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1. The Result 

Let d > l  be an integer and F(x), x = ( x  1 . . . .  , x d ) e R  d, be a d-variate probabil i ty 
distribution function with characteristic function 

C( t )=  j' e x p ( i ( t , x ) ) d F ( x ) ,  t = ( t  1 . . . . .  t d ) sR  d, 
R a 

d 

where ( t , x ) =  ~ tkX k is the inner product.  Denote  by (R d, d g , # F  ) the measure 
k=l  

space induced by F, and let Htl[ =max( l t l l  . . . .  , ]tdl ) be the m a x i m u m - n o r m  on R d. 
Finally, for a positive u, introduce 

U u = {x = (x  1 . . . .  ,xa): max (]Xll . . . .  , ]xdl)>u }. 

Let 0<c~<2.  This note investigates the relationship between the two con- 
ditions 

1 - R e  C(t)=O(lltql~), t - . ( 0  . . . .  ,0), (1.1) 

and 
#e(Bu) = S d F ( x ) = O ( u - ~ )  o u ~  oo. (1.2) 

Bu 

Theorem 1. I f  0 < c~ < 2, then (1.1) implies (1.2). Conversely, i f  0 < c~ < 1, then (1.2) 
also implies (1.1), a n d / f  1 <c~<2, then (1.2) implies 

1 - R e  C(t)=O(lltll),  t ~ ( O  . . . .  ,0). 

Consider  also the condit ion 

1-C(t)=O(ltt]l~), t ~ ( O  . . . .  ,0). (1.3) 
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Theorem 2. I f 0 < e < 2 ,  then (1.3) implies (1.1). Conversely , / f0<e<l,  then (1.1) 
also implies (1.3), and/ f  1 <c~<2, then (1.1) implies 

1 - C(t)=O(l[t[I), t--~ (0 . . . .  ,0). (1.4) 

Both theorems remain valid if O is replaced by o. 
If d = l ,  then Theorem 1 is due to Binmore and Stratton [1] and is also 

presented as Theorem 11.3.2 by Kawata [5]. But in this unvariate case (1.2) 
implies (1.1) also for 1_<~<2, i.e., (1.1) and (1.2) are equivalent for all 0 < ~ < 2 .  
This univariate result was applied in [3] when strongly approximating the 
empirical characteristic function. While working on a multivariate analogue of 
this approximation in [4-1, the above multivariate extension became a need. 
Although (1.2) ~ (1.1) for 0 < ~ < 1 is sufficient in this application, it remained an 
interesting open question to the author whether (1.2) implies (1.1) for 1 =< c~ <2 if 
d=>2. 

If d = 1, then Theorem 2 is due to Boas [2] and is also presented as Theorem 
11.3.3 by Kawata [5]. It is known that (1.1) (or (1.2)) fails to imply (1.3) for a = l  
in the univariate case, and this fact implies that the same is true for d>=2. 
Kawata [5] also states (1.2) ~ (1.3) for l < a < 2 ,  d = l .  But the referee of the 
present note has pointed out that Kawata's argument on p. 422 of [5] is 
incorrect if 1 < e < 2 ,  and it gives only (1.4) (d=l) .  Therefore Theorem 2 is a 
complete generalisation of what is known at present in the case d = 1. I am very 
grateful to the referee for this observation which also saved me from copying the 
univariate error here. 

Just as in the special case d = 1, the problem of the equivalence of (1.1) and 
(1.2) or of (1.3) and (1.2) is meaningless if ~=>2. This remark and the open 
problem mentioned above are more conveniently discussed after the proofs in 
Sect. 3. 

2. Proofs 

The following formula will frequently be used. It is probably well known, and 
proved by the usual extension procedure from the easily checked case when f is 
an indicator function. It can also be extended such that instead of the special 
g(xl . . . .  , Xd)= IX ll +.- .  + Ixdl one has a general dve-mesurable g: R e ~  R 1. 

Lemma 1. I f  f:  [0, oo) ~ [0, oo) is Borel measurable, then 

S f  Ixkl d F ( x ) = -  j" f(u)d#v(Au), 
Ra k - - 1  0 

where 

and 

#F(Au)= j' dF(x) 
Au 
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It can be noted right away that the tail condit ion (1.2) will be used in the 
form 

#v(A,)=O(u-~), u ~  co. (2.2) 

They are equivalent since 

A , d c B ,  cAu,  u > 0 .  

Consider  the cube 

I a={x=(x  1 . . . . .  xa): - l_ -<x  1<1  . . . . .  -l=<xd<__l}, 

and let e(J)=(@ . . . . .  dj)), j =  1 . . . . .  2 a, be the vertices of I d numbered  so that  e (j) = 
_eci+ 2,- 1), j = 1 . . . . .  2 ~- 1. The following lemma is a d-variate generalisation of 
the " t runca t ion  inequali ty" of Lo6ve [6, p. 209], which is Theorem 3.7.3 in 
Kawata  [5 I. In its proof, as in further proofs, the ideas of the univariate proofs 
are, naturally, used. 

L e m m a  2. For all u > 0 
72a~1 u 

J" dF(xl . . . . .  xd)<= u 2 j ' [ 1 - R e C ( @ v  .. . . .  @v)]dv. 
j = 1 0  

k=l 

Proof. Let  E 1 ... . .  Ezd denote the " ( l /U)  th spaces" of R d labelled by e <1) . . . . .  e ~2d) 
respectively, i.e., dJ)eE~, j - - 1  . . . .  ,2  d. This means that  if x=(x l  . . . .  ,xa)eE J, 
j = l  . . . . ,  2 a - l ,  then ~ k = l ,  ..., d, and if x = ( x  1, . . . ,  Xa)EEj+ 2 . . . .  

j = l ,  ..., 2e- 1, then e0)Xk k--  -Ixk[, k-- 1, ...,d. WithFj=EjwEj+2d_, wege t  (~lxkl  

k=l  

2d-* 1 ,. 
,~1 u !  [ 1 - R e  C ( @ v  . . . . .  ej)v)dv 

-= ~" u [1--cos(vZ@Xk)]dv dE(x) 
j = l  

= ~2~-lJ;{j=l 1 sin(uZ@xk))dFXu~-~ ( )  

2> ~2a-~ { 1 FjJAI/u l-S-1 [ k[ 
> l  2a- t  

- ~ dF(x) 
- 7  j~l Fjc~A1/u 
__l - ~ ~ dF(x) ,  

A Uu 

since 1 - (sin v)/v > 1/7 for v > 1. 
The following lemma is in fact the main body in the proof  of Theorem 1, 

but  it deserves to be separated since it is valid also if 1 < c~ < 2. 
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Lemma 3. Let 0 < ~ < 2. The necessary and sufficient condition that 

2 a 

1-1 - R e  C(@h . . . . .  el)h)] = O(Ih]=), h ~ 0 ,  (2.3) 
j = l  

is the tail condition (1.2). 

Proof Denot ing  by qS(h) the left hand  side of  (2.3), for u > l  (say) we get f rom 
L e m m a  2 that  

1/u 

]2F(Au)<=~u j' dp(h)dh 
0 

-<} sup qb(h) 
O<-h< l /u 

<=Ku -~, 

with some constant  K, proving  the necessity of (1.2). 
To  show sufficiency, let us suppose  now (2.2). It  is enough to show only that  

for all j = 1 . . . .  ,2 e 

1-eeC(e( / )h  ..... e~J)h)=O(U), h--*O+. (2.4) 

Fol lowing  Binmore  and St ra t ton  [1] or K a w a t a  [-5, p. 420], let 

with 

l imsup Q~(u) = L  < ~ (2.5) 
u ~ o o  

Q~(u) =u~lle(A,,), u > O. 

2u 

Using that  for any  u > O  one has s i n Z u < 2  ]' (sinZv)/vdv, and then L e m m a  1, we 
get o 

1 -- Re  C(e~)h . . . . .  e(j)h) = 2  j' sin 2 (lh [S~J)Xkt)dF(x) 
R a 

f h f Z e ~ x k l s i n 2 l ;  ] 

<----4JR] l ! V dv~dF(x) 

<4 ]" " - dv dV(x) 
R a 1) 

= - 4 i { i ~ d v } d [ ( h ) - ~ Q ~ ( h ) ]  

= 4 h  ~ Q~ g w--q-gT~ dw' 
o 

the last equali ty obta ined  via in tegrat ion by parts.  Hence  

sin2 w d 
l i m s u p l  [1-ReC(e(1J)h .... e~J)h)]<4L ~ w~-+~ w, 
h~o+ h " ' - o 
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for all j = 1 . . . . .  2 d, showing (2.4). The last integral is finite since 0 < e < 2, and this 
fact was also used to show that  the integrated out term disappears when 
integrating by parts before. 

Proof of Theorem 1. Suppose first (1.1). Then we have (2.3), and by L e m m a  3 (1.2) 
follows. 

Suppose now (1.2) with 0 < ~ < 2 ,  c~=t= 1. Given a t ~ ( 0  . . . . .  0), there is a J=Jt, 
1 <=j =< 2 d, such that  t e Ej. We associate then with this t its or thogonal  project ion 
t* =(@u, ..... ej)ut) on the ray (e]J)u ..... @u), where 0 < u , <  ]Ltll. Now 

1 - R e  C(t) < [1 - R e  C(t*)] + IRe C(t)- R e  C(t*)l, 

where the first term is O(][tlk ~) as t--+(0 . . . .  ,0) by L e m m a  3, while the second is 
majorized by 

2 j" ]s inl( t - t* ,x) ldF(x)< Ilt-t*[I j' ~lxkldF(x) 
R a Zlxkl < 1/lltll 

+ j" dF(x). 
A1/lltll 

Here  the second term is O([[tll ~) by hypothesis, while the first, using again 
L e m m a  1, is not  greater than 

1/lltil 

Iltil j' 
o 

1/[It][ 

u d ~ A A O =  - Iltll [u~AA.)]~/2g I + ILtll j' ~tv(A.)du 
o 

= --#F(A1/[,t,])-~- ,,t[] o (li!~t)Hu ~du) 
=~O(lltll~)+l]tllO(lltLl~-~)o 0<c~<1, 

(O(ILtll=)+ ILtll O(1), 1 < c r  

=~o(LItll=), 0<c~< 1, 
(O(l/tll), 1 < ~ < 2 ,  

as t --+ (0 . . . . .  0). e(c 0 above is 0 if 0 < e < 1 and e(c~) > 0 if 1 < ~ < 2. 

Proof of Theorem 2. Obviously (1.3) implies (1.1) for all c~>0. 

Suppose (1.1) with 0<c~<2,  c~4= 1. What  we have to show is 

fO(lltl[=), 
Im C( t )=  j~ sin ( t ,x)  dF(x)=~,O(l[tH), 

0 < ~ < 1 ,  

1 < ~ < 2 ,  

as t ~ ( 0  . . . . .  0). Since by the first part  of Theorem 1 we have (2.2), this can be 
done exactly the same way as in the proof  of the converse part  of Theorem 1. 

If in all the proofs of this section O is replaced by o, and L = 0  in (2.5), then 
we obtain both  theorems with o instead of O. 
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3. D i s c u s s i o n  

P r o p o s i t i o n .  I f  Re  C( t )=l+o( l l t l [  e) as t ~ ( O  . . . . .  0), then F is the degenerate 
distribution with unit mass at (0 . . . . .  0). 

Proo f  The proofs  of  the fol lowing inequal i t ies  are the same as in the un ivar ia te  
case ( K a w a t a  [5, p. 96]). 

I C ( t + s ) -  C(t)]2 <2(1  - R e  C(s)), t , s ~ R  ~, 

1 - R e  C(2t)  < 4(1 - R e  C(t)), t ~ R  a. 

Using  these inequal i t ies  the P ropos i t i on  is p roved  the same way as in the 
un iva r ia te  case ( K a w a t a  [5, p. 98]). 

So the theorems  are meaningless  for c~ > 2. 
Af ter  Sect. 2 the  ques t ion  whether  (1.2) ~ (1.1) ho lds  or  no t  for 1 < c ~ < 2  can 

be asked the fol lowing way. Let  d > 2, and  assume tha t  

1 - R e  C(e(~J)h . . . . .  e~J)h)=O(Ihl~), h ~ O ,  j = l  . . . . .  2 a. (3.1) 

The  ques t ion  is whether  there  exist a C(t) for which (3.1) holds  bu t  

limsup I)11-~I-1 - R e  C(t ) ]  = or, 
t~(O ..... 0) 

or  f rom (3.1) it  a lways follows tha t  the  la t te r  l imsup  is finite. F o r  c~> 1 this is 
bas ica l ly  the same ques t ion  whether  (1.2) impl ies  ImC(t )=O(l l t l l  ~) as 
t-- ,  (0 . . . . .  0) or  not,  and  the answer  is unknow n  even if d = 1. 
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