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Summary. This paper is concerned with the rate of convergence to zero of 
the Lp metrics A,p, 1 <p<= o% constructed out of differences between distri- 
bution functions, for departure from normality for normed sums of inde- 
pendent and identically distributed random variables with zero mean and 
unit variance. It is shown that the A,p are, under broad conditions, asymp- 
totically equivalent in the strong sense that, for l < p ,  p '<oe,  Anp,/Anp is 
universally bounded away from zero and infinity as n ~ oe. 

1. Introduction and Results 

Let X~, i =  1, 2, ... be independent and identically distributed random variables 

with zero mean and variance unity and write Sn= ~ X~, n=>l, Fn(X ) 
i i = 1  ~u ~ 

=P(S,<__xn �89 and ~(x )=(2n)  -~ e-  du, - o c < x < o c .  It is well known 
--oo 

that the Lp metrics A,p given by 

A,w = [Fn(x ) - q)(x)lPdx) , 1 <p < o~. 

A,~ = s u p  IF~(x)- ~(x)l, p = 0% 
x 

which measure departure from normality, all converge to zero as n ~ oe (e.g. 
Ibragimov and Linnik 1-10], Theorem 5.2.1, p. 141) and it is of interest to 
compare their rates of convergence. Little at tempt has been made to obtain a 
direct comparison although the literature contains considerable circumstantial 
evidence in favour of the conjecture that they are all asymptotically equivalent 
in the strong sense that for any p'=~p, l<__p, p '<oe,  there are universal con- 
stants C and D such that 

0 < C < lira inf A,p,/A ~p < lira sup A,p,/A,p < D < co. 
n~ct3 t l~oo 
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(The requirement that the constants be univeral is a special feature of our 
discussion.) In particular, results date back to Esseen [3] from which it can be 
deduced that asymptotic equivalence holds if ELXl[3<oo and EX~+O or X i 
has a lattice distribution. More recent circumstantial evidence is of the kind: 
for 0 < 6 < 1 ,  ~ n - i + a / a A , p < ~  if and only if E X ~ l o g ( l + l X l l ) < o o  (6=0), 
ElXll2+a<oo ( 0 < 6 < 1 )  (Heyde [7]) and, for 0 < 6 < 1 ,  d .p=O(n  -a/z) if and 
only i f E X 2 < o o  and ~ x Z d P ( X a ~ x ) = O ( z  -'~) as z--.oo (Ibragimov I-8]) and 

lxl>z 
further refinements appear in, for example, Rozovskii [12]. In this paper we 
will show that the metrics are asymptotically equivalent under a very broad 
range of conditions. 

The question of asymptotic equivalence is treated in the following theorem. 
Here a . x b  b for sequences of positive numbers {a.}, {b,} means that 

0 < lim infa,/b,  < lim sup a,/b, < oo. 

Theorem 1. All the metrics A.p, 1 < p <  o% have the same asymptotic behaviour f 
any of the following four conditions are satisfied: 

(i) x 3 p ( [ X l l >  X)--~oo as x--*oo, 

(ii) EIXl[3<oo and EX3 +-O, 

(iii) X~ has a lattice distribution and E [ X i [ 3 <  oo, 

(iv) l imsuplEei tXl]<l  and ElXl[r<oo,  EX~ 4= ~ xrd~(x) 

for some integer r > 3. 
In the case of (i), A,pX 6, as n ~ oo where 

6,=EX2I([XIl>n�89189189 (1) 

For (ii) and (iii), Anp,.-,,n'-" - ~, and for (iv), A np.~n - (r -  2)/2 as n--e, cO. 

On the way to Theorem 1 we shall, however, obtain the following result of 
independent interest. Note particularly that there are universal constants in the 
upper and lower bounds. 

Theorem 2. Let Y~, i= 1, 2, ..., n be independent random variables with EYe=0, 

E Yi 2 -~- 0 .2 < (30 and ~, tr { = 1. Write 
i=1 

= - q ) ( x )  d x )  , 1__<p<o% 

Then, there exists a universal constant C >0 such that 

a.<=C(A.p+ ~=l~ ) (2) 
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where 

~, ~ <1 )+  i~1 1). 6 ,=  Ey~2I(I Y~] > 1) + Ey~4/(IY~I Ey~3I(IY~I < 
i = 1  i = 1  

On the other hand, if e. is a positive constant then there exists a universal 
constant D > 0 such that whenever 

i = I  

Let 5 e denote the real line or a subset thereof and write 

(3) 

A.p(~)=(  S IF.(x)-~(x)lPdx) l/p, l__<p < oo, 
5a 

A,~o (5 ~) = sup IF, (x) - ~(x)l. 

Asymptotically equivalent behaviour of the L,  metrics appears to be closely 
linked to the phenomenon of intervals of the form ( - A , A ) ,  A>0,  being 
convergence determining sets. The subset 5 ~ of the real line may be called 
convergence determining for the L,  metrics if (1<) A,v/A,p(Se ) is universally 
bounded away from infinity as n~oo ,  1 < p <  0o. A number of results concern- 
ing these sets are given in Hall [5], in which a rather different definition is 
adopted. Here we shall give a modification of one of the results of [-5] to 
indicate the possibilities. 

Theorem 3. Suppose x3p(IXll>X)--~oo as x ~ .  Then, any set Y = ( - A , A ) ,  
0 < A < �89  is convergence determining for the Lp metrics, l<p<=oo. We have 
A ,p( ( -A ,  A))~ as p~ and A,p( ( -A ,  A))X6,  as n--.co where 6, is given by (1). 

2. Proofs 

As a preliminary to the proofs of the theorems we shall establish the following 
Lemma which is also of some independent interest. 

Lemma. Let Y denote the real line or a subset thereof and for a function 
u~Lp(SP), p>= 1, we write 

Np(u; 5e) =(~ ]u(x)[Pdx) l/p, l <p < 0% 
5a 

No(u; 5~)=sup lu(x)l. 
x e S  a 

Then, plogNp(U; 5 r) is a convex function of p. 
This result holds in particular for u(x)=lF.(x)-~(x)l and if 5 e = ( - A , A ) ,  

A <�89 then A ,p(A)=A,p( ( -A ,  A))~ as p~. 
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Proof Let 1 <p'<p. Then, Schwarz' inequality gives 

S lu(x)lPdx----(J lu(x)[ p+p'dx ~ lu(x)LP-~'dx) ~ 

and, upon taking logarithms of both sides, 

logN~(u; 5 P) 1 p+p' <71ogNp~+p, (u; 5~)+�89 P-P' " logN~_ v (u, 5 e) 

which gives the convexity of p log Np(u; 5P). 
For n sufficiently large, logA,p(5~ while p l o g A . p ( S P ) ~ - ~  as p ~ .  

In the case 5 ~ = ( - A , A ) ,  0<A<�89  A,p(A)=A,p((-A,A)) can be defined for all 
p > 0  and 

A 

p logA,p(A)=log ~ IF,(x)-~(x)hPdx -+log2A <0  
- A  

as p--*0. Then convexity ensures that the slope logA,p(A) of the line joining 
the origin to (p, plogA,p(A)) is nondecreasing in p. This gives A,p(A)'l as pT 
and the proof of the Lemma is complete. 

Proof of Theorem 2. The result (2) can be obtained by modifying the proof of 
the theorem of Hall and Barbour [6] which deals with the case p =  ~ .  The 
modifications required to deal with 1 <p  < oo are first to use 

jg(w){P(W<=w)-~(w)} dw 

< Ig(w)l~dw Anp , q = ( 1 - p - 1 )  -1, l < p < o o  

< sup Ig(w)] 5,1, p = l, (4) 
w 

with g(w)=h'(w) instead of (2) of [6] and with g (w)=f" (w + fl) in the bounding 
of It211 of [6]. Then note that 

Ig(w)lqdw) <(sup ]g(w)[) 1/" Ig(w)ldw) 1/q (5) 
w 

while simple calculations on the functions g used in the proof of [6] reveal that 
in each case 

suplg(w)l < S Ig(w)ldw (6) 
w - o o  

so that, using (5) and (6) in (4), 

] ~ g(w){P(W<w)-,I)(w)}dw <A,,p ~ [g(w)ldw, l<p<o~. 
- o o  - o : 3  

The result (2) then follows via the proof of [6] with the same universal 
constant C as obtained by Hall and Barbour for the case p = oe. 
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The result (3), on the other hand, is a consequence of Theorem 2.2 (p. 25) 
and Theorem 2.3 (p. 44) of Hall [5] and this completes the proof of the 
theorem. 

Proof of Theorem 1. Applying the results of Theorem 2 to the case of identi- 

cally distributed random variables, we can put gi=Xi/n �89 s o  that ~, a~ =n  -I  
i = 1  

and e = 2 n - ~  where 

2 = m i n  [#: EX~I(IXll >~)<1]. 

When x3P(lX~l>x)--,oo as x ~ o o  we have from (2) that n+A.v~oo as 
n ~ oo since 

_ ! >  k n~tSn>-n~EX?I(lXl[ >n~)= n P(IXll >n~) ~ 

as n ~oo .  The results (2) and (3) then give asymptotic equivalence of the Lp 
metrics and A,vX6, as n---,oo. This completes the proof for part (i) of the 
theorem. 

Next suppose that E IXll3< oo. We have from results due to Esseen [2], I-3] 
(e.g. Ibragimov and Linnik [10], Theorem 5.3.2, p. 147 and Theorem 5.3.3, 
p. 150) that for l<p<oo,  

Anp = A v IEX3[ n-~ + o(n-~) 
where 

A~ = 1/6(2rc) ~ 

\ l i p  

t , 

if X 1 does not have a lattice distribution, while 

Anp=Mpn-~+o(n-~) 
where 

M~ = (2~z)-�89 +�89 

M p = ( 2 ~ ) - ~ (  ~_ IQ~(x)+~EX31(1-x2)lPe-~V~dx) l/p, l__<p<oo (7) 

with 

Q 1 (x) = h Q (h-1 n i(x - {.)) 
and 

Q(~) = Ix] - x  +�89 

Ix] denoting the integer part of x and 

~ =hn-~(nxoh- 1 _ [nxo h- 1]), 

the lattice distribution being situated on the points Xo+Vh , v=0,  + 1, +2  . . . . .  
To obtain the result for part (ii) in the non-lattice case we first note that 

lim A . v , / A , , v  = Av,/Ap. 
n ~  oo 
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Furthermore, it is a straightforward exercise to show that A~=4e-~A~o and 
Ap~.A~ as pT oo. Thus, taking p' >p  without loss of generality we have 

�88 lim Anp,/Anp ~ 1. 
n~oo 

To deal with parts (ii) (in the lattice case) and (iii) of the theorem we need 
upper and lower bounds on Mp in (7). Using Minkowski's inequality we have 

( _ ~  2 \ l /p  [Q~(xl+~ex~(1-x2)f e -~px dx) 

<(_~ ,Ql(x)fe-~P~dxf/P+ch(_~ ll-x2lPe-~pX~dx) lip (8) 

where hc=~lEX~[. But, as noted previously, for p >  1, 

�9 \ l / p  
(_~ ]l-x2lpe-~pX2dx) ~ as pT 

while, since IQl(x)l <�89 

(_~ [Ql(x)lVe-~P~dx)l/v<=�89 (_~ e-~W~dxf/p 
__ 1 1 / 2 p  ~ 1 �89 -gh(2rc/p) =gh(2rc) , 

and hence (8) gives 

Mv<=�89 S [1-x2le-~X2dx 
--o9 

1 �9 =gh+4hc(2ne) -~ 

after a straightforward calculation. 
To obtain a lower bound on M v we first note that 

1 a \ l / p  
I Q1 (x) + ~EX~ (1 -x2)[ v e- ~px dx) 

( � 8 9  ~.  \ l / p  
>, ~ IhQ(h-ln~(x-~"))+~EX~(1-x2)lVe-4pX2dx) . 

(9) 

Now suppose for definiteness that EX3>O; the argument for EX~<O is simi- 
�9 1 lar. We also note that I~,l<-_h/n ~ and we choose n so large that h/n=<~. Then, 

we have 
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(27r)~Mp => h IQ(h-ln~x)+c(1 -(x+G)2)lpe-9p/32dx xl/p 
1 t d�89189 1]_ 1 h(i + g ) n -  g 

>he-9/32( i=o ~' hi ~ 
�9 l 1 /[-~n-~h I ] - - 1  h ( t + ~ ) n - - ~  \ l / p  

=he-9132( i=o~ hi~--~ ([h-ln~x]-h-ln�89189 

=he-9/32 hn-~ ~ ( �89 pdx 
i=0  0 

=he -9/32 (�89 (hn-~[�89 1/z' 

> �88 9/32(p + 1)-1/P((�89 1 _(~c)p+ 1)1/p 
>�88 + 1)- a/P2-1/P(�89 

>=1~he- 9/32(�89 + ~c). 

From (9) and (10) we obtain 

R - 1 < lim inf A ,p,/A,p < lim sup A,y/A,p <= R 
n ~ o o  n ~ o o  

where 
1 4 c  1 7 

However, note that 

(10) 

q 4c \ I 

since 4/(2roe)}>7/16. Consequently, whatever the value of c, 

7 (2-1 o) e7132 < lira inf A,p,/A,p <= lira sup A,p,/A,p =< 121 o e- v/32 

and the proof of part (ii) in the lattice case and part (iii) is complete. 
Finally, suppose that limsup [EdtX'[<l (often known as Cram6r's con- 

dition (C)). We may, in view of the foregoing discussion, confine attention to 
the case Z[XlI3<oc, EX~=O. Then, if X 1 does not have the unit normal 
distribution there is a first (integer) moment C~k+z=EX~+2, k>=2, which does 
not match that of the unit normal law. This holds since the normal law is 
characterized by its moments. By assumption E ]Xl[k+2< O0. 

NOW we can approximate F,(x) by ~(x)+R,,k(x ) where 

k 
R,k(x)=(2~r)-%-}x2 Y, P,(x)n -}s 

s = l  

is a portion of the 0eby~ev-Cram& series corresponding to X, (see for example 
Gnedenko and Kolmogorov [4], Chap. 8), the Pi(x) being polynomials of 
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degree 3 j - 1  whose coefficients depend on the first j + 2  moments of Xt. 
Furthermore, P j (x ) -0  if the first j + 2 moments of Xa match those of the unit 
normal law. 

Now use ]lu(x)[lp, 1 < p <  0% to denote the norm 

Ilu(x)llv= lu.(x)lVdx) , 1 < p <  0% 

= s u p  ]u,(x)l, p =  oe. 
x 

Then, 

and 
anp= IIF~(x)-~(x)llv~ HR.k(X)[I,~+IIF~(x)--~(X)--R.k(X)lip (11) 

and for p' 4= p, 

A ,p,/A,v ~ ][e--~x~ Hk+l(x)Np,/lle--~'~ Hk+l(x)]lp 

as n ~ oo. However, in view of the Lemma, this limit may be hounded between 
the universal constants U-~ and U (which may depend on k) where 

_ � 8 9  2 1 x 2  
U = m a x  lie Hk+,(x)l ip/min lie -~  Hk+l(x)llv 

P :P 

and this completes the proof. 

HF.(x)-~(x)llp~ IIR.k(x)llp--NF.(x)--~(x)--R.k(X)IIv. (12) 

But, it follows from Theorem l of Erickson [1] for the case 1 N p < ~  and 
Theorem 1 of Ibragimov [9] for the case p = oo that 

II F.(x) - ~ ( x )  - -R.k(x) i lv=o(n -k/2) (13) 

as n-+ oo. On the other hand, since the moments EX] ,  1 <j  < k + 1, match those 
of the unit normal distribution, P~(x)=-O for 1 < j < k - 1  and 

IlR.k(X)l[p=n-k/2 ll(2~)-~e-+~'2Pe(x)Hp, 

so that, using (11), (12) and (13), 

d.p ~ ll(2rc)- ~ e-§ Pk(x)llpn -k/e 

as n ~ oo. But, the condition that the moments EX{ ,  1 < j < k +  1, match those 
of the unit normal law gives 

Pk (X) = -- (EX~ + 2/(k + 2) !) H k + 1 (x) 

where Hi(x)  denotes the j th  Hermite-Chebyshev polynomial, 

H j ( x ) = ( - 1 ) J e  ~x~ dx-~e ~ . 

Thus, 
A.p~(27z)-~EX~+2((k  + 2)!)- 1 ]]e-~ZHk+ 1 (x)l]pn-k/2 
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Proof of Theorem 3. When x3p(lXll>X)--,oo as x--,oo, we have from Theo- 
rem 2 that there exist universal constants C a and C 2 such that 

0 < C 1 ~ lim inf (32 1A np ~ lim sup 6~- 1 A,p < C 2 < o o ,  (14) 
n ~ o o  n ~ o o  

and hence the result of the theorem follows (with the aid of the Lemma) if 
there are universal constants C 3 and C 4 for which 

0 < C 3 < lim inf 6~- 1 A. p (A) < lim sup c5~- 1 A n p (A) < C 4 < oo (15) 
n ~ o o  n ~ o o  

where A.p(A) = Anp(( - A ,  A)). However, 

lim sup 621A.p(A) < lira sup c521A.v < C2 < o% 
n ~ o o  n ~ o a  

while, from the Lemma,  

lim inf 62 ~ A.p (A) > lim inf 6# a A. 1 (A), 
n ~ o o  n ~ c o  

and hence (15) is satisfied if c521A.a(A) is universally bounded below (away 
from zero) as n ~  oo. This result, however, follows from a minor modification of 
the proof  of Theorem 1.3 of 1-5] wherein it is necessary to replace (1.14) by 

_~ {~"(t/n-~)-e-~t}t-2(1-cos At)dt <=zcA.I(A ) 

and to observe that each constant being used can be made universal. 

3. Concluding Remarks 

It is clearly a plausible conjecture that all the metrics Anp , 1 <p< 0% have the 
same asymptotic behaviour in general under EXa=O, EX2=I without the 
constraints imposed in Theorem 1. The principal difficulty in establishing this 
result is in dealing with the class of discrete non-lattice distributions. If 
limsuplEeitXl[=l and EIXl[r<oo for some integer r > 3  it is necessary to 

augment the Chebyshev-Cram6r approximation to Fn(x ) with discontinuous 
terms and these are crucial in determining the asymptotic behaviour of A,v. In 
the non-lattice case there appears to be no general and systematic way of 
accomplishing this aim. 

The other difficulty in extending Theorem 1 is in coping with cases such as 
fi,Mn -~  or n-~fi, ~ 0 as n ~ m but E ] X  1 1 3 =  00. Here the problems are mostly 
those of establishing universality of bounds for asymptotic equivalence. Non- 
universal bounds on the ratios are mostly obtainable. 

Finally, a small improvement  to the result of Theorem 1 may be achiev- 
able, by using the ideas of Osipov [-11], to extend the conditions (iii) by 
removing the requirement that E IX~]3< oo and the condition (iv) to include the 

case where EX~= ~ xkdcb(x), k = l ,  2 . . . .  , r - l ,  E]XIIr= cz). 
- c o  
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