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Summary. Let T be a non-singular ergodic automorphism of a Lebesgue 
space (X, ~ #) and let f :  X ~ R be a measurable function. We define the 
notion of recurrence of such a function f and introduce the recurrence set 

. d#T 
R( f )={c~eR:f -c~ is recurrent}. If p=tog~-~-u,  then R(p)={0}, but in 

general recurrence sets can be very complicated. We prove various con- 
ditions for a number ~ s N  to lie in R(f)  and, more generally, for R(f)  to be 
non-empty. The results in this paper have applications to the theory of 
random walks with stationary increments. 

w 1. Introduction 

While the recurrence properties of classical, independent random walks on 1R", 
n>  1, are well understood, the corresponding theory for random walks with 
stationary, not necessarily independent, increments is still in its infancy. A 
definition of recurrence and transience in a general context is given in [13], 
but these concepts have been used earlier, if implicitly, both in probability 
theory and in ergodic theory (e.g. [-8, 10, 11, 14]). During the last few years 
some general results on the recurrence of random walks with stationary incre- 
ments have appeared ([1-4]), amongst them the following sufficient condition 
for recurrence: Let (Xk, k > l  ) be a real valued stationary stochastic process, 

and let Y,,-- ~ X k, m > 1, be the associated random walk. If lira Y,,/m = 0 in 
k = l  m 

probability, then (Ym, m>l)  is recurrent (i .e.a.e.  sample path visits every 
neighbourhood of zero infinitely often). This result has been obtained inde- 
pendently by a number of mathematicians, including F.M. Dekking [-4], 
B. Weiss and myself. In the special case where the X k are integrable one 
obtains the well known result that (Ym, m_--> 1) is recurrent if and only if EXk=O 
(cf. [-1, 11]). As this last example indicates, the random walk (Ym, m >  1) may be 
transient ( = n o t  recurrent) only because of the presence of a 'drift term':  there 
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may exist a constant c~ l (  such that (Ym-met, m > l )  is recurrent (this amounts 
to considering the stationary process (Xk--e, k_>--l)). One is thus led to the 
definition of the recurrence set of (Y,,, m >  1) consisting of all e e l (  which make 
(Y,,-mc~, r e > l )  recurrent. This recurrence set is not directly related to the 
objects studied in ([-5-73), but there are some connections. 

It is a much harder problem to determine whether (Ym, m > l )  has a non- 
empty recurrence set than to decide whether (Y, , ,m>l)  itself is recurrent. In 
Sect. 3 we prove the following results. Let (Xk, k > 1) be an ergodic, stationary, 

real valued stochastic process, define the random walk Ym-- ~ Xk as before, 
k = l  

and denote by I7 the set of limit points of the distributions of the YJm in the 
vague topology. If the set 17 is uniformly absolutely continuous, and if the 
distribution of the Y,,/m are uniformly tight, then R(f)@4, (Corollary 3.13). If 
any of the measures in 2; is singular at a point ~ I R ,  then (Y,,-mc~, r e > l )  is 
recurrent (a finite measure ~ on N is singular at c~I (  if limsupo-(c~-e, c~ 

+ e)/2~ = oo) (cf. Corollary 3.10). Finally we show that, if eslR does not belong 
to the recurrence set of (Ym), there exists, for every 6>0 ,  a limit point v of the 
sequence of distributions of the random variables (Y,,/m, r e > t )  with v(c~-t/, 
+ t / )<6t /  for some 0 < r / < l  (Corollary 3.11). This last condition implies in 
particular the well known result that the recurrence set of the Cauchy random 
walk is equal to l (  (Corollary 3.12). All these statements are obtained in the 
course of investigating the following problem: Let T be a non-singular, ergodic 
automorphism of a Lebesgue probability space (X, 5~,/~) and let f :  X ~ Nn a 

m--1 

measurable function. Define, for m > l ,  f*(m, "): X ~ N  n by f*(m, ")= ~ f .  T k. 
k = 0  

In Definition 2.1 we introduce the notion of recurrence for the function f 
which is equivalent to the usual condition under the assumption that T 
preserves #: in this case recurrence means that, for every e>0,  and for #-a.e. 
x~X, [[f*(m, x)ll <~ for infinitely many m. The assumption that T is only non- 
singular means that we are considering random walks obtained from certain 
non-stationary processes (cf. [12]). In particular we consider the Radon-Ni- 

�9 d#T 
kodym derivative p = log ~ and prove that f is recurrent if and only if the 

pair (f, p): X ~ N  n+~ is recurrent (Theorem 2.5). This allows us to rephrase the 
condition of recurrence as follows: f is recurrent if, for every e > 0, and for #- 

+ log d#T" (x) a.e. xeX, [[f*(m, x)ll ~ <e  for infinitely many m (Theorem 2.7). If 

we define the recurrence set R ( f ) a s  before by R(f)={c~elR":f-c~ is re- 
current}, then R(f)  is always a Borel set (Proposition 2.10), and for the special 
case of the function p: X ~ I R  we obtain R(p)= {0} (Corollary 2.6). Section 2 
ends with a short discussion of the special case of classical, independent, 
random walks and the additional difficulties arising from the relaxation of 
independence even when T preserves #. Two of the proofs in this section 
(Lemma 2.3 and Proposition 2.4) are taken from [13]: I have included them in 
order to make the paper essentially independent of reference [13] which may 
be difficult to obtain. Proposition 2.4 and the basic idea in Lemma 2.3 are both 
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due to Krieger [10], and Theorems 2.7 and 2.8 are generalizations of the 
corresponding results for measure preserving T in [13]. The contents of Sect. 3 
have already been outlined at the beginning of this introduction. The proofs 
make use of some tools in ergodic theory, mainly orbit equivalence and 
cohomological considerations. 

Section 4 deals with recurrence sets and gives examples and conditions for 
recurrence sets to be empty or to consist of a single point. Examples 4.5 and 
4.6 show how disconnected recurrence sets can arise in a natural context. 
Example 4.5 is an expression of the fact that every four-dimensional inde- 
pendent random walk is transient, while Example 4.6 arises from an adding 
machine through the interchange of two digits. 

Finally I would like to thank J. Aaronson and B. Weiss for some very stimulating con- 
versations on this subject. Thanks are also due to the universities of Tel Aviv and Jerusalem, 
whose hospitality made it possible for me to have these conversations. 

w 2. Recurrence and Radon-Nikodym Derivatives 

Throughout  this section T will denote a fixed non-singular, aperiodic, con- 
servative automorphism of a non-atomic Lebesgue space (X, ~ #). For  every 
measurable function f:X~IR", n>l, we define a map f * : Z x X ~ N "  by 
setting 

k--1 

[ ~ f(Tmx) if k > l ,  

f*(k, x)=  m=o (2.1) 
0 if k=O, 

- f*( -k ,  Tkx) if k<O. 

The map f *  satisfies 

f*(k, T'x)+f*(l, x)=f*(k +l, x) (2.2) 

for every k, l~7Z., x~X, and is thus a ( 1 - )  cocycle for action (m, x)~ Tmx of Z 
on (X, ~ #). The function f (or the cocycle f * )  is called a coboundary if there 
exists a measurable map b: X ---, I(" with 

f=b. T-b #-a.e., (2.3) 

and two measurable functions f~: X ~IR", i--1, 2, are said to be cohomologous if 
f l - f 2  is a coboundary. 

2.1. Definition. A measurable function f :  X ~ I R "  is called recurrent if, for every 
B s5 :  with #(B)>0,  and for every ~>0, 

#(Bc~T-'nBn{x: ]]f*(m, X)I] < e } ) > 0  (2.4) 

for some m4=0, where ]1"11 denotes the Euclidean norm on N". I f f  is not 
recurrent it will be called transient. Finally, the recurrence set R(f) of f is 
defined by 

R(f) = { ~ N " : f -  c~ is recurrent}. (2.5) 
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An important and useful property of R(f )  is that it is a cohomology invariant: 

2.2. Proposition. Let f: X--*N n, g:X--*IR ~ be measurable functions. Then R( f )  
= R ( f  +gT--g). 

For the (elementary) proof of Proposition 2.2 we refer to 1,13, Proposition 
3.14]. In this section we shall discuss some basic properties of recurrent and 
transient functions and, in particular, the connection between the recurrence 
properties of a given function f and the Radon-Nikodyrn derivative d#T/d#. 
We start with a short technical discussion. Let IT] denote the full group of T, 
i.e. the group of all non-singular automorphisms V of (X, S~, #) satisfying 
VxE{T"x:n~Z} for #-a.e. xEX. For every V~[T] we can find a measurable, 
a.e. unique function n (V, "): X --, Z satisfying 

Tn(V. x) x = Vx #-a.e. (2.6) 

If f:  X--* IR ~ is measurable and Vs[T], put 

f(V, x)=f*(n(V,, x), x), x e X  (2.7) 

where n(V, .) is given by (2.6) and f *  by (2.1). Equation (2.2) shows that, for 
every V, We IT], 

f(V, Wx)+f(W, x)=f(VW,, x) #-a.e. (2.8) 

In the special case where V= T k we have 

f ( r  k, . )=f*(k,  .) #-a.e. (2.9) 

The following lemma provides one of the basic tools for our analysis (cf. [-13, 
Lemma 4.11). 

2.3. Lemma. Let f: X ~ IR be a transient measurable function. Then there exists 
a set Be5 ~ with 0 < # ( B ) < I ,  an e>0,  a measurable function b:X---,IR, and an 
automorphism S~I,T] with I-S] = l,T] (i.e. with {S"x: nEZ} = {Tnx: n~Z} for #- 
a.e. xeX), such that the following conditions are satisfied: 

(1) b(x)=O for #-a.e. x~B; (2.10) 

(2) If  f l = f  + b r - b  and fl(S, ") is defined as in (2.7) then 

fl(S, ")=0 #-a.e. on X \ S - 1 B  (2.11) 
and 

fl(S, ")>5 #-a.e. on S - lB .  (2.12) 

Proof The basic idea of this proof is due to W. Krieger 1,10-l. Since f is 
transient we can find an 5>0 and a BE5 p with 0 < # ( B ) < I  such that 
[f*(k, x)l>e for every k~7/and every xeBcaT-kB. For xeB, let 

Ax= {f*(k , x): k~TZ. and Tkx~B}. 

Equation (2.2) implies that, for every xeB, and for every a, fi~Ax with a+fl ,  we 
have Ic~-/?l _->~. This allows us to define, for every x~B, 

~ + (x)= {o in  {c~Ax: c~ > 0} otherwise, if this set is non-empty, 
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t) (x )={Oax{a~Ax:a<0}  if this set is 

and to conclude that O_+:B~IR are measurable functions with ~+_>_e and 
~_ < - e  #-a.e. on B. There exist unique measurable functions m__:X--,Z with 
m e =0  on X \ B  and such that r'~• and f*(m+(x), x)=O_+(x) for every 
xsB. Define V+_ : X ~ X by 

V+_x= Tm~(X)x, x~X. (2.13) 

Equation (2.2) and the definitions of ~_+ show that V+ and V are non-singular 
endomorphisms of X with V + V x = V  V+x=x #-a.e., so that V+e[T]. Fur- 
thermore, 

f(V+,x)=ftp+(x) for xeB, (2.14) 
otherwise, 

and 
{ V~_ x : m~;g} = {Tmx: meTZ} c~B (2.15) 

for/~-a.e, x~B. Next we define a measurable function rn: X~2g  by 

: Tmx~B} i fx~B and if this set is non-empty, 

otherwise, 

, , [ r a in{m>0 
rBtx) = ~0 

and define VB: X ~ X  by 
VBX= TrB(x)x, x~X. 

Apart from a minor change V B is the transformation induced by T on B. Note 
that VB~[T 3 and that 

V71 x =  T -rB(V~ lX)x #-a,e. (2.16) 

Turning now to the definition of S and b we put 

S= V+ V f l T  (2.17) 

and define b: X ~ I R  #-a.e. by setting, for every xeB and ke2~ with O<k<rB(x), 

b ( T k x ) = { o f * ( k - 1 ,  T-kx)  ifotherwise.k~=0, (2.18) 

From (2.15) and (2.17) one easily concludes that [S] = [T]. The function b in 
(2.18) is obviously measurable and satisfies (2.10). Put f l  = f +  bT-b .  Then 

fl(x)=f*(rB(VB -1 Tx), Vff -1 Tx) #-a.e., (2.19) 

and, in particular, f l  = 0 on X \ T - 1  B. Since S = T on X \ T - 1 B  = X \ S - 1 B  we 
also have fl(S, .)=f~ =0  on X \ S  -1 B, as claimed in (2.11). Finally, if x e S - 1 B  
= T -a B, (2.7) and  (2.17) show that 

f l  (S, x) =fl* (n (V+ V~ -1 T, x), x), 
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and (2.13) and (2.16) yield that 

n(V+ VB-1T, x)=n(V+, V i  I Tx )+n(V i  a, T x ) + l  

=m+ (VR -1 T x ) - r B ( V i  I Tx)+  1. 

Equations (2.2), (2.10) and (2.19) now imply that 

f ,(S, x)=f*(m+(VB -1 Tx), VB 1 Tx)--f*(rB(VB 1 Tx), VB -1 TX) 

+ f * ( r B ( V l f  1 Tx), V i  1 Tx)=O+(V~ 1 Tx)>~. 

This proves (2.12). [] 

Before we can discuss the connection between recurrent functions and 
Radon-Nikodym derivatives we apply Lemma 2.3 to the recurrence of Radon- 
Nikodym derivatives. 

2.4. Proposition [10, 13]. Let 
, d#T 

p = , o g  ~ (2.20) 

Then the function p: X --+ IR is recurrent. 

Proof Assume that p is transient and apply Lemma 2.3 to find B e ~  e>0,  
Se[T] and b:X--+IR with the properties stated there. We define a o--finite 
measure v on (X, 5 P) by dv(x)=eb(x)d#(x) and conclude from (2.10) that 

dvS 
O<#(B)=v(B)<I, and that p~(S,')=log ~ -  v satisfies pl(S,.)=O on X \ S - ~ B  

and pl(S, .)>8 on S-~B. In particular, the induced transformation S B of S on 
B satisfies 

dvSB>e~>l+g 
dv 

v-a.e, on B, so that 

dvS~ 
v(B) = v ( & B )  = ! dv >(1 + 0  v(B), 

which is impossible. Hence p is recurrent. [] 

2.5. Theorem. Let T be a non-singular, aperiodic, conservative automorphism of a 
non-atomic Lebesgue space (X, ~ #), and let let p: X-+F, be defined by (2.20). 
For every measurable function f: X--+1R", n> 1, the following conditions are 
equivalent. 

(1) f is recurrent; 
(2) The function (f, p): X--+IR "+1, given by 

(f, p)(x)= (f(x), p(x)), 
is recurrent. 

Proof Clearly (2) implies (1). I f f  is recurrent, but (f, p) transient, we can find a 

= log d#Tm (x) set BE5 p with # (B)>0  and an 8>0  such that ]p*(m,x)[ - 5  >8 
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whenever xeBc~T-mB and ][f*(m,x)[] <2e, m4=0. Consider the skew product 
transformation W on Y= X x Nn given by 

W(x, e) = (rx, e +f(x)) 

for every xsX ,  eelR". Define a measure /2 on Y by setting d/2(x, e)=d#(x)de, 
where de stands for integration with respect to Lebesgue measure on N n. The 
transformation W is a non-singular, aperiodic automorphism of (Y,,/2), and the 
recurrence of f is easily seen to imply that W is conservative. By Proposition 
2.4, the function 

d#T 
log (x, e )=  log T ~  (x), (x, e)~ Y,, 

is recurrent for the automorphism W on (Y,/~). Put C=-B x {eeN": ][el] <e} and 
choose an integer mo 4 = 0 with 

For  this integer m o we obviously have 

dfiW"~ (x, e)<e;~ 
dg )I 

>0. 

#(Bc~T-m~ ]lf*(m0, x)]] <2~} c~ {x" Ip*(mo, x)l <E)) >0,  

contrary to our assumption concerning B and e. This contradiction shows that 
(f, p) is recurrent. []  

The remarkable property of the function p described in Theorem 2.5 has 
several interesting consequences. The first one concerns the recurrence set R(p) 
of p. 

2.6. Corollary. Let p be given by (2.20). The R(p)= {0}. 

Proof Proposition 2.4 implies that OeR(p). If aeR(p) for some real number 
e~:0 we can apply Theorem 2.5 to see that the function F: X ~  e, given by 

( 011) F(x)=(p(x)-e,p(x)),  is recurrent. Put A =  and note that 

A . F : X ~ I R  2, given by A.F(x)=(e,p(x)),  must again be recurrent, which is 
absurd. This contradiction proves the corollary. [] 

The remainder of this section will be devoted to characterising recurrence 
or transience of a function f :  X-MR" in terms of the asymptotic behaviour of 
the sequences ((f*(k, x), p*(k, x)), k~TZ) for individual points x~X.  This charac- 
terization will enable us to see that the notion of recurrence introduced here 
coincides with the classical concept of recurrence for random walks. 

2.7. Theorem. Let T be a non-singular, aperiodic, conservative automorphism of a 
non-atomic Lebesgue probability space (X, ~,, #) and let p be defined by (2.20). A 
measurable function f: X ~ IR" is recurrent if and only if 

lim inf(Hf*(m, x)ll + Ip*(m, x)l)=0 #-a.e. (2.21) 
m ~ o o  
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Proof. I f f  is recurrent, Theorem 2.5 shows that (f, p) is recurrent, and (2.21) is 
an easy consequence of that. To prove the converse we define a skew product 
transformation W on Y= X x ~,.'+ 1 by setting 

W(x, c~, t) = ( Tx, c~ + f (x), t + p (x)) (2.22) 

for every x e X ,  ~ , ' ,  t eN .  Let /2 denote the measure dfi(x,e, t)  
=d#(x ) .  d~. e - ' d t  on 1<. Then W is a measure preserving, aperiodic automor- 
phism of the infinite measure space (Y,/2). Put 

C = X x  {(~, t)~lR" x IR: I[<1 + l t l <  1} 

and denote by v the restriction of /2 to C. Condition (2.21) implies that the 
induced transformation W c of W on C is well defined. Since W c is an aperiodic 
automorphism of the finite measure space (C, v) which preserves v, W c must be 
conservative. This in turn implies the recurrence of the pair (f, p), and, in 
particular, the recurrence off .  [] 

If T is ergodic, the following result gives a simple characterization of 
transient functions. 

2.8. Theorem. Let T be a non-singular, ergodic automorphism of a non-atomic 
Lebesgue probability space (X, 5~, #), and let f: X-+JR" be a measurable function. 
Then f is transient if and only if 

lim (llf*(m, x)ll + Ip*(m, x)l)= oo #-a.e., (2.23) 
m ~ o o  

where p is defined in (2.20). 

Proof. In view of Theorem 2.7 we only have to prove that the transience of f 
implies (2.23). Assume therefore that f is transient and consider the automor- 
phism W of the measure space (Y,/2) defined in (2.22). Since f is transient, W is 
not conservative, and the ergodicity of T is easily seen to imply that W is 
completely dissipative: there exists a measurable set D c Y  with WkDc~D=gp 
for all ke7/., k4=0, and such that /2(Y\(J  WkD)=0. If (2.23) is not satisfied we 

kE• 

can find an N > 0  and a set B e 5  P with # (B)>0  such that 

lim inf(il f *  (m, x)il +IP* (m, x)l) < N 
m ~ o o  

for every xeB.  Let E = B  x {(a, t)~lR"+l : [mail + Itl < 1}, F = X  x {(c~, t)slR "+ 1: iiei[ 
+ [ t l < N + l }  and assume (without loss in generality) that fi(Dc~E)>O. For  
every y eD c~ E, F contains infinitely many elements of { W " y : m  >= 0}. Hence 

00= 5 ~, ZW~(D~F)~Fd/2 = ~, /2(Wm(Dc~E)c~F)</2(F)<oo, 
m>__0 m__>0 

where HA denotes the indicator function of a set A. This contradiction shows 
that (2.23) is satisfied whenever f is transient. [] 

2.9. Corollary. Let T be a non-singular, aperiodic, conservative automorphism of 
the probability space (X, ~, #) and let f: X ~ ~ "  be a measurable function, Then f 
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is transient if and only if 

#({x: lim (llf*(m, x)l[ +[p*(m, x)])= oo})>0. (2.24) 
m ~ o o  

Proof Apply Theorem 2.8 to the ergodic components of #. [] 

2.10. Proposition. Let T be a non-singular, aperiodic, conservative automorphism 
of a non-atomic Lebesgue space ( X , ~  lO and let f:  X ~ "  be a measurable 
function. Then the recurrence set R( f )  o f f  is a Borel subset of JR". 

Proof Without loss in generality we may assume that # ( X ) = I .  By Theo- 
rem 2.7, 

R ( f ) =  { ~ " :  lira inf(l[ f *  (m, x)-m~l] +lp*(m, x)[)=0 a.e.} 
t ? l ~  OO 

and hence obviously a Borel set. []  

If T is a measure preserving, ergodic automorphism of a probabili ty space 
(X, ~ # )  and f :  X ~ N "  a measurable function, Theorems 2.7 and 2.8 yield the 
following dichotomy: either lim ]lf*(m, x)][ = oo a.e., in which case f is tran- 

m 

sient, or l iminfl ] f*(m,  x)ll = 0  a.e., i f f  is recurrent. In the special case where X 
m 

=(IR") z, p = v  z for some probability measure v on N", 5 ~ the product a-algebra, 
T the shift on X given by (TX)k=Xk+ a for every x = ( . . . x l ,  xo, xl, ...)eX, and 
where f :  X ~IR"  is the function f (x)=xo,  this dichotomy reduces to the classi- 
cal definitions of transience and recurrence of the independent random walk on 
IR" with distribution v. In order to determine which of these two possibilities 
occurs, classical probability theory looks at the distributions of the random 
variables (f*(m, "), r e > l ) :  for every r e > l ,  define a probabili ty measure Vm on 
~ "  by setting, for every Borel set CclR", vm(C)=#{x:f*(m,x)eC }. In the 
special case described here, vm=v *m, the m-th convolution power of v, and f is 

recurrent if and only if ~ vm(C)= oo for some bounded set C. Unfortunately 
m = l  

this is no longer true if one removes the condition that the functions f, f .  T, ... 
are mutually independent: if T is a measure preserving, ergodic automorphism 
of a probability space (X, ~ #) and f :  X --+ IR" is measurable, f may be transient 

OO 

even though ~ Vm(C)=~ for some bounded Borel set Cc lR" ,  where v m is 
m = l  

defined as above (cf. [1]). It is not difficult to prove that the classical result can 
be salvaged if one allows f to be modified by a coboundary:  f is transient if 
and only if there exists a measurable function b: X--+ IR" such that, for f l  = f  

+ b T - b ,  and for v~)(C)=#{x:f*(m,x)~C}, ~. .o) C < v m ( ) oe for every bounded 
m = l  

Borel set CclR" .  This fact may be moderately interesting, but it does not lead 
to any useful criteria for recurrence. In the next section we choose a different 
approach and study the distributions of the functions f* (m, ' ) /m,  re>l, for a 
given real valued function f on X in order to obtain some information about 
the recurrence set of f 
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w 3. Recurrence in the Measure Preserving Case 

In the general framework of Sect. 2 it seems difficult to find any conditions for 
recurrence which go beyond the criterion given in Theorem 2.7. The much 
more challenging problem of describing the recurrence set R( f )  of a given 
function f has to be left completely open in this case. Even for a bounded 
function f it is not clear under which conditions R(f)+-d? (cf. Proposition 4.2 
and 4.4 for some special cases). If T is measure preserving and ergodic one 
obtains a further criterion described in the concluding remarks of Sect. 2, but 
once again the set R( f )  remains a mystery. In this section we restrict the scope 
of our investigation still further and assume that T is a measure preserving, 
ergodic automorphism of a non-atomic Lebesgue probability space (X, ~ #) 
and that f is a measurable real valued function on X. We start with a slight 
improvement of Lemma 2.3. 

3.1. Lemma. Assume that f: X ~ IR is transient and let f l  = f +  b T - b  and S~ IT]  
with IS] = [T]  satisfy (2.10)-(2.12). Put 

Ao = Sfl (S, .) d#. (3.1) 

Then we can find, for every cSeP,, with 0 < 6 < A 0 ,  a measurable function 
b 2 : X ~  with 

f(S, x)+b2(Sx)-b2(x)>b #-a.e. (3.2) 

Proof By (2.11) and (2.12), A 0 > e # ( B ) > 0  , and we can apply [9, Theorem 1 and 
Corollary 3] to find the required function b 2 satisfying (3.3). [] 

3.2. Remark. To understand the geometrical significance of Ao, consider the 
skew product transformation W on (X • R,  # x 2) (2 is the Lebesgue measure 
on R)  given by 

W(x, t) = (Tx, t +f(x)) 

for every (x, t)~X xlR. As in the proof of Theorem 2.8 the transience of f 
implies the existence of a measurable set D c X x ]R with WkDc~D = q5 for k@ 0 
and such that /~(XxF,. \(  u WkD))=0, where / ~ = # x 2 .  The measure /~(D) is 

k~Z 

independent of the actual choice of D, and it is easy to see that one of these 
possible choices is 

D =  {(x, t )6X x ~ :  O<t <fl(S, x)}. 

Hence we have 
A o = S f~ (S, ") d# =/~ (D). (3.3) 

If Se[T] is the automorphism of (X, ~ #) described in Lemma 2.3 we can 
define, as in (2.6), a measurable function a: Z x X ~ Z  by setting 

Sa~k, x) x = T k x #-a.e. (3.4) 

for every k~Z. For  every k, l~7Z, 

a(k, Tlx)+a(l, x)=a(k+l,  x) #-a.e. (3.5) 
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Since IS] = IT], one can find a null set N ~ X  with the following property: for 
every x e X \ N  and every ieTl there exists a unique k~eT/with 

a (ki,  x )  = i. 

Using this fact we can prove the following lemma. 

3.3. Lemma. For every m>= 1, t/>O we have 

and 

1 
#{x: la(k, x)l < Ikl r/} <2r/ (3.6) 

2m 1 __<lkl_<,~ 

1 
-- ~ ~ Mx' la(k ,x) l~ lk lU2"}~8~l .  (3.7) 
m n > l  l < ] k l < m . 2 n  

Proof For a.e. x E X  we have 

~{keZ :  l_-<ikl__<m and la(k,x)L<lkltl} 

< ~ {k+0: [a(k, x)] <mtl} <__2mtl, 

and (3.6) follows by integrating with respect to #. To prove (3.7), note that 

1 
-- ~ ~{keTZ,: l<lkl__<m.2", la(k,x)[<lkltl/2"} 
17/ n > O  

1 
=- -  ~ ~ {n>0: ]kil<__m.2"<=mlkiltl/lil} 

m 1-<Ill <~/m 

1 
< -  2 (e{n_->0: l<m.2"<mUFI}+l) 

m 1 <  ii[ __<~/m 

= <St/, 

and the result follows once again by integration. [] 

We define probability measures {al: l ~ . ,  /+0} and {Zk: k > l }  on N by 
setting, for every Borel set C c • ,  l+0,  k >  1, 

al( C)= # {x : f*(l,  x)/le C} (3.8) 
and 

zk(C) = 1  Z a,(C). (3.9) 
1_--<111 _-<k 

Our next lemma implies that the asymptotic behaviour of these measures is 
unaffected if we replace f by a cohomologous function. Let b': X ~ N  be a 
measurable function and define probability measures or'z, l+  O, on N by 

ai(C) = I~ {x : ( f*  (l, x) + b' (T z x) - b' (x))/lE C} 

for every Borel set C c  IR. 
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3.4. Lemma. For all a < b in IR and e > O, 

lira inf(a I [ a -  e, b + e] - a' l [a, b]) > 0 
Ill~oo 

and 
lim inf(a'zEa-e , b + e ] - a z [ a ,  b])__> 0. 
Ilt~oo 

Proof. This is obvious from the definitions. [] 

3.5. Lemma. Assume that f :  X - + I R  is transient and define A0>0 as in (3.1). 
Then we have, for every */> O, 

lira sup %([ - */, */]) = 2*//A o, (3.10) 
k ~ o o  

and 
N 

lim sup ~ 2 n- Zm. 2"([ --*//2", *//2"]) < 8*//A o (3.i 1) 
m ~ o o  n ~  1 

for every N >-_ 1. 

Proof  For every c~61R with 0<f i<Ao,  Lemma 3.1 allows us to find a measur- 
able function b 2 : X - * ~  such that f2 = f +  b2 T - b 2  satisfies 

f2 (S, x) = f (S ,  x) + b 2 (Sx) - b 2 (x) > 6 

p-a.e. From this one concludes easily that 

I f~(k ,x) l~cSla(k ,x) l  #-a.e., 

for every keZ, where a : Z x X ~ T Z  is defined in (3.4). Define, for every leTZ., 
14: 0, and k > 1, o-' z and z~, by (3.8) and (3.9), respectively, with f replaced by f2. 
For every 14:0 we have 

o"l([--*/, */])=#{X : [f2(l, X)l <Ill */} 
<Iz{x: la( l ,  x)[ < Ik] *//6}. 

Hence 
z~([-*/, */])<2*//3 

for every k > l ,  */>0, by (3.6). Lemma 3.4 yields that 

lira sup %([ - */, */]) <2*//3 
k 

for every */>0 and every ~ with 0 < 6 < A o ,  and this implies (3.10). 
In the same manner one proves that, for every m=> 1, */>0, 0 < 6 < A o ,  

~, 2" ' �9 T i n ,  2 ' * ( [  - -  *//2n, *~~2hi) ~ 8.//(~, 
n > l  

by using (3.7). From Lemma 3.4 it follows that 
N 

lim sup ~ 2" zm.2~ ([ -*//2", *//2"])< 8.//3 
m ~ o o  n = l  

for every N=>I and every a with 0 < a < A o ,  which implies (3.11). [] 
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We can now state the main result of this section which will allow us to 
obtain various conditions for recurrence and transience o f f - a ,  ~ I R ,  in terms 
of the asymptotic behaviour of the measures ~k, k > 1. 

3.6. Theorem. Let T be a measure preserving, ergodic automorphism of the 
probability space (X, 5f,,#) and let f :  X ~  be a measurable function with 
recurrence set R( f ) .  Then R ( f )  is a Borel set, and there exists a Borel map 
A : ~ \ R ( f ) ~  ~ + such that, for every ~ d R \ R ( f )  and every r/>0, 

lira sup Zk([a -- ~/, ~ + r/]) < 2 r/. A (~) (3.13) 
k-;oo 

and 
N 

lim sup ~ 2"z m. 2,([e-t / /2",  a+t//2"])=< 8t/- A(~) (3.14) 
m ~ o o  ?I= ]. 

for every N >  1. Here (Zk, k>  1) is the sequence of probability measures on IR 
defined by (3.8)-(3.9). 

Proof The only statement in this theorem which goes beyond Lemma 3.5 is the 
trivial assertion that the map a + A  (~) in (3.13) and (3.14)may be chosen to be 
Borel on I R \ R ( f )  (cf. Remark 3.7). [] 

3.7. Remark. For  every ~ e l R \ R ( f ) ,  define A= as the measure of the sweep-out 
set D, for the skew product transformation 

W ~ (x, t) = (Tx, t + f (x )  - ~) (3.15) 

on (X x •, # x 2) (cf. Remark 3.2). It is not difficult to verify that the map 
~ o A , = ( g  x 2)(D,) is Borel on I R \ R ( f ) ,  and we may, of course, choose 

A (~) = A~-I (3.16) 

for every a e R \ R ( f ) .  This choice of A(.) yields the following 
corollary. 

3.8. Corollary. Assume that there exists an ~ ] R \ R ( f )  for which the sweep-out 
set D~ for the transformation W ~ (cf (3.15)) has infinite measure. Then 

lim ~k = 0 
k 

in the vague topology or, equivalently, 

lim [f*(k, ")/k[ = 
Ikl-~oo 

in measure. 

The next (and probably more appealing) corrollary has been obtained 
independently by F.M. Dekking [4] and B. Weiss. 

3.9. Corollary. I f  l imf*(m, ")/m = 0  in measure then f is recurrent. 
m 

Proof. In this case l imzk=6 o, the measure concentrated at 0. Now apply 
(3.13). [] k 
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3.10. Corollary. Let Z denote the set of limit points of (Zk: k > l )  in the vague 
topology. For every vex  we write v=vac+Vs for the decomposition of v into its 
absolutely continuous and singular parts, respectively. Then the following holds 
for every yeS. 

(1) v((a-tl, e+rl))<2tlA(a)for every ~ E N \ R ( f )  and t />0;  (3.17) 

(2) v~(lR\R(f))=O. (3.18) 

Corollary 3.10 implies in particular that R ( f ) ~ O  if the measures in Z are 
not all absolutely continuous. The following corollary goes even further. 

3.11. Corollary. For every a e N , \ R ( f )  we have 

sup sup v([c~-t/, c~+ t/])/2t/< oo (3.19) 
ve.~ r t > 0  

and 
inf inf v ( [a - r / , e+ t / ] ) /2 t /=O.  (3.20) 
v~2 0 < r / <  1 

Proof The first inequality is clear from (3.17), To prove (3.20) choose an 
increasing sequence (ink, k > 1) of natural numbers such that 

lim zm~. 2 n = •n (3.21) 
k 

exists for every n__>0 in the vague topology. Put A =  {telR: v,({t})>0 for some 
n>0}.  The set A is countable, hence H = { t / > 0 :  ~++_tl/2"(~A for all n>0} has a 
countable complement. For every t /eH we get that 

lim z,,~. 2 , ( [~ -  ~//2", ~ + t//2"]) 
k 

= v,([c~-q/2", ~ + t//2"]), 
so that 

2" v , ( [7-q /2" ,  ~+~/2"])/2~<4A(~), 
n = 0  

(3.22) 

v,([c~ - t//2", ~+ t//2"]) < 8~ A (~)/N . 2", 

and this implies (3.20). [] 

In the case of classical, one-dimensional, independent random walks the 
acid test for any sufficient condition for recurrence has always been the Cauchy 
Random Walk based on the probability measure dr(a)= (n-(1 + ~2))-1 d~ on R 
(we refer to the discussion at the end of Sect. 2). In this case a~ = v for every 
l=t = 0, hence S = {v}, and Corollary 3.11 yields the following well known result. 

3.12. Corollary. I f  f is the Cauchy Random Walk then R ( f ) = ~ .  

All the corollaries obtained so far (with the exception of condition (3.18)) 
are ' local '  in the sense that they describe recurrence or transience at a specific 

by (3.14). For every N > I  we can thus find an integer n with O<_n<_N such 
that 
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point eeN.  We conclude this section with a 'global' consequence of Theo- 
rem 3.6 which gives a sufficient condition for R (f) to be non-empty. 

3.13. Corollary. Let f:  X ~ IR be a measurable function with the following prop- 
erties. 

(1) The measures z k, k > l, are uniformly tight; 
(2) The set S, of vague limit points of (Zk, k->l) is uniformly absolutely 

continuous. 

Then R ( f )  :~ (9. 

Proof The two conditions of this corollary may be rephrased as follows: every 
y e s  is an absolutely continuous probability measure on ~ ,  and we can find, 
for every 5>0, a 6>0  with v(E)<e for every v e x  and every Borel set E c N  
with 2(E)<6. Now assume that R(f)=q5 and consider the sequence 

dvn 
(vn, n__>0)cS defined in (3.21). We denote by qS, the density function ~ of v,. 

By letting r /~  0 in (3.22) we see that 

q~,(e)< A(e)< oe (3.23) 
n = 0  

2-a.e. on ~ .  The uniform tightness of (Zk, k_->l) and hence of S implies that 
there exists an M > 0 with 

v,({eeN: I~1 < M } ) =  S q~, d 2 > 1  (3.24) 
{~: I~l _-< M} 

for every n__> 0. Using the uniform absolute continuity of 2 we choose a 6 > 0 
with v,(E)<~ for every n_->0 and every E c R  with ;~(E)<6. From (3.23) one 
concludes the existence of an N__> 0 with 

2 { ~ e ~ :  [~[<M and ~b , (c~)>~}<6  

for every n > N. By combining these inequalities we get that 

+v ,  c~: Ic~l<M and q5 (c~)>~-  <~,  

which contradicts (3.24). Hence R(f)=t = ~. [] 

3.14. Remark. It seems reasonable to conjecture that Corollary 3.13 should be 
true without condition (2), i.e. that the uniform tightness of the measures 
Zk, k>=l, alone should imply that R ( f ) ~ o .  By using a proof similar to that of 
Corollary 3.13 one only obtains the following: i f f  satisfies R(f)=q~, and if the 
measures Zk, k > l ,  are uniformly tight, then there exists a vex  and a set C c l R  
of first category, but of positive Lebesgue measure, with v(C)= 1 (note that v 
must be absolutely continuous, by Corollary 3.10). The main difficulty in 
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proving the conjectured version of Corollary 3.13 lies in the fact that the 
function A (.): ~ ~ ~ +  may not be locally integrable. The situation improves if 
one considers the 'symmetrized'  function F: X x X ~ N  given by F(x, y)=f(x) 
- f ( y )  for the automorphism T x T on (X x X, 50 x 5~, # x #). If the measures 
"Ok, k>l ,  arising from the function f are uniformly tight, then our techniques 
yield that the function F is recurrent for the automorphisms T x T. 

w 4. Examples of Recurrence Sets 

Let T be a non-singular, ergodic automorphism of a non-atomic Lebesgue 
space ( X , ~ # )  and let f:X--->~ be measurable. From Proposition 2.10 we 
know that R(f )  is a Borel set, but some of the following examples will show 
that R( f )  can be quite complicated. Corollary 3.9 provides an example of a 
finite measure preserving, ergodic automorphism T and of a function f with 
R( f )= IR .  In order to obtain a few more examples we start with some elemen- 
tary facts, most of which are quite well known. 

4.1. Lemma. Let T be a non-singular, aperiodic, conservative automorphism of a 
non-atomic Lebesgue space (X, 5~, #) and let f:  X ~ IR be measurable. I f  

lim If*(n, x)/nl = oo #-a.e. (4.1) 
n 

then R(f)=q$.  If, on the other hand, 

lira ]f*(n, x)/nl = 0  #-a.e. (4.2) 
n 

then we either have R( f )  = {0} or R( f )=  c~. 

Proof This is obvious from the definitions. [] 

4.2. Proposition. I f  (X, 5~, #) is a non-atomic Lebesgue probability space, T a 
measure preserving,, ergodic automorphism of (X, 5~, #), and fEL 1 (X, 5~, #) then 
R( f )  = {~fd#}. 

Proof Let a=~fd# .  The ergodic theorem shows that 

lim f*  (n, x)/n = c~ #-a.e. 
n 

and hence in measure, and Corollary 3.5 implies the recurrence o f f - c ~ ,  while 
Lemma 4.1 yields that R ( f ) c  {c~}. [] 

4.3. Remark. Assume that T is a measure preserving, ergodic automorphism of 
the probability space (X, ~ #). If f :  X--+ IR is measurable and cohomologous to 
an integrable function, then card R ( f ) = l ,  by Propositions 2.2 and 4.2. If a 
measurable function f :  X--->N satisfies card R( f )>  2 then this implies in partic- 
ular that f is not cohomologous to any Ll-function. For  a discussion of some 
related problems we refer to [9]. 
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4.4. Proposition. I f  (X, 5~, l~) is an infinite, non-atomic Lebesgue space, T a 
measure preserving, ergodic automorphism of (X, 5~, l~), and f eL 1 (X, 5~, #), ~hen 

R(f)=S{O} if ~fd#=O,  (4.3) 
otherwise. 

Proof Let B e 5  ~ with /~(B)=I and define r B : X ~ Z ,  b : X ~ I R  and f a = f + b T  
- b  as in the proof of Lemma 2.3. The function f l  satisfies (2.19), and, in 
particular, f l = 0  on X \ T - 1 B .  An easy argument shows that S f ~ d # = S f d # .  
Now consider the restriction q5 of f~ to the set C =  T - I B  and the automor- 
phism T c induced by T on the set C. The restriction /~c of # to C is a 
probability measure, and Proposition 4.2 shows that the function ~b on C is 
recurrent for the automorphism T c of (C,#c) if and only if Sr 
= ~fd#=O.  One immediately concludes that f~, and hence f, is recurrent for T 
if and only if ~fdl l=O. Lemma 4.1, together with the individual ergodic 
theorem for infinite measure preserving transformations, shows that, on the 
other hand, R ( f ) c  {0}, and this completes the proof of this proposition. [] 

In all the examples described so far, R( f )  is either empty, or a single point, 
or equal to IR. We now show how functions with a more exotic recurrence 
behaviour can arise in a natural context. 

4.5. An Example Where R ( f ) n ~ = { - 1 ,  1}. This example is based on the fact 
that the cartesian product of two independent, two-dimensional, recurrent 
random walks is a four-dimensional random walk and hence transient. Let S 
on (Y, v) be the uniformly distributed 4-shift: Y={0, 1, 2, 3} ~, v=v~ with Vo(i ) 
-4-1- for all i=0,  ..., 3, and let S be the shift on (Y, v) given by (Sy),=y,+ 1 for 
every Y=(..-Y-1, Yo, Yl . . . .  )eY. Let qS" Y-+TZ 2 be defined by 

(1, 0) if Yo =0, 

= ~ ( -  1, 0) if Yo=l ,  

~b(y) ](0, 1) if y0=2,  

1 ( 0 , - 1 )  if yo=3 .  

We denote by 2, the counting measure on Z" and consider the skew product 
transformation V on (Y x Z 2, v x 22) given by 

V(y, p)= (Sy, p + ~b(y)), (y, p)e Y • Z 2. (4.4) 

As a consequence of the welt-kn0wn recurrence of the two-dimensional, inde- 
pendent random walk based on the probability measure 0 ( 1 , 0 ) = 0 ( - 1 , 0 )  
=0(0, 1)=0(0, - 1 ) = � 8 8  on 772, V is conservative and, in fact, ergodic on the 
infinite measure space (Y x Z 2, v x 22). Now consider the space Z = Y x Y x ~2 

X 7]~ 2 with product measure ~=  v x v x 22 x 22, and define measure preserving 
automorphisms V~, i = 1, 2, of (Z, e) by setting 

V~ (y, y', p, p')=(S y, S - a y', p+ (o(y), p' -qS(S -1 y')) 
and 

v~ (y, y', p, p') = (s y, s y', p + q~ (y), p' + q~ (y')), 
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for every y, y'eY,, p ,p '~Z  2. We are now dealing with four-dimensional random 
walks, and this is well known to imply that V 1 and V 2 are dissipative. As in the 
proof  of Theorem 2.8 we can find a measurable set X = Z  with V ( X c ~ X = O  
for k+0 ,  kETZ, and such that n ( Z \ U  V ( X ) = 0 .  Apart  from a null set we may 

keZ 
thus write Z = X x Z ,  n = # x 2 1 ,  where # is the restriction of ~z t o  X, and 
represent V 1 on (X x Z, # x 21) by 

Vl(x, n)= (x, n + l )  

for every (x, n)EX x Z. The automorphism V2, considered as a map on X x Z, 
commutes with V 1 and is therefore of the form 

V 2 (x, n) = (Tx, n +f(x)),  (x, n )eX  x 7Z, 

where T is a measure preserving, and necessarily ergodic, au tomorphism of the 
non-atomic Lebesgue space (X,#)  and f :  X ~ Z  a measurable function. Since 
V 2 is not conservative, f is transient. 

In order to find out about the recurrence o f f +  1 and f -  1 we note that W 1 
= V  1 V 2 and Wz=V1-1 V 2 are given as follows: on (XxTl ,  # x 2 1 )  , 

Wl(x, n)=(Tx,  n+ f ( x ) +  1) 
and 

W2(x, n )=(rx ,  n + f ( x ) -  1), 

while on (Z, ~) they are represented as 

WI (y, y', p, p')=(S2 y, y', p + O(y) + ~(S y), p') 
and 

w2(y , / ,  p, p') = (y, s 2 / ,  p, p '+  q~(Y) + q~(sj)). 

The recurrence of the function ~b for the automorphism S of (Y, v) (or, equiva- 
lently, the fact that V in (4.4) is conservative) implies that both W 1 and W 2 are 
conservative and hence that f +  1 and f -  1 are recurrent. 

To see that no other rational number  lies in R(f ) ,  assume that m / q e R ( f )  
with m :t = ___ q. Then 171 + " V~ would have to be conservative, which we know not 
to be the case. This proves that R ( f ) n Q =  { - 1 ,  1}. Although I would conjec- 
ture that R ( f ) = { - 1 ,  1} I do not know how to deal with irrational numbers in 
this example. []  

4.6. An Example  where Both R ( f )  and l l . \ R ( f )  Are Dense. Let X be the 
additive group of tri-adic integers with its usual compact  topology and with 
Haar  measure #. Every element x ~ X  can be written as a formal power series 

x = ~ ci(x ) . 3 i (4.5) 
i = 0  

with ci(x)~{0, 1, 2} for every i__>0. The natural  numbers N are embedded in X 
in the usual way as the (dense) set of terminating power series. Define the ' tri-  
adic adding machine '  t ransformation T: X ---, X by 

T x =  x + l, x~X.  
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Then T is a measure preserving, ergodic automorphism of the non-atomic 
probability space (X,/~). For every x~X,  put 

where 

V X = X =  ~ Ci(X)" 3 i, (4 .6)  
i=0  

i if ci(x)=0, 
?i(x)= if ci(x)= 1, (4.7) 

if c i(x) = 2, 

and put S--VTV. Clearly IS]=  IT], and we can find a measurable function 
f :  X ~ Z with 

S I(x) x = Tx #-a.e. (4.8) 

(cf. the discussion preceding Lemma 3.2, and formula (2.6)). We shall now 
prove that 

�9 m, neN and m4=n , (4.9) 
/ / ' / - -  n 

where r~ and fi are given by (4.6). Indeed, let 

~e : m, neN,  m4=n =D. -- rl 

We write e as ( (n+k)-g) /k  for some k > l ,  n>0,  and choose L > 0  with c~(n+k) 
=c~(n)=0 for all i>=L. If B o X  is a measurable set with /~(B)>0 then there 
exists an integer M > 0  and a point x e B ~ T - k ' 3 ' ~ B  with 

cM+~(x)=c~(n) 
and 

c~ +i(T k. 3M x)= ci(n + k) 

for all i = 0 , . . . , L .  From (4.6) and (4.8) it is now clear that f*(k .3M, x) 
= 3 ~ ( ( h ~ ) - h )  and hence that o~R(f) .  This shows that D c R ( f ) ,  and an 
elementary argument yields that R ( f ) ~  II)~ D. 

In order to see that l l . \ R ( f )  is dense in IR it suffices to observe that 
3k/l~D, and hence not in R( f ) ,  if keZ  and l>  1, l ~ 0  (mod 3). 

Finally we turn to the problem of showing that D, and hence R(f) ,  is dense 
in IR. One can verify that, for every p > l  and every k=0,  1, . . . , (3P-1)/2,  the 
following four numbers are elements of D: 

2.(3k+l) / (3P+l+l) ,  (3P+1 + 1)/2(3k+ 1), 

- 2 . (3k+1) / (3  p+I-1) ,  - (3  p + l - 1 ) / 2 . ( 3 k + l ) .  

Hence D is dense in ~ .  Once again the set R ( f ) n •  can be described quite 
easily in this example, while the irrational elements of R( f )  are more elusive. 1 
shall restrict myself to constructing an uncountable set of irrational numbers in 
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R(f). Let f 2 = Z 2  ~ and define, for every (o=((ol ,  02 ,  ...)fiG, a real number  ~o, by 

%,= (g~l(l +(ok)" 3-k!) / (k~l(2--(ok)" 3--k! ) �9 

The numbers  %, and e~,, are distinct whenever  co~=(o'. To see that ~ , e R ( f )  for 
every coeO, put, for every n > 1, 

m , =  3 "! ~ (2-- (Ok). 3 k!, 
k = l  

o~,~ ) =rfi,/m, (cf. (4.6)), 

and note  that  

I % - ~ 1  <__6-3 -"z. m y  1 

For  every l >  0, n > 1, define sets B}")c X by 

BI')={xeX: q+k! (x )=0  for k = l ,  2, ..., n}. 

F r o m  the definition of S and from (4.8) it follows that, for every xeBl "), 
f*(Jm,, x )=  31 ff~,. 

Hence  
I f *  ( J  m,,, x ) -  3 z m,, %,1 = 3l rn,,[ ~(2 ~ - c%l < 6 . 3  l - ' ! .  

n! - - n  

Finally we note  that  C(")= ~) BI ") satisfies 
I = n  

lira # (C  ~")) = 1, (4.10) 
n 

and that  we can find, for every xEC (~), an integer l>n with 

If*(3 ~ m,, x ) - 3  ~ rnn~ J < 6 . 3 - "  (4.11) 

(4.10) and (4.11) imply that  

l iminf  If*(k, x)-k~l  = 0  #-a.e., 
k 

and hence that ~ R ( f )  (cf. Theorem 2.7). This completes the p roof  that  the 
uncountable  set { ~ :  ( O ~ }  is conta ined in R(f). [] 
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