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S u m m a r y .  Limit theorems with a non-Gaussian (in fact nonstable) limiting 
distribution have been obtained under suitable conditions for partial sums of 
instantaneous nonlinear functions of stationary Gaussian sequences with 
long range dependence. Analogous limit theorems are here obtained for 
finite Fourier transforms of instantaneous nonlinear functions of stationary 
Gaussian sequences with long range dependence. 

I n t r o d u c t i o n  

A number of authors (see [2-7]) have considered non-central limit theorems for 
partial sums derived from nonlinear functionals of Gaussian sequences. One 
considers a stationary Gaussian sequence Xn, n =  . . . , -  1,0, 1, ..., EXn=O, EX 2 
= 1. Let the correlation function of {Xn} be 

r(n)=EXoX ~. (1) 

A real function H(x) is considered with 

- - o o  

and 

~ H(x)2exp (-X@)dx< oo. (3) 
- - o o  

The derived sequence It(Xn), n=...,-1,0,1,.., is defined and the limiting 
behavior of the sequence 

1 N , - t  n . . . .  , - -  1 , 0 ,  1 . . . .  
= - -  ~ H(Xj), (4) 

y N AN i=N(,-1) N =  1,2, ... 
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is determined as N ~  o% where A N is a suitable positive norming factor. Under 
appropriate conditions of long-range dependence on the sequence {r(n)} and 
other conditions on the function H, nonnormal (non-central) limiting distri- 
butions for the sequence {y,u, n . . . . .  - 1 ,0 ,  1, ...} have been obtained as N~oo .  

The object of this note is to obtain analogous limit theorems for finite 
Fourier transforms 

1 Nn-1 
= - -  2 H(X)  e-iia" (5) Y~(~) AN j=N~.-. 

We could deal with the Fourier transform in complex form or equivalently the 
real and imaginary parts under appropriate conditions as N ~  oe. The behavior 
of the Fourier transform is of interest because it is a basic ingredient in the 
construction of spectral estimates [-1]. Various of the ideas used in the paper of 
Dobrushin and Major [31 are helpful in deriving such a result. 

We shall assume that the covariance 

r(n)=lnl-~L(lnl) ~ szjcosn2j, szj>0 (6) 
j=0 

for some positive integer m with 0 = 2 o < 2 1 < 2 z < . . . < 2  m and L(t), 0 < t < o v ,  a 
slowly varying function, i.e., 

" L(st) 
lm - - =  1 (7) 

s~oo L(s) 

for every ts(0, oo). Let Hi(x) be the j-th Hermite polynomial with leading 
coefficient 1. The function H(x) is then expanded in terms of the Hermite 
polynomials 

H(x)= ~ ciHj(x ) (8) 
j=l 

where 

c j! < (91 
j=l 

For convenience, let B~ denote 

B~ = {jl j~Z, nN < j  < (n + 1)N}. (10) 

Also let A k be the set of frequencies obtained by taking sums of any k elements 
(with repetition allowed) out of the set {0, ___21, +22, ..., +2m}. 

We also introduce the following complex-valued Gaussian random measures. 
W o is the spectral measure of the white noise process so that 

Wo(A) = Wo(-A ) (ll) 

EIWo(A)I2= ~-~IAI (11') 



Limit Theorems for Fourier Transforms 125 

for any interval A. Also, for any disjoint intervals A 1 , ' " ,  Aj on the positive axis 
Wo(A 1),..., Wo(Aj) are independent. Further Re Wo(A), Im Wo(A ) are independent 
Gaussian variables with mean zero and equal variances if A is an interval on the 
positive axis. Wu for p > 0  is a Gaussian random measure with the same 
properties as W o with the following exception�9 We no longer have (11). Also 
W u ( A  1) . . . .  , Wu(Aj) are independent for any disjoint intervals A 1, ..., A s on the real 
axis. Further the random measure W u, # > 0 ,  is specified so that 

W u(A ) = % ( -  A) (12) 

for any interval A. Such measures W, are introduced for # =  +2~, ..., _+2,. and it 
is assumed that W~I . . . . .  Wzm are independent�9 

Asymptotic Distribution of Fourier Transforms 

We state our result below. 

hold with ~ < 1  where k is the smallest index in the series Theorem. Let  (6) (8) for 
which c k 4= O. Set 

K 

h a  k 

AN= N 2 L(N)2. (13) 

Then the f inite dimensional distributions of  

Y~(fl), n . . . .  , - 1, O, 1, . . . ,  f ieak,  
tend to those of  

Y*(fl), n= ..., - 1 ,  O, 1, . . . , f i eA  k, 
given by 

where 

Y* (/3) = D -k/2 Ck j ei,,(~, +...+ x,,) 

a - i  ~ - i  

�9 l x l l  2 ...IX~I 2 

e i ( x ~  + .. .  + xk )  _ 1 

i (x ,  + ... + xk) 

(1+~(#1) z +~(#k)) ~ 
~ '  s.~ 2 "'" su~ 

#1 + . . .  + # k  =_ f l m o d 2 r ~  

�9 W.~(dxl) . . .  W.~(dxk) (14) 

o  exp,ix) ldx=2   )cos(7) 115  
- o o  

and X' denotes a sum over k-tuples of  # values where the #j's can only range over 
O, +_21, ..., +_2,.. 

The multiple Wiener integral has to be modified so as to take account of the 

fact that W o ( - d x ) =  Wo(dx ) and W _ u ( - d x ) =  Wu(dx ). See [2] for a discussion 
of such questions. 
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For convenience let 
2 _ j =  2j 

and 
s~_ =saj , j = l , . . . , m .  

Lemma 1. Let a > 0 be any real number satisfying 

a <�89 min [2i-  2jl. 
i * j  

Then there is an infinitely differentiable symmetric function f satisfying 

0 < f ( x )  < 1 for all x 

f ( x ) - i  for all ]xl<a/2 

f ( x ) - O  for all Ixl>a. 
Let 

and 

X .  = 7 ei"~dz(x) , i X . =  7 e ' " ~ f ( x - ' t , ) d z ( x )  = 7 e~"~[~(x)dz(x), 
- o o  - -oo  - -0o  

(16) 

g ( x ) = /  0 if x < 0  or x > l  

t if 0 < x < l .  exp x 1 - x 

Let 1 
A=j'g(u)du 

0 

and 

oX = X , -  ~ j X , =  i d"xf4(x)dz(x)  
j =  - m  - ~  

= i e ''x ( 1 -  . ~ fs(x))dz(x). (18) 
- - ~  d =  - - m  

Let o(n) be the covariance sequence of sX,, j =  - m ,  ...,m, O. Then 

rj(n) =ye i"~ I fj(x)[ 2 dG(x) 

=1(1 + ~ ) I n l - ~  g(I n[)% ei"aJ(1 + o(1)) (19) 

if j =  - m, . . . , m and 

r4,(n) = i ei"x If~(x)l  2 d G(x) = o(Inl-~ g(ln[)). (20) 

Here G is the spectral measure of the stationary Gaussian sequence {X,}. 

It is easy to construct a function f having the desired properties. Consider 

x 

h(x )=A- l~g (u )du .  
0 

j =  --m, ...,m, (17) 
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T h e n  we can  t ake  

C o n s i d e r  n o w  

wi th  

Let  

T h e n  

x 2 2 x 

r~(n)= ~ ei"Xhj(x)dG(x) 
-oo 

hj(x) = ] f j K x ) ]  2 . 

- -  i n x  h j ( x ) - ~ c j , , e  . 

e i.x hj (x) d G (x) = ~ cj, k r (k + n) 
k 

= ~ �89  k l n + k l - ~ L ( l n + k ] )  
p = - - m  k 

�9 e i ( n + k ) 2 p .  

H o w e v e r  if j = - m,. . . ,  m 

c~,k e 'k*' = h~(,~j) = I f ; ( , ~ Y  = 1 
k 

~ Cj,keikaP=hj(2p)=[f~(2p)[2=O for p+j .  
k 

Since  h~ is inf in i te ly  d i f ferent iable  

cj,k=O(lk I-e) 

where  fi > 0 can  be  chosen  a rb i t r a r i l y  large. T h u s  for j = - m  . . . .  , m 

c~, a In + k]-~ L([n + k[) e i("+k)zJ 
k 

= 2 -}-O(g/ 2e) 
]kl < V'K 

=lnl-~L(Inl)e*"~( Y, Cj, keik&)(l +o(1)) 
Ik[< 1/n 

= Inl = L ( l n l ) ( 1  + o (1 ) )  

a n d  by  a s imi la r  a r g u m e n t  

~ C i, k [n + kl -~ L([n + k[) ei("+k)'a'P =o([n[ -~ L(lnl)) 
k 

if p =#j. In  the  s ame  way, one  can  show tha t  

Y, c~,k In + kl - ~  L(I n + kl)  e i(" § ~ p  = o (I nl - ~  L(I nl))  

for all  p = - m  . . . .  , m. T h e  l e m m a  follows f rom these obse rva t ions .  

(21)  

(22) 
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Proof  o f  the Theorem. Let I denote the index set { - m  ... .  ,0, ... ,m, ~}. Then 

X , =  i d "~dZ~(x )  = y ' j X ,  
--~ jE I  

where G is the spectral measure of the Gaussian sequence {X.} and Z G is the 
corresponding random spectral measure of the process. Also 

with 

and 

jXn = i ein~ dZ6j (x)  (23) 

d ZG~ (x) = f~ (x) d Za (x) (24) 

G j ( ~ )  = i Ifj(u)l z da(u).  (25) 

Let us consider the case H(x)=H~(x ) .  Now 

Then 

where 

Hk(X, )  = H , ( ~  iX, )  = ~ e i"(~, + ' + ~) Z G (d x 0 ... ZG(d Xk) 
jE I  

= ~ je i"( :"+'"+~)Zah(dxl ) . . .Z~j~(dXk) .  
Jl ..... j k ~ I  

1 Nn-1 
yN (8) = ~ J= N~-I)  Hk (X  j) e -ij~ 

= ~ ~- - - -~e  i N ( n - 1 ) t x ' + ' ' ' + x k - # )  

j l  ..... j k a I  N 

�9 k u (x 1 +. . .  + Xk-- 8) ZG~ (d x 1)..- ZGj~ (d xk) 

kN(xl + ... +Xk)= ~ e ijC~'+'''+x~) 
j~B~ 
e i N ( x l  + ... +xk)  - -  1 

el(X1 + ... + xk) _ 1 

(26) 

(27) 

We wish to first show that the variance of a term of (27) with one of the 
subscripts j i=(a or else with j l , . . . , j k E { - - m , . . . , m }  but 2 j ~ + . . . + 2 j ~ f l m o d 2 ~ z  
tends to zero as N-+oo. For  simplicity in notation the computation is carried 
out for distinct Jl . . . .  ,Jk. The variance is then 

~--~N~ [kN(Xl 4 - X  k dGjl (Xl) . . ,  dGj~(Xk) +. . .  8) 12 

1 
--  N 2 -k~ L(N)  k p e ~  qe~B~ rjl (p - -  q) ''" rj~ (p - q) e-i(;  --q)fl 

1 
- N Z _ k ~ L ( N )  k ~ (N-Ip l )r j~(p) . . .  rjk(p)e -ip~ 

pEBzv 



Limit Theorems for Fourier Transforms 129 

where 
/~N= { p l - N < p < N } .  

If one of the subscripts j i=4 ,  the estimates (19) and (20) together with an 
estimation like that given in the proof  of Lemma 1 in [3] imply that (28) tends 
to zero as N ~  ~ .  

The following lemma is helpful in showing that (28) tends to zero as N ~ oo 
if 2j, + ... + 2j~ ~g fi mod 2re. 

Lemma 2. Let ~ > O. I f  L(t) is a slowly varying function there exist L 1 (t) and L 2 (t) 
such that L(t) = L 1 (t) + L 2 (t) 

and 

is monotone decreasing. 

L 2 (t) = o(L 1 (t)) (29) 

n-~Ll(n)  (30) 

This lemma follows from Karamata ' s  theorem (for Karamata ' s  theorem refer 
to the book of Ibragimov and Linnik). 

By Lemma 2 we can estimate (28) when 2j, + ... + 2 j ~ f i  rood2= by 

1 
p-k= L1 (p) eip(;~al + . . .  + ;~ak -~) (31) N 2 ~ k ~ L(N) k 

where L~ is a slowly varying function such that n-k=L1 (n) is monotone decreas- 
ing. The infinite sum in (31) is convergent since 2j, + ... + )~ j~ f lmod27z  and so 
the whole expression (31) tends to zero as N--,oo. The case in which several 
subscripts are the same can be carried out similarly but in a more tedious 
manner. All these terms can therefore be neglected as N ~ o o .  We now have to 
consider the terms for which 2j, + . . .  + 2 j~-f l  mod2rc. The asymptotic behavior 
of one such term will be determined as N + m  but the argument given when 
trivially elaborated can be applied to the linear combination of any finite 
number  of such terms. Thus the joint asymptotic distribution of the terms can be 
determined as N ~  oo. Let us consider the term 

1 
AZSem(n-1)(x'+'"+xk-~)kN(Xl 4-... 4-Xk--fl)ZG&(dXl)... ZGjk(dXk) (32) 

of the sum (27) with )~j,+ ... + 2 j - f l  mod2rc. Let 

N~/2 
ZN,j(A ) = ~ Z a ~ ( 2  s + N -~ A) (33) 

and 
g c~ 

GNd(A) = L ( ~  G ~()o~ + N - 1  A) (34) 

with A a Borel set. Our object is to show that (32) converges in distribution to 

that of D --k/2 ~ e i ( . -  , )(x,  + . . .  + x~) e i (x '  + "'" + xk) _ 1 

i(x 1 4-... 4- Xk) 

l+a(,~) l+a(&) 
"sa' 2 "'" sak 2 Wxl (dxl) . . .  Wzk(dXk). (35) 



130 M. Rosenblatt 

Of  course, the finite dimensional  distributions of  (5) will converge in distribution 
to those of  (14) and as remarked  earlier a simple but  notat ional ly  tedious 
e laborat ion of  our  a rgument  will yield that  result in the case H ( x ) = H k ( x  ). 

Let 
1 K N ( u ) = ~ k N  ( l u ) .  

Then expression (32) can be rewritten as 

e i(n - i)(xl +... + ~) KN (x 1 +. . .  + Xk) ZN, j l (d x 1)"" ZN, j~ (d Xk). (36) 

The measure GNd(. ) corresponding to ZN,~(. ) can be shown to converge locally 
weakly as N ~ o o  to 

where o G has density D -1 [xl ~-1. Set 

~oN.x( t l ,  . . . ,  tk) 

. il--(u~xl + . . .  +ukxu)  
= J e  N ]KN(x 1 + ... +xk)] 2 GNd~(dxl).. .  GNdk(dXk) (37) 

where up= [tpN], p=  1, ..., k and 2=(2j~, ..., 2~). Then  

~oN, x( t~  . . . .  , tk) 

1 
- r ( p - q + u l )  ... r(p--q+Uk) N 2-k~ L(N)  k p ~ f  q ~ f  

�9 e - i ( p  - q ) f l  e - i ( u i  -~./1 + . . .  + uk"~Jk) 

1 
- ~ (N- lp[ ) r (p+Ux) . . .  N 2 -k~ L(N)k p ~  

�9 r (p  + Uk) e - l y e  e - i ( " *  a j,  + ... + , ~  xj~). ( 3 8 )  

Just  as in the p roof  of L e m m a  1 of  [3] one can show that  

lim Cpu,x(t 1 . . . .  , tk) 
N ~ o o  

1 1 1 
= - 1  j (1 -[x l )  lXl +tll~ "'" Ix +tk[ ~dx  

1 + 6 (2jl) 1 + 6 (2jk) 
�9 sxj 1 ... s~jk 2 "'" 2 

= ~ox(t l ,  . . . ,  tk). ( 39 )  

with the limit function (Px a cont inuous  function�9 Also the function PN, x of  (38) is 
the Four ier  t ransform (u = (ul . . . . .  Uk), up = [tp N],  x = (x 1 . . . . .  xk)) 

cPN, x (t) = j e i''x/N qN, x (d x) 

of  a finite measure t/N, x on R k with support  on [ - N n ,  Nrc] k. Since ~oN, x(t ) tends 
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to a limit function cpx that is continuous, it follows that the sequence of measures 
r/u, x tends to a finite measure t/z and q~ is the Fourier transform of r/x (see 
Lemma 2 of [3]). 

We consider special functions h taking on a finite number of values of the 
following character. Consider sets A1 ,A2 ,  . . . ,As ,  s =  1,2, ..., Borel sets (of finite 
o G mass) such that A _ i = - A  i and A _ s , . . . o A _ I ,  A 1 . . . . .  A s are disjoint. Let 
~(iD. . .  , ik) be complex numbers and 

h(x l ,  . . . , X k ) = ~ ( i l ,  . . . , ik)  if X l ~ A i l  . . . .  ,XkEAik 

where i l , . . . , i  k take on the values _+1 .. . .  , i s  but with ij=t=i;, if j # j '  and 
h(x 1, . . . ,Xk)=0 for all other x l ,  . . . , x  k. One can show that 

h (x 1 , . . . ,  Xk) ZN, J l (d x 1)"" ZN, jk (d Xk) (40) 

asymptotically as N-~ oo has the same distribution as 

jh(xt;  . . . ,Xk) Wxil ( d x l ) . . .  Wxj, (dxk). 

The integral (40) is a polynomial in the random variables Zs,;,(B ) with the B's 
Borel sets. Now the joint distribution of the random variables Zs,j~(B ) tends to 
the joint distribution of the random variables Wa~,(B) and so we have the desired 
limit behavior. Also K s ( X  1 + ... + Xk) tends to 

e i(xl+'''+xk) -- 1 
K o ( X  1 + .. .  +Xk) - -  

i(x 1 + ... + Xk) 

uniformly on every finite rectangle in R k. Equations (37) and (39) imply that 

lira J IKs(x 1 ~- . . .  AV Xk)l 2 G s d ~ ( d x i ) . . .  Gs,~,~(dxk)=0 (41) 
A~oo Rk_[_A,A]k 

uniformly for N = 0, 1, 2,. . . .  An adaptation of Lemma 3 of [3] then implies that 
expression (36) tends in distribution to expression (35) as N ~ o o .  For  relation 
(41) implies that for any e > 0  one can find a function of type h (depending on ~) 
such that 

E I j [ ei(n - 1)(xl +... + x~) Ks  (x 1 +'-" + Xk) -- h (x 1 ' ' ' ' '  Xk)] 

. Z N , j l ( d X l ) . . .  ZN,jk(dXk)l 2 <13 

for N > N ( e )  and 

E I ~ [ el ( ' -  1)(~ +...+ ~) K s ( x  1 + . . .  + XR) -- h (x 1 , ' " ,  Xk)] 

�9 Wx~l (d xl) ... Waj,(d x,)l 2 < ~. 

The same argument as that given on p. 36 of [3] implies the validity of the 
theorem for general H. 

The theorem was derived for stationary sequences�9 However, it is clear that a 
corresponding result could have been obtained for random fields under con- 
ditions comparable to those given in [3]. The normalization in the theorem is of 
the form N ~ L ( N )  with y>�89 and L ( N )  slowly varying. The greatest interest is 
most likely in the case of a non-Gaussian limiting process. However, one can 
obtain nonnormal limiting distributions with a normalization having exponent 
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7<�89  by  cons ider ing  processes  s o m e w h a t  l ike those ana lyzed  in [6] and  [7]. A 
para l le l  a rgumen t  carr ied  out  in the  case of  con t inuous  t ime p a r a m e t e r  suggests 
tha t  the  l imi t ing d i s t r ibu t ions  o b t a i n e d  are  self-similar.  

Additional Remarks 

T a q q u  no ted  ora l ly  tha t  one can de te rmine  n o n - G a u s s i a n  self-similar  processes  
whose  second  o rde r  p roper t i e s  are  the same as the  Wiene r  process  by using the 
techniques  of  [6] or  [7]. This  means  tha t  the  exponen t  in the self-s imilar i ty  is 
1/2 as it  is for the W i e n e r  process.  

In  all of  the results  discussed in [3] and  [4] there  is a smal les t  index in a 
H e r m i t e  expans ion  tha t  p lays  a bas ic  role. G iven  the results  of  [4]  it is easy and  
of  interest  to concoct  special  examples  in which one needs much  more  than  one 
index to charac te r ize  a self-similar  d is t r ibut ion .  Such examples  are pa r t i cu la r  
cases of  a general  class of  such processes.  Let  kW,, k =  1,2 . . . . .  be  independen t  
processes  each having  the same p robab i l i t y  s t ruc ture  as W 0. Let  

U n(k) = S exp [i n (x 1 + . . .  + xk)~ Ko (x 1 . . . .  , Xk) 

�9 Ix1 + . . .  + x ~ l  ~ Ixl l  3/(~k)-~ . . ,  [x~l 3/(~k)-~ 

�9 k W ( d x l ) . . ,  kW(dxk). (42) 

The  discuss ion in [4] indica tes  tha t  each of  the process  {U,(k),n . . . . .  
- 1, 00 1, . . .  }, k = 1, 2 . . . .  is self-s imilar  with exponent  1/2. Let  

U.= Z Un(k)g a (43) 
k=l 

where  the  gk are  a s sumed  to a p p r o a c h  zero sufficiently fast as k ~  oo so tha t  (43) 
converges  in mean  square.  The  resul t ing process  {U~} is still self-similar  with 
exponen t  1/2 but  involves p o l y n o m i a l  forms in the W processes  of  all  powers.  

Acknowledgement. I wish to thank a referee who suggested using Lemmas 1 and 2. 
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