Z. Wahrscheinlichkeitstheorie verw. Gebiete 68, 49-51 (1984)

Zeitschrift für

Wahrscheinlichkeitstheorie

und verwandte Gebiete

© Springer-Verlag 1984

A Limit Theorem for Discounted Sums

E. Omey

Economische Hogeschool Sint-Aloysius, Broekstraat 113, B-1000 Brussels, Belgium

Summary. This note is concerned with the weak convergence of discounted sums in case the variance of the underlying probability distribution may be infinite.

1. Introduction and Results

Let $\{X_i\}_{i=0}^{\infty}$ be a sequence of i.i.d. random variables. For 0 < r < 1 we shall study weak convergence of the discounted sum

$$Y(r) = \sum_{n=0}^{\infty} r^n X_n.$$

When $E|X_0| < \infty$ and $EX_0 = \mu$ it is known [4] that as $r \to 1-$,

$$(1-r) Y(r) \rightarrow \mu$$
 a.s.

In this paper we ask for conditions under which there exists a function A(r): $[0,1] \rightarrow \mathbb{R}^+$ such that as $r \rightarrow 1-$,

$$A(r) Y(r) \stackrel{\mathscr{D}}{\Longrightarrow} Y$$

where $\stackrel{\mathcal{D}}{\Rightarrow}$ denotes convergence in distribution and Y is nondegenerate. A central limit theorem for discounted sums has already been proved in [2]. See also [1]. In the next section we will prove

Theorem. Suppose X_0 is in the domain of attraction of a stable distribution with index α , where $0 < \alpha \le 2$ but $\alpha + 1$ unless X_0 has a symmetric d.f. In case $E|X_0| < \infty$ assume $EX_0 = 0$. Then there exists a function A(r): $[0,1[\to \mathbb{R}^+]$ such that $A(r) Y(r) \stackrel{\mathscr{D}}{\Longrightarrow} Y(r \to 1-)$ where Y is stable with index α . We can choose A(r) such that

$$A^{2}(r) EX_{0}^{2} 1$$
 $\sim \alpha(1-r) \quad (r \to 1-).$

In case the variance of X_0 is finite we obtain

Corollary [2]. If $EX_0 = 0$ and $EX_0^2 = \sigma^2 < \infty$, then

$$\sqrt{1-r^2} Y(r) \stackrel{\mathcal{D}}{\Longrightarrow} Y$$

where $Y \sim N(0, \sigma^2)$.

2. Proofs

The conditions on X_0 imply that for small t, the characteristic function $\varphi(t)$ of X_0 can be written as

$$\varphi(t) = \exp -c |t|^{\alpha} h\left(\frac{1}{|t|}\right) (1 + a \operatorname{sgn}(t)) (1 + o(1))$$

where c>0, $a\in\mathbb{C}$, and h(x) is slowly varying. Furthermore h(x) satisfies

$$x^{2-\alpha}h(x) \sim EX_0^2 1_{\{|X_0| \le x\}} \quad (x \to \infty).$$

This follows e.g. from the results of [5, Ch. 5.1] or [3, Ch. 2.6]. Now let $G(x) = \frac{\alpha x^{\alpha}}{h(x)}$ and B(x) its inverse in the sense of Seneta [6, p. 21]. Then $A(r) = \frac{1}{B\left(\frac{1}{1-r}\right)}$ satisfies $A(r) \to 0$ $(r \to 1-)$ and $A^{\alpha}(r) h\left(\frac{1}{A(r)}\right) \sim \alpha(1-r) \quad (r \to 1-). \tag{1}$

Now observe that

$$E(e^{isA(r)Y(r)}) = \exp{-c|s|^{\alpha}} \sum_{n=0}^{\infty} r^{n\alpha} A^{\alpha}(r) h\left(\frac{1}{|s| r^{n} A(r)}\right) (1 + a \operatorname{sgn}(s)) (1 + o(1)).$$

Since h is slowly varying we have

$$(1-\varepsilon)\left(|s|\,r^n\right)^\varepsilon h\left(\frac{1}{A(r)}\right) \le h\left(\frac{1}{|s|\,r^n\,A(r)}\right) \le (1+\varepsilon)\left(|s|\,r^n\right)^{-\varepsilon} h\left(\frac{1}{A(r)}\right)$$

for $0 < \varepsilon < \alpha$ and $r_0(\varepsilon) < r < 1$. Hence

$$\frac{(1-\varepsilon)|s|^{\varepsilon}A^{\alpha}(r)h\left(\frac{1}{A(r)}\right)}{1-r^{\alpha+\varepsilon}} \leq \sum_{n=0}^{\infty} r^{n\alpha}A^{\alpha}(r)h\left(\frac{1}{|s|r^{n}A(r)}\right) \leq \frac{(1+\varepsilon)|s|^{-\varepsilon}A^{\alpha}(r)h\left(\frac{1}{A(r)}\right)}{1-r^{\alpha-\varepsilon}}$$

and using (1),

$$\frac{\alpha(1-\varepsilon)|s|^{\varepsilon}}{\alpha+\varepsilon} \leq \lim_{r\to 1-} \left\{ \sup_{n=0}^{\infty} \sum_{n=0}^{\infty} r^{n\alpha} A^{\alpha}(r) h\left(\frac{1}{|s| \, r^n A(r)}\right) \leq \frac{\alpha(1+\varepsilon)|s|^{-\varepsilon}}{\alpha-\varepsilon}.$$

Now let $\varepsilon \downarrow 0$ to see that

$$\lim_{r \to 1-} E(e^{isA(r)Y(r)}) = \exp(-c|s|^{\alpha}(1 + a \operatorname{sgn}(s)).$$

This proves the theorem.

To prove the corollary, observe that in this case $\alpha = 2$, $c = \frac{1}{2}$, a = 0 and $h(x) \to \sigma^2$ $(x \to \infty)$. With A(r) as in (1) we have

$$A^{2}(r) \sim \frac{2(1-r)}{\sigma^{2}} \sim \frac{1-r^{2}}{\sigma^{2}}$$

from which the corollary follows. \square

References

- Embrechts, P., Maejima, M.: The central limit theorem for summability methods of i.i.d. random variables. Preprint K.U. Leuven, 1983
- Gerber, H.U.: The discounted central limit theorem and its Berry-Esséen analogue. Ann. Math. Statist. 42, 389-392 (1971)
- Ibragimov, I.A., Linnik, Yu.V.: Independent and stationary sequences of random variables. Groningen: Wolters-Noordhoff 1971
- Lai, T.L.: Summability methods for i.i.d. random variables. Proc. Amer. Math. Soc. 45, 253-261 (1974)
- Nevels, K.: On stable attraction and Tauberian Theorems, Ph.D. Thesis, University of Groningen, 1974
- Seneta, E.: Regularly varying functions. Lecture Notes Math. 508, Berlin-Heidelberg-New York: Springer 1974

Received March 26, 1984