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Summary. This note is concerned with the weak convergence of discounted 
sums in case the variance of the underlying probabili ty distribution may be 
infinite. 

1. Introduction and Results 

Let {X~}i% o be a sequence of i.i.d, random variables. For  O < r < l  we shall 
study weak convergence of the discounted sum 

Oo 

Y(r)= X r"X.. 
n=0 

When E[Xo[< oe and E X o =  # it is known [-4] that as r ~ l - ,  

(1 - r) g ( r ) ~  # a.s. 

In this paper we ask for conditions under which there exists a function A(r): 
[0, I[,--,IR + such that as r ~  1 - ,  

A(r) Y(r) & Y 

where ~=~ denotes convergence in distribution and Y is nondegenerate. A 
central limit theorem for discounted sums has already been proved in [-2]. See 
also ]-1]. In the next section we will prove 

Theorem. Suppose X o is in the domain o f  attraction of  a stable distribution with 
index c~, where 0 < c~ <= 2 but c~ =i= 1 unless X o has a symmetric d.f  In case E I X0]< c~ 
assume E X o = 0 .  Then there exists a function A(r): [,-0,1[, --. ~ + such that 
A(r) Y(r) ~ Y ( r ~ l - )  where Y is stable with index ~. We can choose A(r) such 
that 

A 2 ( r ) E X  2 1 ~ a ( 1 - r )  ( r o l - ) .  

{[Xo[<- Al(r)} 
In case the variance o f  X o is f ini te  we obtain 
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Corollary [2]. I f  E X  o = 0 and E X  2 = a 2 < oe, then 

I l l  - r  2 Y(r) ~ Y 

where Y ~ N ( O ,  a2). 

E. O m e y  

2. Proofs  

The condit ions on X o imply that  for small t, the characterist ic function ~o(t) of 
X o can be writ ten as 

q~(t)=exp-cltl~h( 1 ) ]~  (1 + a sgn(t))(1 + o(1)) 

where c >0 ,  aell2, and h(x) is slowly varying. Fu r the rmore  h(x) satisfies 

x2-~h(x)~EX g l(ixol =<x } (x ~ oo). 

This follows e.g. from the results of [5, Ch. 5.1] or [3, Ch. 2.6]. N o w  let G(x) 
~ X  c~ =h(x~ and B(x) its inverse in the sense of Seneta [6, p. 21]. Then  A(r) 

1 
- satisfies A ( r ) ~ 0  ( r ~  1 - )  and 

h 1 A~(r) ( A ~ ) ~ ( 1 - r )  ( r ~ l - ) .  (1) 

N o w  observe that  

E(eiSa(r)r(r))= exp - c [s[~n~=orn~A~(r)h (Is[ rlA(~) (1 + a sgn(s))(1 + o(1)). 

Since h is slowly varying we have 

1 < h  1 

for 0 < e < c~ and r o (e) < r < 1. Hence  

(~--~) (I+~)[sI-~A~(r)h(A~) ( < rn~A~(r)h islr~A( 1 - - r  ~ + E  = =- 1 - - r  ~ - ~  n = O  

and using (1), 

c~(1-e) lsl~ ,. ( s u p ]  ~ ( 1 ) < e ( l + e ) l s l  -~ 
~- nm < > rn~A~(r)h [slr~-A(r) = e-e c~+e - ~ l - [ i n f J . = o  

Now let e,~O to see that  

lim E(e i~a(r)r(~)) = exp - c [s]~(1 + a sgn (s)). 

This proves the theorem. 



A Limit Theorem for Discounted Sums 

T o  p r o v e  the  co ro l l a ry ,  o b s e r v e  tha t  in this 

h ( x ) - ~ a  2 (x -~  or). W i t h  A(r) as in (1) we h a v e  

Ag(r) 2(lae-r ) 1 - r  2 
G 2 

f r o m  wh ich  the  c o r o l l a r y  fol lows.  [ ]  
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case  e = 2 ,  c = � 8 9  a - - 0  a n d  
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