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Summary.  Finite nearest particle systems are certain cont inuous time Mar-  
kov chains on the collection of finite subsets of Z 1. In this paper, we give a 
sufficient condit ion for such a system to survive, in the sense that the 
probabil i ty of absorpt ion at 0 is less than one. This theorem generalizes 
earlier results for the one-dimensional  contact  process. 

1. The Result 

Let fi(l,r) be nonnegat ive for 1__<1, r__<o% and let Y be the collection of all 
finite subsets of  Z 1. The finite nearest particle system with birth rates fl(l, r) is a 
cont inuous time M a r k o v  chain on Y. The transitions which it can make  are: 

A ~ A \ { x }  at rate 1 for each x~A, and 

A ~ A  u {x} at rate fi(1a(x), rA(X)) for each x(~A, where 

Ia(x)=x--max{y:y<=x and yeA} 
and 

rA(x)=min{y:y>x and y s A } - x ,  

and lA(X ) or rA(x ) is + oo if the max or  rain is not  defined. In  this paper, we 
will make  the following addit ional  assumptions on fl(1, r): 

(1.1) fl(oo, oo) =0 ,  

so that r is a t rap for A~, 

(1.2) fl(1, r) = fl(r, I) for all 1 < I, r < c~, 

(1.3) ~ fl(o% n) < oo, 
n = l  
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so that the chain stays in Y at all times, and finally that enough of the fl(l, r)'s 
are strictly positive so that 

(1.4) PA(At = B) > 0 

for all t > 0  and all A, B e Y  with A =}:0. 
We will say that the system survives if 

a(A)=PA(At+O for all t )>0  

for some (and hence all ) A 4 0 .  Otherwise, say that the system dies out. The 
problem of interest here is to determine which of these systems survive and 
which die out. 

Two subclasses of finite nearest particle systems have received a consider- 
able amount of attention. The first is the contact process which was introduced 
by Harris [7]. It is the special case in which 

i 2  if l = r = l ,  
fi(l,r)= if l = l , r > l  o r i f l > l , r = l ,  

otherwise. 

An excellent survey of the contact process has been given by Griffeath [-5]. The 
two results which are relevant here are that the contact process dies out if 
2<1.18 and survives if 2>2 .  The first of these is due to Harris [-7], and the 
second to Holley and Liggett [,8]. Nonrigorous computations by Brower, 
Furman and Moshe [-2] indicate that the critical value 2 c at which the tran- 
sition from dying out to surviving occurs is approximately 1.65. They actually 
looked at a system which is known as the reggeon spin model. The required 
connection between it and the contact process was later established by Grass- 
berger and de la Torre in [-4]. 

The second class of finite nearest particle systems which has been studied is 
the collection of those which are attractive and reversible. Without defining 
these terms, it suffices here to say that they are the ones in which 

/~(l)/~(r) 
(1.5) fi(l,r)= fi(I+r~ if l,r< oo, and 

/~(oo, n) = •(n), 

where fi(n)>0, ~ fi(n)<oo, and fi(n)/fi(n+l)J. 1. For this class, Griffeath and 

Liggett [-6] showed that the system survives if and only if 

(1.6) ~. fi(n) > 1. 
n=l 

The reversibility assumption was indispensable in their analysis. 
Of course, more general finite nearest particle systems can be shown to die 

out or survive in some cases by making simple comparisons with the two 
special classes described above. For  example, comparison with the contact 
process implies that the system with birth rates fl(l, r) survives whenever 
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fl(1, 1)>4, and 

fl(1,n)>2 for n>2.  

Such an approach cannot be used to prove survival for many interesting 
systems, however. For  example, these comparisons cannot be used if 

lira fl(1, n)=0, 
n ~ o 9  

since this limit is positive for both the contact process and the attractive 
reversible systems. 

More reasonable criteria for survival in the general case should be given 
not in terms of the individual fl(l,r)'s being sufficiently large, but rather in 
terms of the total birth rate in a connected subset of the complement of A 
being sufficiently large. Therefore, we will define bn for 2_< n_< oo by 

b ,=  ~ fl(/,r) if 2 < n < o o ,  
l + r = ~  

and 

n = l  n ~ l  

Note that b , = 2 2  for all 2_<n< oo in the case of the contact process, and 

lim infb ,>bog=2 ~ /3(n) 
n ~  oD n ~  1 

in case the rates are given by (1.5). Thus in the reversible attractive case, the 
system survives if and only if boo > 2 by criterion (1.6). 

One way of formulating the main problem is this. For each b > 0, determine 
which of the following statements is true: 

(a) Every finite nearest particle system satisfying b ,=  b for all 2_< n < oo dies 
out. 

(b) Some nearest particle systems satisfying b , - -b  for all 2 <_n_< oo die out, 
and others survive. 

(c) Every nearest particle system satisfying b, = b for all 2 <_ n_< oo survives. 

The theorem stated below implies that the answer is (a) if b < l ,  (b) if 
2 < b < 2 2 c ,  and (c) if b>4 .  A reasonable conjecture is that the answer is (c) if 
b > 22 c. If so, that would close one of the gaps left above (except for determin- 
ing what happens at b=22c,  which is a very hard open problem). Reasons for 
believing this conjecture and a possible approach to its proof are discussed at 
the end of this paper. The other gap left above is to determine which of (a) or 
(b) is correct for 1 < b < 2. There appears to be no compelling evidence one way 
or the other. 

(1.7) Theorem. (i) I f  b,<__ 1 for  all 2 <_n <_ oo, then the process dies out. 
(ii) For every b>2,  there is a nearest particle system which survives and 

satisfies b, = b for  all 2 < n < oo. 
(iii) I f  b, > 4 for  all 2 <- n <_ o% then the process survives. 
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The proof of this theorem will be given in the next section. The first 
statement is elementary. The second statement is a rather simple consequence 
of criterion (1.6), which is available in case the rates are given by (1.5). The 
main new result is the third one, which generalizes the bound 2 c__<2 for the 
contact process to the general nearest particle context. In fact, the proof of (iii) 
depends heavily on the proof of that result for the contact process. An 
additional idea is needed, however. It involves the use of a convexity argument, 
which may turn out to be an important tool in other related contexts. 

Infinite nearest particle systems have been studied also. They are defined in 
an analogous way, except that the state space of the process is the collection of 
all subsets of Z 1 which contain infinitely many positive and infinitely many 
negative points (only the fl(l,r) with finite l, r are relevant in this case). The 
process is now said to survive or die out according to whether there is or is 
not an invariant measure for the process. Infinite nearest particle systems 
were introduced by Spitzer [10], who obtained necessary and sufficient con- 
ditions for them to have reversible invariant measures. One version of his theo- 
rem asserts that if the rates are given by (1.5), then the infinite process survives 
if and only if either 

(1.8) ~ fl(n)>l, or ~, f l (n )= l  and ~ nfi(n)<oe. 
n = l  n = l  n = l  

This version appears as Theorem 1.4 in [9]. 
In the infinite nonreversible context, the following results are known. The 

infinite version of the contact process has the same critical value as the finite 
version by duality (see [5] for example). Bramson and Gray [1] considered 
two other examples. Their results are that the infinite process survives if 

with b > 4 log 2 ~ 2.77, or if 

b 
/3(I, r)-- 

r + l - 1  

[ b if l=r 

fi(l,r)= b if [/_r[= l 

if ] l - r [  > 2 

with b > 2. Note that in each of these cases, b n = b for all 2 < n < oo. 
The infinite analogue of part (ii) of Theorem 1.7 follows immediately from 

the results of either Spitzer [10] or Bramson and Gray [1] which were quoted 
above. The infinite analogue of part (i) is again elementary. There is at this 
point no known infinite analogue of part (iii) of Theorem 1.7. One way to 
prove such a result would of course be to show that whenever the finite system 
survives, so does the infinite system. This statement is true in the cases of the 
contact process (by duality) and attractive reversible systems (since (1.6) implies 
(1.8)). It is not known to be true for more general nearest particle systems, 
however. 
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The problems considered in this paper were raised in conversations with R. 
Holley a number of years ago. He pointed out that Spitzer's results gave 
reversible examples of infinite systems which survive with b,, =b  > 2  for all n, 
and proposed the question of whether there are non-reversible examples which 
survive with b ,=be(1 ,2 ]  for all n. This question remains unanswered. 

2. The Proof. 

This section contains the proof of Theorem 1.7. 

Proof of (i). Assume that b,__< 1 for all 2<n_< ~ .  Then the cardinality [At] 
decreases by one at rate IAt[ and increases by one at a rate which is at most 
IA~[. Therefore IA,[ is a (non-negative) supermartingale, so that 

lim IAt] 
t ~ o O  

exists a.s. By (1.4), the only possible limit for lAtj is 0. Therefore the process 
dies out. 

Proof of (ii). Take b>2 .  The idea of the proof is to find a choice of fi(n) so 
that if fl(l,r) is given by (1.5), then b,,=b for all 2_<n<_oo. The process will 
survive by criterion (1.6)since 

fi(n)= ~, fi(oo, n)=lboo=~ b> 1. 
n =  1 n =  1 

The requirement that b, = b can be rewritten as 

fl(1)fi(r)=bfl(n) for 2__<n<oo, 
l + r = n  

(2.1) 

and 

(2.2) 2 ~ fl(n)=b. 
n = l  

Summing (2.1) on n > 2  and using (2.2) gives fl(1)=b/4. Then (2.1) can be used 
to compute fl(n) for n > 2  recursively. In fact, it is not hard to check (using 
generating functions for example) that 

Therefore 

( 2 n - 2 ) !  
fl(n)=b 4-". 

n ! ( n - 1 ) !  

fl(n) 2 n + 2  

fl(n+ 1) 2 n - 1 '  

which decreases to 1 as n Too as required. 
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Proof of (iii). Let f(n) be the probability density on {1,2 . . . .  } which is defined 
by f (n) = f (n) - F (n + 1), where 

F(n)- ( 2 n - 2 ) !  4_,+1, n_>l. 
(n-- l ) !  n! 

Then ~ r ( n ) =  ~ nf(n)=2 by (2.2), since F(n)=fi(n)if h is taken to be 4. Let 
n = l  n = l  

v be the stationary renewal measure on {0, 1} z* corresponding to f.  It is the 
measure whose finite dimensional distributions are given by 

V{tl:q(xi)= 1 for 1 <i<n, t/(x)=O for x~[xl, x,]\{xi, 1 <i<n}} 
ln--J- 

~=, f(x,+ l -xi) 

whenever x,  < x  2 < ... < x ,  and n >  1. For  AeY, let 

h(a)=v{rl:rl(x) = 1 for some xeA}. 

In [8], it was shown that the contact process with 2 = 2  satisfies 

d EAh(A,)[ ' ~  0 for all A. (2.3) d-t = = 

In other words, h is a subharmonic function for that chain. This implies that 
the chain survives, since 

a(A)=limEAh(A,)>h(a)>o for A4:0. 
t ~ c ~  

We will prove part (iii) of Theorem 1.7 by showing that (2.3) is valid for any 
nearest particle chain, provided that b , > 4  for all 2_<n_< ~ .  This cannot be 
done by simply imitating the proof in the contact process case, since that proof 
uses in an essential way that births can only occur at the endpoints of the 
connected components of A c. Instead, we will deduce (2.3) for the general 
process from that result for the contact process by a type of comparison. In 
order to carry out the comparison, we need to know that h satisfies a certain 
convexity property. This is proved in the next two lemmas. For  A~Y and x6A, 
define 

ga(x) = h(A u {x}) -h(A) 

=v{t / : t / (x )= l  and t /(y)=0 for all yeA}. 

(2.4) Lemma. Suppose that y>=x + 2 for all yeA. Then 

(2.5) 2gA(x)>gA(X+I)+gA(X--1 ) and gA(X)_=gA(X+I). 

Proof. In [8], it was shown that 

1 
(2.6) v {t/:r/(O)= 1, t/(n)=0} = g  F(k) 

k = l  
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for n >  1 (see Eq. (2.13) there). Therefore,  if A = { y } ,  we can compute  

2ga(X) -- gA(X + 1) -- gA(X -- 1) = --~ [F(y -- X) -- F(y - x + 1)] = I f  (Y - x) > 0, 
and 

gA(X) --ga(X + 1 ) = ~ F ( y  --X) >0.  

The  p roof  in general  is by induct ion on the cardinali ty of A. Given  A with 
[A]> 2, let y be the left mos t  e lement  of  A. Let  B = A \ { y } .  Then  I B ] =  [A I - 1 ,  and  
using e lementary  proper t ies  of renewal measures  we see that  

gA(x)=gB(x)--V{~l:tl(X)=tl(y)= 1 and t / (z )=0 for z6B}  

= gB(x) - 2 g~(y) v {t/:r/(x) = ~/(y) = 1 } 

= gB(x) - gB(Y) [1 - 2 g~y~(x)] 

= gs(x) + 2g~y~(x) g~(y) -gB(Y). 

Thus  the required concavi ty  and  monoton ic i ty  of gA follows f rom that  of  g~ 
and g~y~. 

(2.7) L e m m a .  Suppose that x -  1, x, x + 1 ~A c. Then 

(2.8) 2gA(x )_>_ gA(X + 1) + gA(X -- 1). 

Proof. Let  B = A c~ ( - 0% x - 1) and  C = A c~ (x + 1, oo). By basic proper t ies  of the 
renewal measure  v, 

(2.9) gA(X) = 2g~(x) gc(X). 

Therefore  

2ga(X ) --gA(X + 1) --gA(X -- 1) 

= 4 gB(X) gc(X) -- 2g~(x + 1) gc(X + 1) -- 2g~(x -- 1) gc(X -- 1) 

= [gB(x) + �89 gB(x + 1) + �89 gB(x - 1)] [2gc(X ) - g c ( x  + 1) - g c ( x  - 1)] 

+ [gc(X) + �89 gc(x + 1) + �89 gc(X - 1)] [2gB(x ) - g B ( x  + 1) - g ~ ( x  - 1)] 

+ [g~(x - 1) - g ~ ( x  + 1)] [gc(x + 1) - g c ( X  - 1)], 

which is nonnegat ive  by L e m m a  (2.4). 

We now return to the p roof  of (2.3) for the general  nearest  particle chain A t 
with bir th  rates fl(l,r) which satisfy b n > 4  for all 2 < n < o e .  Let  B t be the 
contac t  process with 2 = 2, and denote  its birth rates by/3(I,  r). Then  

d 
EAh(At)lt= o d EAh(Bt)lt= o ~ gA(X) Efl(Ia(X), rA(X)) --fi(IA(X), rA(X))]" 

dt xCA 

There  are no terms in this sum corresponding to x ~ A  since A, and  B, have the 
same death  rates. Since (2.3) is satisfied for the contac t  process, it suffices to 
prove  that  the above  sum is nonnegative.  This  will be done  by showing that  
the sum over  those x in each connected componen t  of A c is nonnegative.  By 
L e m m a s  (2.4) and  2.7, it suffices to show that  if g is a concave function on 
{1 . . . .  , n - l }  with n > 3 ,  then 
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g(I) fl(l, r)> 2[g(1)+g(n -1)3,  
l + r = n  

while if g is an increasing function on {1,2 . . . .  }, then 

g(l) fi(l, oo) => 2g(1). 
1 = 1  

The second statement is an immediate consequence of the assumption bo~>4. 
For  the first statement, use the concavity of g to write 

n - - l - 1  l--1 
g(/)> n _ ~ g ( 1 ) + ~ Z ~ _ 2  g (n -1 ) .  

Therefore 

2 
l + r = n  

n - l - 1  
g(l)fl(1, r)>=g(1) ~ f l ( l , r ) - -  

l + r = n  ~ - 2  
1-1 

+ g ( n - 1 )  ~ fi(1, r) 
l + r = n  n-2" 

But by the symmetry assumption (1.2), 

n - l - 1  l - 1  1 
~, fl(l,r) - ~ f l ( l , r ) - - = - b , > 2 .  

l+r=, n - 2  n - 2  2 - l + r = n  

This completes the proof  of part  (iii) of Theorem 1.7. 
It  would be nice to replace the assumption that b , > 4  in part  (iii) of 

Theorem (1.7) by b , > 2 2  c. The above proof  would yield this improvement  
provided that  the monotonici ty and convexity assertions in the two lemmas 
could be proved with gA(X) replaced by 

#{t / : r / (x)=l  and t / (y)=0 for all yeA} 

where # is the upper invariant measure for the contact process with parameter  
2 > 2 c. This is much more difficult, of course, because # is not known explicitly, 
while v is. The monotonici ty statement in (2.5) is easy to prove for # (see for 
example Eq. (16) in [3]). The convexity statement in (2.5) is harder, but does 
not seem to be out of reach. The real difficulty lies in proving the analogue of 
Lemma (2.7). since the factorization (2.9) is no longer available. 
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Note Added in Proof 

At the end of the first section, it was stated that the exact analogue of part (iii) of Theorem 1.7 for 
the infinite system is not known to be true. The results of Bramson and Gray [1] can be 
generalized, however, to obtain a similar, but not identical, sufficient condition for survival of the 
infinite system. This generalization appears in Chapter VII of the book "Interacting Particle 
Systems" by Thomas M. Liggett, which will be published by Springer-Verlag in early 1985. 


