)f II = 2 

Lemma 2.5. Let vl, v2, ... be probability measures on R ~ with uniformly bounded 
supports and such that v , - - ~  ~$o. Then ~It is first (second) order asymptotically u- 
invariant iff v, * tlt is so for every n. 

Proof. Since clearly 

(6 x * (v, * rh) ) f ~ (6 x * r/t) (v, * f ) ,  

the "if assertion" follows from the L 1 (L 2) boundedness of rlt and the fact that v, * f 
tends uniformly to f for all f e  z ,  while the "only if assertion" holds since f e  z 
implies v , * f e ~ ,  n~N.  [] 

We conclude this section with a closer study of (3). 

Lemma 2 .6 . / f  (3) holds in L2, there exists a measure 1It/L] ~gJ~ satisfying 

ILtlLlf=limh-d~ [[tl(Ch+X)H f ( x ) d x ,  f ~ ,  (10) 
h ~ O  

and moreover, I[tlf [I -<- lit/[If holds for any measurable f >= O. Finally, diffuseness of 
IIt/N implies that tl is a.s. diffuse. 

If tl ~ # for some non-random measure/~ e 93l and if Y= dud#,  then it is easily 
verified that I)11]~/~ with density HYH. This shows in particular that (10) is 
equivalent to Lit# * Vh]k v > [IrllL ' where v h denotes the uniform probability measure 
on C h. If Ikt/[[ exists and is diffuse, we shall say that 17 is L2-regular. Note that second 
order local u-invariance implies Lz-regularity for any fixed u. We finally point out 
that Lemmas 2.1-2.3 have obvious counterparts for Lz-regularity in place of local 
invariance. 
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Proo f  o f  Lemma 2.6. Let { C,j} be a null-array of partitions of R a into cubes of side 
2-", and let ~ denote the ring of all finite unions of cubes C,;. Further introduce, for 
fixed n, the measure #, sgJ~ assigning mass Nr/Cnfl to the midpoint (say) of Cn~ for 
all j. By Minkowski's inequality, the sequence /~, U is then eventually non- 
decreasing for every fixed U ~ ~ ,  and it is easily seen from (3) that the limit is finite. 
A simple approximation then shows that/~,,f  converges for each f e ~ .  But this 
means that #, ~ ~ some # e 9)1. It may further be seen by a simple approximation 
argument based on Minkowski's inequality that the right-hand side of (10) is 
asymptotically equal t o / ~ , f  as h--*0 and n---~ oo. Thus (10) holds with II~ll =~. 

This relation being valid for any choice of origin in R d, we may assume the C,j to 
be I[q N-continuity sets. For  any U ~ ql we then obtain #,, U ~ I/t/]1 U, which implies 
II t/U ][ < ]l r/I] U by Minkowski's inequality. Now the class ~ of N-sets satisfying the 
latter inequality is clearly closed under monotone limits, so by a standard 
monotone class theorem (A2.2 in [,10]) we get @=N.  Thus, by Minkowski's 
inequality,  I/tlfll < lit/l[ f holds for simple functions f > 0  over ~,  and the final 
extension to arbitrary measurable functions f > 0 is accomplished by monotone 
convergence. 

The last assertion follows easily from Cebygev's inequality and Theorem 2.5 
in [10]. []  

Added in Proof As will be shown elsewhere, lit/][ exists ifft 1 <E~ 1 a.s. and moreover [Idq/dEtll [ is locally 
Et/-integrable. In this case, q is second order locally invariant iff Et/ is locally invariant. 

3. Conditional Intensities 

Let ~ be a simple point process on R e, and denote by ~ the conditional intensity of~, 
as defined in [12]. As shown by Papangelou [16, 17] and myself [12], a.s. 
invariance of ~ in some fixed direction implies that ~ is a Cox process directed by ~. 
It is actually enough to require ~ to be h-invariant for any fixed h E Ra\{0}, provided 
that ~ satisfies the regularity condition (Z) in [12]. Define r/ as in [12], w 3. 

Lemma 3.1. Suppose that ~ satisfies (Z), and let Z be an a.s. h-invariant random 

measure on R a. Then ~=X a.s. i f f  ~ is a Cox process directed by Z. 

Proof. Suppose that ~ is a.s. h-invariant, and assume without loss that h 
=(1, 0, ..., 0). Let #* be a point process on [-0, 1) x R d obtained from ~ by attaching 
independent marks to its atoms according to the uniform distribution on [-0, 1), and 
note that ~* has conditional intensity 2 x t/, where 2 denotes Lebesgue measure on 
[,0, 1), (cf. the proof of Theorem 4.2 in [,12]). Let us further define the mapping f of 
[0, 1) x R a onto itself by 

f ( u ,  x 1 . . . .  , x e ) = ( x l - [ , x l ] ,  [ , x l ]+u  , x2, . . . ,  xe) , u~[,0, 1), x 1 . . . . .  xa6R ,  

and note that ~ * f -  1 has conditional intensity (2 x ~/)f- 1. Now the latter random 
measure is clearly a.s. x : invar iant ,  and so we may conclude from Theorem 5.1 in 
[,12] that # * f -  1 is a Cox process directed by (2 x q ) f -  2. Since f is 1 - 1, it follows 
that ~* is a Cox process directed by 2 x 7, and so # is a Cox process directed by t/, 
and we get ~=q. The converse assertion is obvious. [] 
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The remainder of this section is devoted to some continuity results related to 
Lemma 3.1. Suppose that T = N or R § and let ~t, t ~ T, be simple point processes on 
R d with conditional intensities ~t, t e T. Given any random measure ~, we write ('for 
a Cox process directed by ~. We further denote by ~t the completed remote o--field 
of ~t, i.e. the P-completion of ~ a(B e it). The t/t are defined as in [121, w 3. 

Ba.r 

We first improve and extend Theorem 5.2 in [121: 

Lemma 3.2. Suppose that the {t satisfy (X), and that {t--+some ~ in L1, where 
is a.s. diffuse, ~t-measurable for each t and such that { Ra=O or c~ a.s. Then i t  a , ~. 

In the applications we have in mind, it is the state (in the phase space) of our 
particle system at time t, and it is assumed that it is h-stationary for some 
heRa\{O}.  Suppose we can show in this case that {t--* ~ in L t for some a.s. h- 
invariant random measure ~. The measurability hypothesis of the lemma is then 
fulfilled, since every ~-event A is it-measurable for arbitrary t and as such a.s. 
invariant under h-shifts of it. Hence it can be approximated by sets in o-(B c {t) for 
any fixed B e N, which implies that A e ~,. 

Proof First suppose that { is non-random. Since { is diffuse, the atom sizes of 
~: must tend to zero, so t / t - ~ t ~ 0  by (3.3) in [121, and we get t / t - ~  in L 1 
since E t h = E {t--+ ~. Defining {* by randomization as above and using Theorem 5.2 

in [121 it follows that ~* d ~ ( ~ ) ,  and so ~t d ,~, as asserted. 
In the general case, note that the assumed convergence implies that 

E [ l ~ , f - ~ f [ l ~ ] - ~ 0  in L~, f ~ .  

Thus, given any sequence T' c T tending to infinity, there exists some subsequence 
T"  such that, for fixed f e  ~ ,  

E [ l ~ f - g f l  ] C]--,0 a.s. ( t6T") .  

Since this can be made valid with a common exceptional null-event for any 
countable family of functions f s ~ ,  and hence for all f e J ~ ,  we may assume that 
{t--+{ in L,  ( t e T " )  a.s., conditionally on ~. It may further be seen from the 
measurability assumption and from the definition of conditional intensities as a.s. 
limits that {, remains a.s. the conditional intensity of it even after conditioning on ~. 
Applying the assertion for non-random ~, we may then conclude that {t a ~ (` 
( te  T") a.s., conditionally on ~, and by dominated convergence, this implies the 
corresponding statement for the unconditional distributions. Since T' was 
arbitrary, it is seen from Theorem 2.3 in [11 that the convergence remains valid 
along T. [] 

We shall also establish a condition for {, to be asymptotically Cox. 

Lemma 3.3. Suppose that the it satisfy ( Z) and that t h is first order asymptotically h- 
invariant. Then {it} is relatively compact in distribution, and all its limit points are 
Cox processes directed by h-invariant random measures. 

Proof. By assumption, E i t B =  E(,B is bounded for every B e N ,  so the relative 
compactness of {it} follows by Lemma 4.5 in [10]. Assume that it a , ;g as t--+ oo 
along some sequence. In proving that )( is Cox, we may assume that the t h are a.s. 
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diffuse, since we may otherwise consider the corresponding randomized point 
processes ~* defined in the preceding proofs. In that case, t/t solves the integral 
equation in w of [121, i.e. 

E[dtB; ~ t - ~  .... ~ M ] = E [ t h B ;  itEM], B ~ ,  MEJV', t~T, 

where ~t,B denotes the position of a randomly chosen atom of B it, if any. Hence, 
writing B'= B + h, the asymptotic invariance of r/t is seen to imply 

= I E [( thB-rhB');  ~,~M]I<EItI, B-rI, B'I-~O, (1) 

at least for rectangular B. 
Now suppose that Z ~SB =Z 0 B' = 0 and 7 ~ M  a.s. Then the integrands on the left 

side of( l)  tend in distribution to the corresponding expressions with Z in place of~ t 
and with ~B and ~,, in place of % ,  and ~, B' respectively, "c B being the position of a 
randomly chosen atom of B Z. If moreover M c {#: #(B u B') < k} for some k < 0% 
we hence obtain from (1) by uniform integrability 

E[zB;  Z-cS~B eM]=E[zB ' ;  Z-cS~, ~M], 

or equivalently, since EZ exists by the Fatou type lemma of weak convergence 
theory [1], 

S P { Z , - 6 , ~ M }  Ex(ds)= S P{Zs-CS,~M} Ez(ds), (2) 
B B+h  

where Z, is distributed according to the Palm distribution ofz  relative to the point s, 
(cf. [10]). By monotone convergence, the boundedness assumption imposed on M 
may now be removed, and (2) may then be extended to arbitrary B ~ N and M ~ 
by a standard monotone class argument. 

By the a.e. uniqueness of Palm distributions, it is seen from (2) that P (Z, - CSs) - ~ 
is a.e. h-invariant in s. Since moreover E)~ is h-invariant by (2), it follows from 
Lemma4.3 in [11] that Z is a Cox process of the stated form. [] 

For  our needs in w 6, we extend the last two results to the case of random indices. 
For this randomization to make sense, we add the assumption that the measure 
valued random process ~t, t m T, be measurable. 

Lemma 3.4. Let rl, r~,, ... be T-valued random variables independent of {~t}. Then 
Lemma 3.2 remains true with ~t ~ ~ and ~t ~ C replaced by ~n--~ ~ and ~ ~ , 
respectively. Similarly, the conclusion of Lemma 3.3 remains true for ~ ,  provided the 
it are Ll-bounded and satisfy (Z) while ~ .  is first order asymptotically h-invariant. 

Proof. In case of Lemma 3.2, we may proceed as in the proof of that lemma to 
reduce to the case of non-random {z,} by conditioning on {~,} (rather than on ~). 

To prove the randomized version of Lemma 3.3, let p be a metrization of the 
weak topology in the space of point processes on R e, and denote by ~g the class of 
Cox processes on R e directed by h-invariant random measures. Since the sequence 
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~ is Lcbounded and hence relatively compact in distribution, and since more- 
over ~ is closed (cf. Exercise 4.5 in [10]), it is enough to prove that 

p ( p  -1 ~r~, ~) -~  0. (3) 

For this purpose, consider an arbitrary subsequence N' c N, and proceed as in the 
proof of Lemma 3.2 to show that, for n belonging to some further subsequence 
N" c N', t/r" is a.s. first order asymptotically h-invariant, conditionally on {%}. (This 
is where we need the L a-boundedness of { ~t}.) Thus it follows by Lemma 3.3 that (3) 
is conditionally true, in the sense that 

p (P~n, c~) ~ 0 a.s. (n e N"), (4) 

where Pt = P 471. (Note that p(P~, ~) is a measurable function of t, because of the 
assumed measurability of {it}-) 

We now choose a specific metric of the form 

p(Pr Pr/-~) = Y', 2-klEgk(~)--Egk(r/)l, (5) 
k = l  

where the gk are suitable vaguely continuous and uniformly bounded functionals 
on 9l. This p being bounded, it is seen from (4) that 

E p(P~., W)~0 (neg"). (6) 

Let us further choose a dense sequence {Qi} in ~d, and write Pt (") for the first 
distribution among Q1, ..., Qm minimizing p(P, Q~) for fixed t. Introducing a 
random element ~") with distribution Pt ("), we get by (5) 

EP~. ) = ~ 2 - k l  I-gk({~,,l--gk( ~) ] l  
k 

R(m)~ _--< E~2  -k [ E Eg~(~,,)--~,, z~{")" I "c,,] 1 ~ , , ,  = Ep(P~ n , . . . .  
k 

the measurability requirements needed here being trivially fulfilled. By (6), the 
right-hand side tends to 0 as m ~ oe and then n -~ oo along N". Thus (3) holds for 
n ~ N", and since N' was arbitrary, it remains true for n e N. [] 

We finally remark that the assumption that (Z) be fulfilled, which was made 
throughout this section, can usually be removed by considering instead of the 
processes ~, their p-thinnings ~'t, which will automatically satisfy (Z), provided that 
p < 1. Moreover, it and ~' will simultaneously converge in distribution to Cox t 

processes. A similar remark applies to the assumption that all point processes 
involved be simple. (Cf. the proof of Theorem 4.4 below.) 

4. Results in Case of Local Invariance 

The remainder of the paper will be devoted to line processes in R d, where d is a fixed 
integer > 2. By a line process we mean a point process ~ on the space L of lines in R d, 
(cf. E7, 11, 16]). Already this definition requires a parametrization of L, the most 
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convenient one for our purposes being the phase representation [13, 14], according 
to which a line is represented by its point of intersection q with a fixed hyperplane u 
(i.e. a ( d -  1)-dimensional affine subspace of Rd), and by its direction p, the latter 
being defined as the rate of change in q when u is moved in the direction of its 
normal. (Note that lines parallel to u have no such representation. This restricts the 
choice of u.) In this way, ~ may be regarded as a point process in R 2(a-  1). We shall 
always assume that ~ is a.s. simple and locally finite, the latter meaning that the set 
of lines going through a bounded region always carries finite mass. 

Regarding ~ as a point process, it is clear how to define the corresponding 
conditional intensity ~, and further how properties of ~ like a.s. invariance, first 
order asymptotic invariance, and La-convergence towards an a. s. invariant random 
measure enable us to draw conclusions about 4, using the results of w 3. Since 
conditions ensuring asymptotic invariance etc. have independent interest (cf. w167 2.4 
and 2.6 in [7], and also [11]), we shall forget about the connection with (discrete) 
line processes, and consider arbitrary (locally finite) random measures t /on L. The 
application of our results to line processes is usually left to the reader. In that 
connection, note that strict stationarity of ~ carries over to ~, and further that E 
= E~ whenever E ~ 9 ) I ,  (cf. Theorem4.2 in [12]). 

As in [ 11], we shall write ~b k for the set of k-dimensional linear subspaces of R e, 
and put ~b = u ~k" Similarly, Cbk(U ) and (b(u) will denote the corresponding sets of 
subspaces ofu ~ 4~. For any x eL,  we write rex for the element in ~1 which is parallel 
to x, and refer to ~x as the direction ofx.  We assume once and for all that u ~ ~d- 
and v ~ ~b, and further that H is a closed subgroup ofR d. The letter y is reserved for a 
unit vector in R d perpendicular to u. Convolutions correspond by definition to 
addition in the basic space R d. Note in particular that convolution by 6 x is 
equivalent to translation by x. Otherwise, measures on L and ~b should usually be 
thought of as defined on the phase space R 2(d- ~) and its p-projection R d- ~. This 
applies in particular to the notion of local invariance. Note that, by Lemma 2.3, the 
choice of reference plane u is immaterial for the definition, as long a s / ~ -  ~ u =0  or 
t / ~ - l u  =0  a.s. respectively. In the general case, local v-invariance is by definition 
equivalent to local x-invariance for any set of lines x spanning v. 

If t/is strictly H-stationary for some H spanning u, then the a.s. u-average 0-, oft/ 
exists in the sense of the pointwise ergodic theorem (though it may be infinite), and 
it is easily seen that F/, = E [t/I Ju], where J ,  is the G-field of all u-invariant t/-events. 
In case of L2-stationarity, the corresponding L2-average 7/' exists according to the 
mean ergodic theorem [5], and F/' u equals the projection of t /onto  the Hilbert space 
spanned by all u-invariant linear t/-functionals. Since these averages must coincide 
a.s. if both exist, we shall henceforth use F/, as a common notation. 

Most results for general random measures t /on L will be given in two versions, 
one involving strict stationarity, first order local and asymptotic invariance, strong 
mixing, Li-convergence , etc., the other involving the corresponding L2-concepts. 
In order to avoid repetitions, and also to stress the analogy between the two cases, 
we state both versions together with the modifications in the L2-case within 
parentheses. As in w 2, it will be convenient to use ]l" I] as a common notation for the 
norms in LI (P  ) and L2(P ). Two further conventions are to write p for Euclidean 
distance and 2 for Lebesgue measure. 

The remainder of this section is devoted to results obtainable under local 
invariance conditions. Our main result for this case is given first: 
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Theorem 4.1. Assume that v c u = H(H). Further suppose that r~ is strictly (second 
order) H-stationary, and such that ( B rl) ~z- 1 is first (second) order locally v-invariant 
for every B ~ N(L). Then f x .  r 1 is first (second) order asymptotically v-invariant as 
p(x, u)--~oQ. In the second order case we have even fx.17~F1, in L2, provided that 
v=u and r /~z-lu=0 a.s. 

Note that, by Lemma 2.2, the conditions of local invariance, here and in similar 
cases below, need only be verified for a fixed covering class of open sets B E ~(L). 

Proof. If `9 is independent of r/and uniformly distributed over the quotient group 
u/H, then fa * r/becomes strictly (second order) u-stationary. (Here fs �9 r /may be 
defined in different ways, but our statement remains true for any reasonable choice 
of definition.) To see this, it suffices to consider the case d = 1, to take H = Z  and to 
let ,9 be uniformly distributed over the interval [0, ll .  If in this case r/is strictly H- 
stationary, we get for any non-negative measurable functional f on 9Jr(L) and for 
any r E R, 

Ef(f r  + s �9 r/) = E E [f(f~+a �9 t/)lO ] = E E [ f ( @  �9 r/) 1̀ 9 ] 

= E E [ f ( 6 ~  �9 r/) 1`9] = E f ( f s  �9 r/), 

where `9' _-- r + 9̀ - [r + `9], which is seen to be distributed as `9, independently of t/. 
Thus fs * r/is indeed strictly stationary. In the second order case, we may apply the 
same argument to functionals f of the form 

f (#)=(#B)(# C), B, C ~ B(L).  

Next note that, by Lemma 2.2, the first (second) order local v-invariance carries 
over from t/to f~ * r/. Hence, if the first assertion of the theorem is known to be true 
in the case H =u,  we may conclude that f~+x * t/is first (second) order asymptoti- 
cally v-invariant, and by Lemma2.4, this remains true for fix* r/. A similar 
argument applies to the second assertion. We may thus assume from now on that H 
= u. Under this assumption, it is further clear from the stationarity of t /and the 
invariance of q, that the assertions need to be proved only for x of the form t y with 
t>0 .  

Now suppose that the theorem has been proved for r / ' - (~ -1  u)t 1 --0 a.s., and 
consider the general case. We may then apply our theorem to the projection onto u 
of the restriction r/'B=(u+By)rf for arbitrary B E ~ ( R )  to conclude that t/' is 
asymptotically first (second) order u-invariant under u-translations. Since it is 
further strictly (second order) u-stationary by assumption, it is in fact a.s. u- 
invariant, and this implies the desired asymptotic invariance of fry * r/'- We may 
thus assume without loss that r / ~ - l u - 0 ,  which enables us to use the phase 
representation based on u. 

Let v be an absolutely continuous probability measure on R d - 1 with density f ,  
interpret v as a distribution on u, and write for brevity (v x fo)* t/= v * r/. Then 
clearly 

(v .  r/)(B x C)=~r/qCdq, B, CeN(Rd-1) ,  
B 

(1) 

where {r/q} is the measurable, ~l(Rd-1)-valued and strictly (second order) 
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stationary random process on R d- ~ given by 

rlqC= ~ f(q-s)rl(dsxC), q~R ~-~, C~M(Rd-~). (2) 
Ra-1 

By a simple geometric argument, 

{ -"+qt (6t,*v*rl)(BxC)=(v*17) (q,p): pc  c~C 
t 

and similarly for g)ty+~* v.q, s~v, so by (1), Minkowski's inequality and the 
stationarity of {~/q}, 

Ir * * 7 ] ( 8  x c) l l  

= C 
( =<S Crlq -Crlq t ] dq 

=~ Cr/o ( - B + ~ q ) - c t / o  ( -B+ts+q)  dq. (3) 

Now it is seen from (2) that % is first (second) order locally v-invariant, and hence so 
is C~/o on account of Lemma 2.2. Thus the right-hand side of (3) tends to zero as 
t---, o% at least for rectangular Bi A similar argument shows that 1l(6ty. v * t/)(B 
x C)II is bounded as t -~  oe. Thus 6ty �9 v * r/is first (second) order asymptotically v- 

invariant, and hence so is 3tr * t /by Lemma 2.5, since v was arbitrary. 
Turning to the second assertion, suppose we can show that 

lim sup lIG,*v.*~l-q.)All = 0 .  A=B x C, (4) 

for any rectangles B, C~N(Rd-1), where v~ denotes the uniform probability 
measure over C,. Combining (4) with the fact that, by the second order asymptotic 
invariance, 

lim H(6ty �9 (v.h - vh) �9 t/)A [I = O, 

we obtain 

h>0,  n~N, 

I[(~ty* Vh *~--q.)AII ~ Ir(,N~y*(Vh-- Vnh)*~)Zll + II(~ty. V.h*~--G)AII ~ 0  

as t ---, oo and then n --+ o% and since h was arbitrary, we may conclude that indeed 
3,r * t / - - ,  ~ in L 2. 

Next consider an arbitrary null-array { C,~} of partitions of C, (cf. 1-10]), and let 
p~j ~ C,~ be fixed. Then 

IIGy * ~, * ~ -  rl~)(e x C)ll 

=H(v~*rl-q~){(q,p): p e g  q~B+pt}]l 

< I]~(v~*~l-G)[(B+p,:t) x C,j]/I 
J 

+l{~,(v~*rl){(q,p): p6C,i, q~(B+pt)A(B+p,jt)}l{. 
J 
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By Minkowski's inequality and the second order u-stationarity of r/, the first term 
on the right is bounded by 

2 ll(vr * n - 4.) E(B +p . j  0 x C.i  ] II =Y~ II(Vr * ~--  ~ ) ( S  x C.)IL. 
J J 

If the C,j have diameters < ~, it is further seen that the second term is bounded by 

[12(vr*~){(q,p): p~C/1j, q~(SB)~+pt}[I 
J 

= [I 2 (6ty * v, * t/) [(8B)~ t x C,j] I[ = [l(bty * vr * t/) [(SB)~, x C] I[ 
J 

_-< ]l(g,,* n) [(SB), x C] II, 

where (8 B),  denotes the e t-neighbourhood of the boundary 8 B. As e tends to zero 
for fixed t, the last estimate tends to II(~ty * ~)(SB x C)ll by dominated convergence, 
and this expression must be zero for all t, B and C, due to the second order u- 
stationarity of t/. Thus 

sup 11(6,, * v,. * t / -  g/.)(B x C)II < limsup ~ ]l(v r * t / -  g/.) (B x C.)ll, 
t n ~ o 3  j 

and so (4) will follow if we can show that 

lim sup 2 II(Vr * ~ - - 6 . ) ( B  x C.)ll---0. (5) 
r ~ c o  /I j 

For the sake of brevity, define 

Ynj(s)=rl((B+s) x C,j), s e R  a-l, 

and note that the processes Y~j are second order stationary. Let 2,j be the 
corresponding spectral measures, and write (assuming d = 2) Y,(]) for the component 
of Y~j corresponding to the restriction of 2,j to the set {x: 0 < Ix l < ~}. Then it may be 
seen from the proof of the mean ergodic theorem in [5], w167 X.6 and XI.6, that 

2 N(v~* t/-V/.)(B • C.)H 
J 

= 2  II(vr * I~.)(O) -- f.jll 
J 

= ~ { j  (sin2rcrx l{o}(X)) 2 "11/2 
\ 2~rx  2.j(x)j~ 

< 2  {.~,j(x: 0 < Ix[ <~} +,~,j(x: Ixl >e}(27cre)-z} a/2 
J 

< 2  {11 g~91[ 2 + II Y~jlI2 (2 rcrs)- 2} a/2 
J 

-<-2 tl g~ll +(2~r~) -~ ~ II g, fl. 
J J 

Here the right hand side tends to zero uniformly in n as r --* ~ and then e -* 0, since 
sup 2 II g~ll < ~c by the definition of second order local invariance, and since 

n j 
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moreover  

lim sup ~, I[ g,(;)II = 0 ,  
e~0 n j 

as m a y  be seen by arguing as in the first par t  of  the p roo f  of L e m m a  2.2. This proves  
(5) for d = 2 .  The  p roof  for general  d is similar. [ ]  

We next show that, under  a somewhat  s t ronger  regulari ty requirement ,  the 
convergence assert ion of T h e o r e m  4.1 remains  valid in L 1. 

Theorem 4.2. Suppose that 5g (H)= u, and let # e ~J~(l~bl) be locally u-invariant with 
#)z-~u  =0 .  Further suppose that 11 is strictly (second order) H-stationary and such 
that Y~=-d(Btl)'~z-1/d# exists a.s. and satisfies ~ [IYB]I d # <  oo for every BeN(L) .  
Then gJx.tl-+q, in L 1 (L2) as p(x,u)-~co.  

Proof. For  arbi t rary  BeN(L),  it is seen f rom Minkowski ' s  inequali ty and Fubini ' s  
t heorem that  

h-d~ I[(Btl)%-l(Chq-x)ll d x = h - d 5  [I 5 YB(t)g(dt)ll dx 
Ch+x 

< h - a ~ d x  ~ [IgB(t)ll#(dt)=h a~l[g~(t)ll#(dt) ~ dx 
Ch+x --Ch+t 

=~ I1 gB(t)]l #(dt) < oo. 

Hence it follows f rom L e m m a 2 . 2  that  (Bt/)zc -~ is first (second) order  locally u- 
invariant.  Since B was arbi trary,  the assert ion in the second order  case now follows 
f rom T h e o r e m  4.1. 

In the first order  case, note  first that  the assert ion need only be proved  for v �9 ~/in 
place of  ~, where v is an arb i t ra ry  absolutely cont inuous probabi l i ty  measure  on u. 
Since v * t /also fulfills the condit ions imposed  on ~, we m a y  hence assume from now 
on that  r /~  2 x # a.s. By a simple t runcat ion  argument ,  we may  further assume that  
Y= dtl/d(2 x #) is a.s. bounded  by some constant.  But in this case S II YBI/2 d#  < ~ ,  so 
we m a y  conclude f rom L e m m a  2.2 that  (B r/)rr 1 is second order  locally u- invariant  
for all BeN(L).  The assert ion now follows f rom that  in L 2. []  

A more  direct app roach  in the L1 case would be to reduce to the case when H 
= u while x = t y, and note as in the p roof  of  Theo rem 3.1 in ]-11] that  Y has a strictly 
s ta t ionary  version. Lett ing B, C e ~ ( R  d- 1), we then obtain  

I I ( ~ ,  * vr * ~ - O . ) ( B  • C)II = IIS #(dp) ~ [(v~ * Y)(q, p ) -  Y(p)] d q I1 
C B+pt  

= I[~ #(dp) ~ [(v~ �9 Y)(q +pt,  p) - Y(p)] dq][ 
C B 

< ~ #(dp) ~ [l(v~ * Y)(q+ pt, p ) -  f(p)ll dq 
C B 

= ~ #(dp)~ II(v,. * Y)(q ,p) -  Y(P)I1 dq, 
C B 

and this last expression tends to zero by domina ted  convergence as r -+ ~ ,  since the 
in tegrand is bounded  by 2 I[ Y(q, p)[I. In the L 2 case, the same a rgument  would apply,  
p rovided  we could show that  Y has a second order  s ta t ionary  version. However ,  I 
don ' t  know whether  the last s ta tement  is t rue in general. 
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The L 2 version of Theorem 4.2 was shown above to be a special case of the 
last assertion in Theorem 4.1. In fact, the two statements are essentially equivalent, 
provided that the stationarity of t/is known to be strict. To see this, define 

~s-  [((B +s) x C)t/] n - l ,  ~ (r)=-r-d S ~sds, ~= lim ~ (r), 
C r r ~ c O  

and let { Cnj } be a null-array of partitions of C. By monotone convergence and 
Jensen's inequality, we get 

E var(~ (r) - 7 ) =  E lim ~ [(~(r)-~) Cnj[ = lim ~ II(~ (~)-~) cnj[ll 
n ~ o o  j n ~  j 

__<sup ~ II(~(~-~) C~jll 2. 
n j 

Thus, by (5) and the second order local invariance, 

lim E var(( (r~ -~ )  = 0. 
r ~ o o  

Letting X(s)  denote the total mass of the ~-singular component of (~, and noting 
that the corresponding quantity for ((~ is X (~ =(v~ �9 X)(0), it follows by stationarity 
that 

E X ( 0 ) -  EX(~= lim EX(r~< lim Evar((~r~-~)=0, 

and so ( 0 ~ (  a.s. Thus the ergodic components of t/ satisfy the hypothesis of 
Theorem 4.2. 

From this argument it is further seen that, if the measure t / in Theorem 4.2 is 
strictly stationary and ergodic, then # may always be chosen such that 2 x/~ = f/,. 

The last two theorems yield improvements in various directions of Theo- 
rems3.1 and 3.2 in l-ll]:  

Theorem4.3. Let ~ ( H ) = R  d, and suppose that r 1 is strictly (second order) H- 
stationary and such that (B tl)re- i is f irst  (second) order locally v-invariant for every 
BEN(L) .  Then tl is a.s. v-invariant. I f  moreover 

p { y ( v ,  nx l , rCx2 )=h  ,, "--L2 a.e. t l2}=l ,  (6) 

then tl is a.s. Ra-invariant. 

Proof. First proceed as in the proof of Theorem4.1 to reduce to the case when H 
= R  e. The first assertion is then an obvious consequence of Theorem4.1, (cf. the 
second paragraph in the proof of that theorem). It remains to prove the second 
assertion for v =[= R e. If v ~ qb a_ 1, our assertion follows from Lemma 2.2 in [ 11], since 
by (6) 

P {rcx~u, x s L  a.e. t/} = 1. 

Thus by (6) it remains to assume that v~q~a_ z. 
Consider the phase representation based on some uEO~ a_ ~ with u = v. (By (6), 

any such u is permissible.) Write (q, p)=(q',  q",p', p"), where q" and p" are the 
projections of q and p on v. According to the first part of the theorem, t/is a.s. 
invariant under arbitrary q"-translations, which means that t/= ~ x ). a.s. for some 
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random measure ~ on R e. Interpreting (q', p') as the phase parametrization of the set 
E of lines in R 2 and p" as a mark, ~ becomes a random measure on the space E 
x R e- 2 of R e- e_marke d lines in R 2. (It is instructive to show how ~ may be obtained 

directly as a suitable projection of q.) We shall apply Theorem3.2 in [11] to 
conclude that ~ is a.s. invariant under q'-translations. This will clearly yield the 
asserted a.s. invariance of t/. 

First we need to verify that ~ is strictly (second order) stationary under arbitrary 
translations. In the first order case, let f E ~ ( R  e) and t s R  be arbitrary, and choose 
B ~N(R  e-2) such that 2 B =  1. By Fubini's theorem and the strict stationarity of ~/, 
we get 

(cSty, ~) f = ~ f (q ' -  p' t,p) ~(dq' dp)= ~ f (q ' -p '  t,p) 2(B + p" t) ~(dq' dp) 

= j j f ( q ' - p '  t, p) 1B(q"-p" t) tl(d q dp) = (5,x �9 t/)(f x in) 

-~ ~/(f x 1B)= ~f. ,~B = ~f, 

which implies that ~ is strictly stationary. The proof in the second order case is 
similar. 

It remains to show that the condition 

P {5~0zxl, ~x2) = R 2, (xl, x2)~(E x R e- 2)2 a .e .  ~2} = 1 

in [11] is fulfilled, i.e. that the p'-projections of ~ are a.s. diffuse. Suppose on the 
contrary that there exists with positive probability some aeR with [~-1 {a} >0. 
The latter relation implies (in a self-explanatory notation) that 

2 . t t 

1"1 {(ql,Pl, q2,P2)" Pl =P2 =a} =1=0, 

and from p] = p~ = a it follows that 

5~(v, ~(ql, Pl), 7r (q2, P2))= s (Pl, 1), (P2, 1)) 

=s 1), (a,p~, 1)) = Ae(v, (a, 0, I ) )+R d. 

Thus we get 

P {~2 {(xl, x2): 5e(v,~Xl,Trx2)+Rq 4:0} >0, 

which contradicts (6). [] 
The results for smooth random measures here and below may be combined in 

an obvious way with the results of w 3 to yield corresponding statements for point 
processes on the space of lines, i.e. for non-interacting particle systems. The 
resulting corollaries are omitted. Less obvious is the fact that Theorem 4.2 yields 
the following strengthened version of the Breiman-Stone tfieorem. (Though most 
results in this paper extend to the case of marked random measures and point 
processes, this is the only place where marks are used explicitly. They are assumed 
to belong to some fixed locally compact second countable Hausdorff space K.) 

Theorem4.4. Let 5a(H)=u, and suppose that a system of marked particles on u is 
given at time zero by an H-stationary K-marked point process ~-o with a.s. finite sample 
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intensity. Further suppose that the particles move with constant velocities which are 
chosen independently according to some mark dependent absolutely continuous 
distributions #k, keK, where #k is a measurable function of k. Then the resulting 
process ~ of positions and associated marks and velocities converges in distribution as 
time tends to infinity towards a Cox process directed by ~ .  

The main improvements consist in the consideration of the process of both 
positions and velocities rather than that of positions alone, and further in the 
allowance for the velocities to depend on the relative positions of neighbouring 
particles. As will be seen from the proof, it is enough to require absolute continuity 
of the #k with respect to some fixed locally invariant measure. To attain asymptotic 
Cox structure, local invariance is then needed in one direction only. 

Proof. By Exercise4.5 in [101, we may replace ~o in our argument by a 
corresponding p-thinning 4; for some pe(0, 1). We may further attach independent 
marks to the atoms of 4~, e.g. according to the uniform distribution on [0, 11, and 
consider the resulting point process 4~ on u x K x [0, 11. This simplifies our proof, 
since 4~ is automatically a.s. simple and satisfies the conditions (I;) and (~*) in [121, 
(cf. the proof of Theorem 4.2 in [12]). For the sake of brevity, we assume that 40 
itself has these properties. We may further assume that E 40 is locally finite, since we 
may otherwise consider the ergodic components of 4 separately. 

Writing (o for the conditional intensity of ~o, the conditional intensity of 4 
becomes 

~B=~o(dq,  dk)#k(dp)-~*B , B e N ( L x K ) .  
B 

(7) 

Anticipating the proof of (7), we get 

(B~)Tc -1  C=S(o(dq, dk)(C#k)(dp) , BE~(LxK) ,  CeN(Rd-1), 
B 

and since #k is absolutely continuous for every keK, it follows that (B~)n-1 is a.s. 
absolutely continuous for fixed B e ~ ( L x  K). By Lemma2.2, the (B()n-1 are then 
first order locally invariant, so Theorem 4.2 applies, yielding b,y �9 ~ ~ ( ,  in L,.  Since 
(u = ~u, the asserted convergence may now be inferred from Lemma 3.3. 

To prove (7), let us first assume that d = 2. Since (Z) and (Z*) hold by assumption, 
it is seen that (0 coincides with the solution t/o of the integral equation in w of [121 
(with 4 replaced by 40). In proceeding from 4o to 4, we introduce an intermediate 
process 4' to be defined like 4, except that the #k are replaced by Lebesgue measure 
on [0, 1]. Putting 

f(p,k)=sup{x:#k(--oo,xl<=p}, pe[0, 11, keK, 

we then define ~ = ~ ' f  - 1. For this construction to make sense, we have to prove that 
f is jointly measurable in p and k. Taking this for granted, it is easily verified that 
has the desired distribution. By the remark concluding w 3 in [12], it is further seen 
that ~ has conditional intensity 

( =  E E ~ ' f - l l ~ f - 1 ]  = E[~*I4] = (  * a.s., 

in conformity with (7), (~' being the conditional intensity of 4'). 
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Since f is increasing and right continuous in p for fixed k, the desired 
measurability will follow if we can show that f (p,  k) is measurable in k for fixed p. 
But this follows from the assumed measurability of {#k} and from the fact that, by 
the diffuseness of #k, 

{k:f(p, k) < t} = {k: sup {x: #k( - oo, x] <p} < t} = {k: #k(-- OC, t] > p}. 

For d > 3 we may proceed inductively, considering one component  at a time of 
the rate vector p = (Pl, .--, Pd- 1). Thus, after m steps, we choose k' = (k, Pl . . . .  , Pro) as 
our new mark and replace #k by its conditional distribution #~, given that the first m 
components ofp are equal to Pl, ..., Pro. By the measurability of#k and the definition 
of conditional distributions, the measure #~ will automatically be measurable in k', 
and so the preceding argument applies at each step, eventually leading to (7). []  

By a similar argument, the main result of Jacobs in [-9] follows (in a 
strengthened form) from our Theorem 4.1. Indeed, the present approach shows that 
most of her assumptions are redundant. 

We conclude this section with a different kind of extension of the Breiman-S tone 
theorem. It turns out that the conclusion of asymptotic Cox nature remains valid 
under the weaker assumption of diffuseness of the velocity distribution. The 
hypothesis of local invariance is only needed to ensure that the limits are mixtures 
of stationary Poisson processes. 

Theorem 4.5. Let S (H)= u, and suppose that a particle system on u is given at time 
zero by an H-stationary point process ~o with a.s. finite sample intensity. Further 
suppose that the particles move with constant velocities which are chosen inde- 
pendently according to some diffuse distribution #. Then the resulting process ~ of 
positions and associated velocities is relatively compact in distribution as time tends to 
infinity, and the limit points are all Cox processes. 

Proof. By an obvious truncation argument, it is enough to prove the theorem for 
processes with bounded sample intensity. Let us first assume that ~o is u-stationary. 
Then E ~ becomes invariant under arbitrary translations (cf. Lemma2.2  in [-11]), 
which implies in particular that bty. ~ is relatively compact. 

Next, given ~0, let re1, ~z2, ... be the conditional probabilities for the lines of 
(when regarded as a line process on R d) to pass through B t -  B -  t y for some fixed 
Be~(Rd). Since # is diffuse, the re; must be bounded by some constant Pt which tends 
to zero as t - ,  oo. Now it follows from item 1.5.8 in [,15] that the restriction of ~ to 
the set L(Bt) of lines hitting B, differs in variation from a Cox process by at most 

2 E~rc  2 <2p ,  E ~ ~z; = 2p t E E [~L(Bt) I r =2pt E eL(Bt) 

= 2 Pt E (c~ty �9 4) L(B) = 2 Pt E ~ L(B) ~ O. 

Hence, if cSty �9 ~ a ~ some ~ as t ~ oc through some sequence, then L(B) ~ must be a 
Cox process for every B, which implies the asserted Cox structure of ( itself. 

When ~o is only known to be H-stationary, we consider the u-stationary process 
~* obtained from ~ by randomization as in the proof  of Theorem 4.1. We may then 
argue as before, except that the invariance of E~* plus the estimate ~B<~*(B 
+u/H), Be~(L) ,  replace the invariance of E~. [] 
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5. Results under Mixing Conditions 

Our present aim is to show that results similar to those ofw are obtainable under 
suitable mixing conditions in place of the previous local invariance assumptions. In 
addition to the general assumptions and notational conventions introduced in w167 1 
and 4, we shall need some further definitions. 

A random measure t /on  L is said to be second order v-mixing, if 

limsup E~BI~B2 _<1 (0/0 = 1), 
p(~vBl,~B2)~o~ Er/B1 Et/B2 - 

n v being the v-projection operator in the phase space. (In this connection, v is 
regarded as a sub-space of the space of positions rather than velocities.) We shall 
further say that r/is strongly v-mixing, if 

limsup sup I P(A 1 caA2)-  PA 1PA2I =0  
r ~ o o  A 1 , A 2  

with the supremum extending over all pairs of events A 1 and A 2 which may be 
defined in terms of B i t / a n d  Bat / for  some B1, B 2 ~ ( L  ) with p(nvBDn~B2)>r. 

Given any family ~t, t_>0, of random measures on L, we shall say that ~/t is first 
(second) order asymptotically non-random, if 

limsup ]lthfll < ~ ,  lira II(~hf)~[I--0, f ~ ( L ) ,  (1) 
t ~ 03 t -~  oo 

the superscript s denoting symmetrization. Clearly (1) implies that {~t} is relatively 
compact in distribution and that every limit point is a non-random measure. 

For brevity, we shall often write ~'~ for 4~1\4~ ~), the set of directions which are 
not parallel to u. Whenever convenient, we shall further identify ~ with u without 
further notice. In particular, the v-projections of #~9)l(~'1) are by definition the 
projections on v of B#, B ~ ( u ) ,  when regarded as measures on u. 

Theorem5.1. Let #~gJ~(qYl) with diffuse v-projections. Further suppose that t I is 
strongly (second order) v-mixing and that, for some probability measure v on R a, the 
density d(t 1 * v)/d(# x 2) exists a.s. and is uniformly integrable (L2-bounded). Then 
5x * ~ is first (second) order asymptotically non-random as p(x, u)--~ co. I f  ~ is in 
addition first (second) order H-stationary, then 6x * 11 is further first (second) order 
asymptotically H-invariant. 

Proof. We shall only consider the case when x = t y, t~R. The modifications required 
in the general case are obvious. 

Suppose it is known that Sty * t/�9 v is first (second) order asymptotically non- 
random. Then so is 5ty * t/�9 (B v) for every B~N(Ra), since the assumption on r/�9 v 
carries over to t / ,  (By). Letting B be open and decrease towards a point in the 
support of v, it may be seen as in the proof of Lemma 2.5 that 6ty * t/is first (second) 
order asymptotically non-random. In proving the first assertion, we may thus 
assume without loss that v = 60. By Lemma 2.5, the same assumption can be made 
in the proof of the second assertion. 
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Let Y be a jointly measurable version of dt//d(px2), and assume that 
Y(x) II < c < oo for all x. By Minkowski's inequality, we get for any f ~ ( L ) ,  

I[(bt, * t/)f I] = 115 Y(x) f ( x  - ty ) (#  x 2)(dx)ll <5 [I Y(x)ll f ( x  - ty)(# x 2)(dx) 

<cSf(x-- ty) (#  • 2)(dx)=cSf(x)(# x 2)(dx)< 0% 

proving the first relation in (1) for t/t~(~ty * t/. 
In proving the second relation in (1), we shall first consider the Ll-case. Since Y 

is then assumed to be uniformly integrable, there exists for every e > 0  some 
constant b > 0 such that 4[(Y(x) - b)+ I] < e for all x, and it is clearly enough to prove 
the second half of(l) for the random measure with density Y/x b, or rather to assume 
from the beginning that Y__< b. Put b = 1 without loss, and note that in this case t/t < # 
x 2 for all t. Now suppose that t/t d , some ~ as t ~ oo along some sequence T. 

Then 

P {~f>(#  x 2)f} <liminfP{t/J>(# x 2)f} =0,  f e~ (L ) ,  
t e T  

so ( is also bounded by # x 2. 
We next obtain for any B, C ~ ( R  a- 1) 

(3t, �9 t/)(B x C)=t/{(q,p)" pEC, q~B+tp}, (2) 

which is clearly a (measurable) function of [(B + t C) x C] t/. Writing p~ for distance 
in the v-direction, we get for any C,, C2~N(R d-*) with p~(C1, C2)>0 

pv (B+tC~ ,B+t  C2)=tpv(C1 + t -  l B, C2 + t - lB )~ tPv (C1 ,  C2). 

Assuming that ~0(B x C1) = ~?(B x C2) =0  a.s., it follows from the strong v-mixing 
property of t / that the events {~(B x C1) < r~ } and {~(B x C2)< r2} are independent 
for all but at most countably many rl, r 2 >0. Hence ~(B x C1) and ~(B x C2) are 
independent, and since they are further bounded by constants, they must be 
uncorrelated. Thus the projection ~ of the random measure E(B x C) ~] ~z- * onto v 
has uncorrelated increments. Since ~ is further bounded by the corresponding 
projection of E(B x C)(2 x #)3 n-I=().B)(C#) and is therefore a.s. diffuse, we may 
conclude from Exercise 7.16 in [10], p. 96, that ~ is a.s. non-random. Hence so is ~(B 
x C), and B and C being essentially arbitrary, it follows that ~ itself is a.s. non- 
random. Thus (t/tf) s d , O, and so, by the uniform integrability, 

lim I[(thf)~]] =0, f s ~ ( L ) .  (3) 
t ~ T  

Since {th} is relatively compact and (3) has been shown to hold for every convergent 
subsequence, (3) must remain true for T =  R +. 

Turning to the L2-case and assuming without loss that c = 1, we get for any 
f ~ ( L 2 ) ,  writing Yt for the (# x 2)-density of t/t, 

Er /2f= E J'j' Y~(r) Y,(s) f(r, s)(# x Z)2(dr ds) 

= 55 E Yt (r) Y~ (s) f (r, s)(# x ,)~)2 (d r d s) 

--<~S II Y,(r)ll' II ~(s)II f(r, s)(p x 2)a(dr ds) <-_(# x )~ 
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If t/t a ~( as t ~ oe along some sequence T, it follows by Fatou's lemma that 
E(  2 <(/~ x 2) 2. Since the v-projections of # are diffuse, it may then be seen from 
Cebygev's inequality that the v-projections of (~-~  are regular in the sense of 
[10], and hence a.s. diffuse by Theorem2.5 in [10]. 

It may next be seen from Fatou's lemma and the uniform integrability of~itB for 
fixed B (which follows from the L2-boundedness ) that, for arbitrary B, C~, 
C 2 e ~  (R a- 1), 

E~(B x C~) ((B x C 2 ) -  E~(B x Cl )  E~(B x C2) 

_<_liminfEr/t (B x C~) tlt(B x Ca)- l i ra Eth(B x C~) Etlt(B x C2) 
t e T  t~T 

=liminf{ E ~/t(B • C~) ~t(B • C 2 ) -  E~t(B • C1) E~t(B • C2) ). 
t eT  

Noting that, for i=  1, 2, 

E~/,(B x C~)< ]l~/,(B • G)[I < E,~,, * (,~ • (B x C~) 

=(2 x #)(B x Ci)=ZB. # C i <  00, 

and making use of (2) and the second order v-mixing of t/, we obtain 

Er x C1) ~(B x C2)_< E~(B x C~) E((B x C2). 

But this implies in turn that the increments of the v-projection (~ of [(B x C) ~] 7c- 1 
are non-positively correlated for all B and C. Since (~ was shown above to be a.s. 
diffuse, it follows as in Exercise 7.16 of [10] that (v is a.s. non-random. Hence so is ( 
itself. 

Let us now consider an arbitrary closed C-continuity set BeN(L), and define 

D = {(x, y)eB 2" pv(~x, ~y) = 0}. 

Consider B 2 as a topological space in the relative product topology, and note that D 
is closed. Given any a > 0, there exists by dominated convergence some open set 
G~D such that (/~ x 2) 2 G<a.  Any point in B2\G is contained in the interior of 
some product set B'x  C', such that r  and the closure of B ' x  C' is 
disjoint from D. Since the set B2\G is compact, it may be covered by finitely many 
such sets B 1 x C1, . . . ,B,  x C,, say, which may clearly be assumed to be disjoint. 

By the second order v-mixing and uniform integrability, we get for j = 1,..., n 

limsup Et/2(Bj x C j)< limsup Et/tB j E t/t C j=  CZ(Bj x Cj), 
t~T tET 

SO 

limsup E(t/,B) 2 = limsup Et/2 [Q) (Bj x Ci) w G] 
t eT  teT  d 

=< limsup [ ~  E t/2 (Bj x C;) + E t/2 G] 
t eT  j 

<= ~ ~2(Sj x Cj) + (tx x Z) 2 G <=~2 BZ + e. 
J 

Since was arbitrary, we obtain 

limsup E(GB) 2 < (~B) 2. 
t~T 
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Conversely,  we get by Fa tou ' s  l e m m a  

liminf E(th B) 2 > (~B) 2, 
tET 

and so, by combinat ion ,  E(thB) z ~ (~B) 2 (teT). Since moreove r  (thB) 2 e , (~B)2, it 
follows that  qtB is uniformly square integrable. Hence  so is (tlJ) s for every f~,~(L).  
The p roof  of (1) m a y  now be comple ted  as before. 

In proving the second assertion, note  that  s ta t ionar i ty  implies invar iance for 
n o n - r a n d o m  measures,  and conclude that  every limiting measure  o f  t h is H-  
invariant.  The  first (second) order  asympto t ic  invariance now follows f rom the 
uni form (square) integrabili ty established above.  []  

If  H = u  in the last theorem,  it may  be seen as in case of  Theorem4.1  that  
6ty �9 r/---, 6u in L 1 (L2). However ,  no uni form integrabil i ty is actually needed for the 
L 1 version of this result, and in the L 2 case, the absolute  continuity can essentially 
be weakened to L2-regulari ty:  

Theorem 5.2. Let t 1 be strictly (second order) u-stationary, strongly (second order) v- 
mixing and of first order. Further suppose that, for some #egJl(~'l) with diffuse v- 
projections, (Btl)~ -1 4 #  a.s. (that [[(Bt/)~-ll[ exists with diffuse v-projections), 
Bs~(L) .  Then 6x * rl -~ qu in LI (La) as p(x, u)---, oQ. 

Proof We may  clearly restrict our  a t tent ion to the case x = t y, t > 0. In the L 1 case, 
let A e ~ ( R  e- 1) with 2A >0 ,  and put  v = A 2 .  Define YB=d(Btl)~Z-~/d#. Writing Aq 
= ( q - A )  x R  a-l, we get by (1) and (2) in w for any B, C e ~ ( R  d- l )  

( v .  t/)(B x C)= ~ t l[(q-  A) x C] dq= ~ dq ~ (Aqtl)~- l(dp) 
B B C 

= d q  r o(p) 
B C 

This shows that  v �9 ~ ~ # x 2 with density 

Y(q,P)= YA~(P), q,P 6Ra-1. 

As in [11], we may  choose a strictly q-s ta t ionary version of Y. In that  case, ]1Y(q, P) II 
= I[ YA,(P)I] exists a.e. and is independent  ofq. We shall p rove  that  6ty �9 ~ is first order  
asymptot ica l ly  u-invariant.  The  asserted convergence will then follow as in case of 
T h e o r e m  4.1. 

As in T h e o r e m  5.1, the asympto t ic  invar iance need only be p roved  for v �9 t / in  
place of  t/, so we m a y  assume wi thout  loss that  v - -6  o. For  fixed r > 0, let t/(~) be the 
r a n d o m  measure  with (# x 2)-density YA r, and conclude f rom Theo rem 5.1 that  
6ty.  r/(~) is first order  asymptot ica l ly  u-invariant.  This p roper ty  carries over to 
6ty �9 r/, p rovided  we can show that  6ty �9 ( t / -  q(~)) tends to zero in L~ uniformly in t as 
r ~  oo. To  see this, let B, C ~ ( R  a-l) be arbi t rary,  and conclude f rom Fubini ' s  
theorem and the s tat ionari ty  of  Y that  

[][6ty �9 ( t / -  t/(~))] (B x C)[I = IIS #(dp) ~ (Y(q,p)-r)+ dql[ 
C B + t p  

=~#(dp) ~ I](Y(q,p)-r)+l] dq=~#(dp) ~ I[(Y(0,p)-r)+ll  dq 
C B + t p  C B + t p  

= 2 B ~  II(Y(O,p)-r)+ [] #(dp). 
C 
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As r -~  o% the last integral tends to zero by dominated convergence. - 
In the second order case, let B and C be rectangles in R e.  1, let e > 0 be arbitrary, 

and choose a finite partition { C j} of C such that all diameters are bounded by e. 
Fixing pie Cj for all j and writing B~ for an e t-neighbourhood of B, we get for any 
t~R 

II(~,, * r/)(B x C)l[ = 11(6,,, * r/)(B x U Cj)ll 
J 

= {y '  ~ E(6,y * r/)2(B 2 x C i x Cj)} u:z 
i ./ 

=< {Y', ~ II(,~,.*,fl(B x C)II II(,~,y*,7)(B x Cj)II} '/2 
i j 

= ~  II(~,,, * ~)(B x cj)II =~,  I1~ {p~ cj, qEB +p t} II 
J J 

=~  II~{p~Cj, q~B+(p-p)t}l l  <=~_, II~{p~Cj, q~B.}II 
J J 

= ~  ]I~(B~t x C) I  I < II((B, x R" -  b ~ ) ~ -  111 C. 
J 

Choosing e < t-1, we thus obtain the uniform bound 

sup I1(~,~ * ~)(B x C)II _-< II((B1 • e d- 1) ~) ~ -  111 C < c~. 
t 

We may now proceed as in case of Theorem 5.1 to show that Sty * rl is second order 
asymptotically u-invariant. The asserted convergence will then follow as in the 
proof of Theorem4.1. [] 

The preceding argument shows incidentally that, if II(B~)Tc-a II exists for all 
BeN(L) ,  then 6~y �9 ~1 is uniformly integrable as t -+ oo. If t/is further known to be u- 
stationary, then the intensity of 6ty * rl is t-invariant by Lemma 2.2 in [11]. Thus 
6~y,t/ d ~0 is impossible in this case, unless ~/=0 a.s. This remark is somewhat 
related to the open question of Davidson stated in [7], w whether (in our 
notation) 6ty * ~- d ~ 0 can occur for a non-vanishing u-stationary line process 4. (Of 
course, many results of this paper give rather precise information about the 
asymptotic behavior of 3,y* ~ or Sty* t 1 under specific assumptions. However, 
nothing seems to be known in general.) 

The present methods yield surprisingly strong results in the case of "time" 
stationarity: 

Theorem5.3. Let rl be strictly (second order) y-stationary and strongly (second 
order) v-mixing. Further suppose that rite-lu =0  a.s. and that the v-projection of 
(B tl)~-1 is a.s. diffuse for every BeN(L) .  Then r l is a.s. non-random and y-invariant. 

Proof Proceeding as in the proof of Theorem 5.1, it is seen that, for any Be~(L) ,  the 
increments over disjoint rectangles of the v-projection of(B~)~-  1 are independent 
(uncorrelated). Since this projection is further a.s. diffuse by assumption, it follows 
by Exercise 7.16 (7.15) in [10], p. 96, that t/B is a.s. non-random. Hence so is t/itself, 
since B was arbitrary. But in this case, stationarity and invariance are equiva- 
lent. [] 
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Again it is obvious how our theorems for "smooth" random measures may be 
translated into statements about point processes. Note, however, that a direct 
approach may sometimes yield stronger results: 

Theorem 5.4. Let  ~ be a strictly y-stationary and strongly v-mixing point process on L 
with ~ ~ -  1 u = 0 a.s., and suppose that, for every B ~ ( L  ), the v-projection oJ" (B ~)~z- 
is a.s. simple and has no f ixed  atoms. Then ~ is a Poisson process with y-invariant 
intensity. 

Proof. Proceed as in the proof of Theorem 5.3 to show that, for every fixed B s ~ ( L ) ,  
the v-projection ~B of (B ~) rc- ~ has independent increments, We may thus conclude 
from Corollary 7.4 in [10] that ~B is a Poisson process. In particular, the random 
variable ~ B is Poisson for every B, and so it follows from Satz 1.3.12 in [ 15] that ( is 
a Poisson process. Finally, the y-invariance of E ~ follows from the y-stationarity of 
~. [] 

Added in Proof. Some results related to Theorem 5.4 above have been obtained, independently, 
by R.L. Dobrushin and Ju. Suchov. 

6. The Method of Randomization 

In this section we shall investigate the asymptotic bellavior of 5~,, * tl, where 9 a, 
9;  . . . .  are random elements of R e which are independent of rl (though not 
necessarily mutually independent), and whose distributions (or certain projections 
of them) are globally asymptotically invariant. Results along these lines have some 
merits from the point of view of applications, since it may often be most natural to 
consider the evolution of a system along a sequence of random epochs. Note in 
particular that, in the important case when the 0 n form a random walk in R e, P 0~- 1 
is globally asymptotically invariant as n ---, oo iff P 0 7 a is non-lattice, (cf. item 6.5.4 
in [15]). 

However, our main motivation for studying random translations is the fact that 
results for this case yield interesting information about the case of non-random 
translations. Let us e_g. suppose that t/has bounded intensity and that 6sn * ~/-~ ~, in 
L 1. Then we get for every fixed f ~ ( L )  

E[l(a~ ,~-~.)fllS.]-,0 in L1, 

and turning to a suitable sub-sequence N' c N, we can make this hotd in the sense of 
a.s. convergence. By the familiar diagonal procedure, the same type of result holds 
with a common exceptional null-set for any countable class of functions. A simple 
approximation argument then yields the same result for the entire class ~ (L) ,  i.e. 

EKl(6s,*~l-~l . ) f l[O~ (heN'),  f c ~ ( g ) ,  a.s. 

But this is clearly equivalent to 

5x ,t/--~f/u in L 1 (n~N') {x,}eR ~~ a.e. p{0 ,} - l .  

Specializing to the case when 0 , - t , 0 ,  where the t, are real numbers while 0 is a 
random element of R e satisfying 2 < P 0 - ~ <  2, we get 

fir~x * r/--+ F/, in L j, x e R  e a.e. 2, 
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whenever t, -* oe rapidly enough. Similar conclusions may be drawn in the cases of 
L2-convergence and of first (second) order asymptotic invariance. 

In our statements and proofs we shall still adhere, without further comments, to 
the notational and other conventions listed in w167 1 and 4. Given any we~,  we shall 
further write w' for the orthogonal complement of w. 

Theorem 6.1. Let  ~ff~][J~(l~l~l) be locally v-invariant and such that 

s xl ,  x 2 ) = R  e, (xl, x2)E~b 2 a.e. I ~2. 

Further suppose that t~ is strictly (second order) H-stationary and that, for some 
probability measure v on R e, the density d(t/ * v)/d(la x fl) exists a.s. and is uniformly 
(square) integrable. Finally suppose that the .Lf(H)'-projections of  PO,T 1 are 
globally asymptotically invariant. Then 6~. * 11 is f irst  (second) order asymptotically 
R<invariant. I f  ~ (H) = u ~ fb d_ 1, we have even 60. �9 t~ --+ q, in L 1 (L2). 

Proof. Arguing as in the proofs of Theorems 4.1 and 5.1 respectively, we may first 
reduce the discussion to the case when H = s (H)= w while v = 6 o. By Lemma 2.5, 
we may further assume that the v-projections 0', of 0,, neN ,  satisfy 

var [P(O ' ,+x ) - l -PO ' , - 1 ] - -*O ,  xew' .  (1) 

In the Lt-case, we may finally truncate the density as in the proof of Theorem 5.1, so 
even in this case we may assume that t/is second order w-stationary, and that Y 
= d U d ( #  x 2) is uniformly square integrable. It is thus enough to prove the L 2- 
version of the theorem. 

First we show that (60. * t/)B is uniformly square integrable for fixed B e ~ ( L ) .  
By Fubini's theorem, it suffices to prove the uniform square integrability of(6~ �9 t/)B 
for non-random x. For  fixed e > 0, choose c > 0 so large that E [ (Y(s) )  2 ; Y(S) > C] < g, 

s eL, and Write t/' and t/" for the random measures with densities Y A C and (Y-c)+  
respectively. Abbreviating t/~ = (6~ * t/) B and similarly in case of primes, and putting 
b = (# x 2)B, we get for any r > 0 

E[t/2;t/x>r-i <2  , 2 .  i t 2 .  E[t/x , t/~>r] +2  _ E[t/~ ,t/~>r] 
< 2 b 2 c 2 p { ~ l x > r } + 2  ,,2 = Et/~ <=2(bc/r) 2 2 ,, 2 tlt/~ll +211t/xll �9 

Since, by Minkowski's inequality, 

IIt/xll ~ ~ Itax * Y(s)H (~ x ~)(ds) ~ b sup  II Y(s)lq 
B s 

and similarly for ][t/~n, we thus obtain 

E [t/x 2; t/x > r] < 2 b 2 [(b c/r) 2 sup II Y(s) l/2 + ~3. 

As ~ ~ 0 and r--~ 0% the right-hand side tends to zero, which yields the desired 
conclusion. 

By Fubini's theorem and the second order w-stationarity oft/, we next obtain for 
any B e ~ ( L  2) and xew'  
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I E (c~,, + ~ �9 t/)2 B -  E (cSs, ' �9 r/)2 B I = I E(3~;,+ ~ �9 ~)2B - E (c50~. t/)2B 1 

~_ s u p  ~ (3x * t/)2 B -  vat { P (0'~ + x ) -  ~ - P 0'~- ~ }, 
x 

which tends to zero by (1). By the uniform square integrabili ty of ~ ,  �9 ~, it follows 
that  every limit in distribution ~ is second order  w'-stationary. By another  
applicat ion of the uniform square integrability, it is seen from the w-stationarity oft/ 
that  ~ is in fact second order  R<stat ionary.  

Next  we show that  ~ ~ # x 2 a.s. Indeed, choosing c > 0 so large that, for fixed 
s > 0 ,  E(Y(s)-c)+ <e, s~L, and defining t/' and r/" as before, we get 

5~ * t / ' <c (#  x 2) a.s., E(6~ * t/") <e (#  x 2). 

Choosing a sub-sequence N ' c N  such that ~ , (t/', t/") ~ some (E', (") with 

= ~, and using Fatou 's  lemma, we hence obtain 

~ '<c (#  x 2) a.s., E U < e ( #  x 2). 

Thus, writing ~a for the component  of ~ which is absolutely continuous with respect 
to # x ,~, we get 

E(~- ~) <e(,u x Z), 

and since e was arbitrary,  this yields ~ = ~a a.s., as desired. 
By Lemma2 .2  and Theorem4.3 ,  the stat ionari ty and absolute continuity 

established above imply that  ~ is a.s. R<invariant .  The  asserted second order  
asymptot ic  invariance of 8~, * t /now follows from the uniform square integrability. 

To establish the last assertion, we may essentially proceed as in case of 
Theorem 4.3. [ ]  

For  d = 2 ,  the second order  version of the last theorem may be improved 
considerably:  

Theorem 6.2. Let d = 2 and u = • (H). Suppose that t~ is second order H-stationary and 
such that (Btl)l: -a is Lz-regular for every B ~ ( L ) .  Further suppose that the u'- 
projections of P 0 21 are globally asymptotically invariant. Then g)o~ * t~-* qu in L 2. 

We shall use a direct argument  which is related to a method  employed by 
Davidson and Krickeberg in [-7], pp. 64 and 104. 

Proof. As in the proof  of Theorem 4.1, we may assume without loss that  H = u. Let  B 
and C be any finite real intervals. Arguing as in the proof  of Theorem 5.2 and using 
Fubini 's  theorem, we  get 

sup II(~o*~)(B x C)ll < s u p  1[(6~,,t/)(B x C)ll _-< I[((B1 x C)t/)~: -1[I C <  oo. 
n t 

By a simple t runcat ion argument,  we may thus assume that  0 n is bounded  for each n. 
As in case of Theorem 6.1, we may further assume that  (1) holds, and we may finally 
identify 0, with its u '-projection 0', and put  t/, = 60, * t/. 

Consider  a finite part i t ion { C j} of C into sub-intervals, and fix in each rectangle 
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C i x Cj a point  (P'i;, P'i';), to be chosen later. Then  we get for any s e u (to be identified, 
for convenience, with its coordinate  along u) 

I1(~.- ~ss �9 ~.)(n x C)ll 2 

= II ~,(B x C) ll 2 + I I(~s * ~,)(B x C)[] 2 _ 2 E (1/n x (~s* 1/,)) (B x C) 2 

= 2  Et/n x 01 , - c5  �9 t/,)(B x C) 2 

= 2 ~. ~ E ,h,(B x C,)(rln - 6~ * ~I.)(B x C;) 
J J 

= 2 ~  E~/{p~C,, qeB + pO.} (rl-&,*rl) {p6 Cj, q~B + pOn} 
i j 

< 2 Z Z I E t / { p E C i ,  q~B + p'ijOn}(tl-6,*q) {p~Cj, q~B + p'~}On} l 
i j 

+2ZZlE[rlx(rl-&~.rl)]{(p' ,p",q ' ,q"):  p'~Ci, p" eCj,  
i j 

(q', q") e B 2 A [(B + (p;j - p') On) x (B + (p;~ - p") 0.)3 + (p', p") 0.}1 

= 2 S t + 2 S  z. 

We now choose the points (p'q, P'ii) so as  to minimize S,. Writ ing # =  
I[((B x C)t/)7c-']], we then obtain 

S t =  E Z I E rl 2 [B x (B + (p',j- p',}) On) X C, x C jl 
i 1 
- E~Z[B x (B+(p; j -p;} )3 , -s )  x C~ x C:] I 

< ~ s u p E ~ 1 2 [ B x ( B + t )  xC ,  x C ; ] v a r [ P ( O ,  ' _s ) - ' _ p o e  ` 
i j t P'ij-P:} 

_ . - p o #  1 < ~ 2 ~  J II~(B x c31111~(B • Cj)ll var P 0 n p,j_p, ,  

[( ] __<EE.2(c, x c,) inf var P 0,  i j ~'~c~,p"~cj p ' -  P021 

[( ' ) '  ] < ~ var P 0 n c~ P ' -P"  - P0"- 1 #2(dp'xdp")" 

N o w  the regularity assumption means that  # is diffuse, so #2 {(p,, p,,):p, =p,,} = 0 by 
Fubini 's  theorem. Thus, by (1), the integrand tends to zero as n ~ 0% a.e. #2, and it 
follows by bounded  convergence that  S t ~ 0. Note  that  this holds uniformly with 
respect to {C:}. 

Next  suppose that the intervals Cj have lengths __< e, and conclude that  

$2 < E E E [t/..x (t/. + ~s �9 t/.)] [(SB2).~. x C, x C j] 
i j 

= E [r/. x (r/. + cs ,  r/.)] [(aB2)~o~ x C~]. 

By dominated  convergence and the stationarity of  i/,, we hence obtain for fixed n 

limsup S 2 __< E [t7, x (t/,, + c5 �9 I/,)] (SB z x C 2) = 0. 
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Thus [l(t/n - gs * ~/n)(B x C)I[ ~ 0, and since B, C and s were arbitrary, it fo l lows that 
~/, is second order asymptot ica l ly  u-invariant. The proof  may  n o w  be comple ted  as 
in case of  Theorem4 .1 .  [ ]  
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