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Lower Envelopes near Zero and Infinity 
for Processes with Stable Components 

W. J. HENDRICKS* 

Section 1. Introduction 

The object of this paper is to investigate certain sample path properties of a 
type of Markov process in R d with stationary independent increments. To define 
the process, let Xi(t) be a stable process of index ~ in Euclidean space of dimen- 
sion di, for i=1,  2, ..., n. Let d = d a +  ... +d , .  If the X~(t) are independent, the 
process X(t)  in R d defined by 

X (t)-.~ (X  a (t), . .. , X ,  (t)), (1.1) 

where the d~-dimensional subspaces in which the Xi( t  ) take their values are 
orthogonal, is called a process with stable components. We may assume, with no 
loss of generality, that the indices ai are distinct and that 

~ n  <~ ~ n _  l ~ . . . ~0~2~0~1.  

Pruitt and Taylor have already studied processes of this type in [9], where 
they establish the asymptotic behavior of the first passage time out of a sphere 
and of the sojourn time within a sphere; they also find the correct Hausdorff 
measure function. We shall be interested in determining lower envelopes of 
functions with respect to X(t )  near zero and infinity. Integral tests are already 
known ([11], [12] and [13]) for monotone functions h(t) which limit the behavior 
of [X~,,(t)[ for certain types of stable processes X~,,(t) of index a < n  in R" as t 
approaches infinity (zero) in the sense that the event 

[IX~,, (t) l G h (t) i.o. as t ~ infinity (zero)] 

has probability 0 or 1 according to whether or not the integral 

{h(t)In-~ 
dt(  ~ - - )  

converges or diverges. For X(t )  as defined above we seek results in the form of 
integral tests near zero and infinity. 

Our basic method of study is to use some potential theory to obtain estimates 
of delayed hitting probabilities of certain spheres with respect to two special 
classes of processes with stable components; this is done in Section 3. In Section 4 
(Theorems 4.1 and 4.2) integral tests are developed for lower functions with respect 
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to the processes considered in Section 3; as a corollary to each theorem we obtain 
an integral test for lower functions with respect to X(t) as defined by (1.1). 

An interesting special case of (1.1) is the process X(t) defined by 

X (t) = (X 1 (t), X 2 (t)), (1.2) 

where Xi(t ) is a stable process of index ~i in R 1 for i = 1 , 2  and 1<~2<~1N2.  
Pruitt and Taylor [9] noted that most of the possible kinds of behavior for the 
X(t) of (1.1) are already obtainable for X(t) as given in (1.2) and that the general 
proofs are not much harder. Moreover, each component of X(t) in (1.2) is point 
recurrent but the process itself is transient and most information about the process 
cannot be obtained by analyzing its components. 

For  X(t) as in (1.2) our results will show that the event 

[Ix(t) l _-< h(t) i.o. as t --+ infinity (zero)] 

has probability 0 or 1 according to whether the integral 

{h(t)}~tz-ntz dt ( ~ ~ {h(t)}~2r~-nt~ dr) 

converges or diverges, where 2 =c~i-l+ e21 and h(t) increases monotonely from 
zero to + oo as t increases from zero to infinity. Thus, the event 

[IX(t)l t-1/~2_- < 1 i.o. as t -+0]  

has probability 1, and with probability one IX(t)] t -  1/~2 does not converge to + oo 
as t approaches zero. On the other hand, it is not hard to prove that: 

(i) Ix(t)l t -  1/~ converges to + oo in probability as t -+ 0 if e < e I ; 

(ii) IX(t)1-1/~ does not converge to + oo in probability as t--+0 if c~>e 1. 

We can also show that the parameters/7,/7' and/7" defined by Blumenthal and 
Getoor  [3] satisfy: 

0 < / 7 " = ~  2 </7 '=  1 -I-~ 2-~2/~1 < f l = e  1. 

Thus Corollary 5.1 in [3] can be strengthened in this case to give convergence of 
]X(t)l t ~/~ to -t-oo in probability as t approaches zero whenever e</7. Since the 
Hausdorff dimension of the range of the sample paths is almost surely equal to/7' 
(see [9]) we note in addition that 

sup{e: IX(t)l t -11~--+ + oo almost surely as t-+0} =c~ 2 

is in this case distinct from the Hausdorffdimension of the sample paths. It would 
also be interesting to characterize the asymptotic behavior of an arbitrary in- 
dependent increment process (see [3]), but we have not yet been able to do this. 

Section 2. Preliminaries 

The n-dimensional characteristic function of a stable process X~,.(t) of index 
4= 1 in R" has the form exp It ~s (y)], where 

i/s (y)= i (a, y) -(7 [y[ ~ ~ w,(y, O)Ix(dO), 
S,, 
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with aeR",  6>0,  ( , )  the usual inner product in R", 

w, (y, 0)= [1 - i s g n  (y, 0) tan n e/Z] I (0, Y/lYl)[~, 

and # a probability measure on the surface of the unit sphere S, in R" [8]. We 
assume a = 0, 6 = 1, and that # is not supported by a proper linear subspace of R". 
If/~ is uniform the process is said to be symmetric. 

When speaking of a stable process X,, , ( t )  we will always write the two sub- 
scripts to indicate index e and dimension n except when the process is actually 
a component of a process with stable components. When the latter occurs we use 
a single subscript i to indicate the i-th component. The symbol X(t)  will be under- 
stood to refer to a process with two or more stable components. Likewise, p,, ,(t ,  x), 
pi(t, xi) and p(t, x) will denote the densities of X~, ,(t), Xi(t), and X (t) respectively. 

Taylor [13] classifies stable processes X,, ,  as being of type A or type B accord- 
ing to whether or not p,,,  (1, 0) > 0. When c~ > 1, only processes of type A can occur. 
If e < 1, we will assume that the process (or component) is type A. A key property 
of a stable density (except for some nonsymmetric processes of index 1, which 
we henceforth exclude) p,,,  (t, x) is the scaling property: 

p, , ,  (t, x) = r "/~ p~,, (r t, r 1/~ x) (2.1) 

for all r > 0, or in terms of the process itself, X,, ,  (r t) and r 1/~ X~,, (t) have the same 
distribution. 

The stable density function p~ ,(t, x) is known to be positive, continuous, and 
bounded in x for each fixed t [10]. Since we are considering only processes or 
components of type A, p~,,(1, x) is therefore bounded away from zero in any 
closed neighborhood of the origin. 

All processes or components X, , , ( t )  being considered will be regarded as 
being defined over some basic probability space ((2, ~,, P), with values X, , , ( t ,  co) 
in R"; we take t > 0, and co e •, although we usually suppress the co's in our notation. 
We may assume that almost all sample functions X, , , ( ' ,  co) are right continuous 
and have left limits everywhere. Moreover, we assume that the strong Markov 
property holds and that X,, ,  (0)= 0 with probability one [2]. 

The letters a, b, and c will be used to denote positive constants which can vary 
in size from statement to statement or line to line. Positive constants whose values 
remain fixed throughout the discussion will be introduced in order and denoted 
by cl, .... c14. 

Section 3. Potential Theory and Hitting Probabilities 

Taylor [-13] gives a brief background of the potential theory which we need. 
Denoting the density of X(t)  as defined in (1.1) by p (t, x) we have: 

n n 

p (t, x ) -  l-I pi (t, x i ) -  I-I d, (t, xi), 
i = l  i = 1  

where x = (x  a . . . .  , x , )ER d and d = d  a + . . .  +d , .  U(y), the kernel of X(t), is given by: 
oo 

U(y)-- [. p(t, y) dt  (3.1) 
0 

and converges for all y 4= 0. 
18" 
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If we let # be any measure defined on Borel subsets of compact sets E in R d, 
the potential at x of the measure # on E is 

Wu(x)= ~ U ( y - x )  #(dy). 
E 

The capacity of E is zero iff Wu is unbounded for every # for which #(E)>0. If 
there are some # such that Wu is bounded, we define the capacity, C(E), of E by 

C (E) = sup {# (E): W u (x) < 1 for all x}. 

When E is compact this supremum is actually attained for a measure v, called the 
capacitory measure on E. 

Finally, we denote the hitting probability of a Bore1 set E starting from x by: 

elJ(x, E)=_PxFX(t)~E for some t > 0 ] .  

Hitting probabilities are then given in terms of the kernel and the capacitory 
measure: 

(x, E) = v ( y -  x) v (dy). 
E 

Our method will be to obtain bounds on the kernel, the capacity of dosed 
spheres, and ultimately upon delayed hitting probabilities of certain spheres. The 
estimates for general X(t) as defined above are not easily obtained, but fortunately 
are unnecessary. What will be needed will be estimates for large spheres in R ~1+d2 
with respect to (X~I, dl(t), X,2 ' d~ (t)) when 2 > 0q > ~2 > d2 = 1 and for small spheres 
in R dl+a~ with respect to (X~l.n~(t),X,2,d~(t)) when 2 > ~ 1 > d 1 = 1  and ~1>~2. 
Lemmas 3.1 and 3.2 deal with the first situation, while 3.3 and 3.4 deal with the 
latter. 

Lemma 3.1. Let X(t) be defined by: 

X(t) = (X, (t), X2 (t)) =- (X:I, d,(t), X=~, d2 (t)), 

where 2>= a 1 > a 2 > d2 = 1. Let S r be the closed sphere in R d'+d~ of radius r >= 1 which 
is centered at the origin, and denote the capacity of this sphere with respect to X(t)  
by C(Sr). Then positive constants c 1 and c2, independent of r, can be found such that: 

C1 f e l t 2  - 1] ~ C(Sr ) ~ C2 r a l [2  - 1 ]  

where 2 = d 1 cr t + d2 cr 1 > 1. 

Proof The kernel for X(t) is given by 

o0 

U(y)= ~ pl(t, Yl) P2( t, Y2) dt 
0 

where y = (Yl, Y2) ~Ra~+d~ and pi(t, Yi) is the density of Xi(t ) for i=  1, 2. 

To establish the upper bound for C (S~), let v be the capacitory measure on S~. 
Then: 

1 > ~ U(y) v (dy) > min U(y). ~ v (dy) = C (&). min U (y). (3.2) 
Sr yESr Sr YESr 
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Obtain lower bounds for the kernel inside S~ by using the scaling property for 
the densities and the facts that pl(1, ") and p2(1, .) are bounded away from zero in 
closed neighborhoods about the origin and that 2 > 1. 

U(y) = ~o Pl(I' Yl t-  ~/~)t zp2( 1, Y2 t -  1/ez) dt 
0 

i ~alYl] ~tl-xl if [yll ~' ~[Y2l=~; 
__> lyl ' 

>bly2[ ~tl-xl if [y2[~>]yl] "'. 

Since r > 1 we have: 

min U(y) >= c min {r ~'[1- "q} = c t ; z l [ 1 -  2]. 
y~Sr i= 1, 2 

Using this in (3.2), we obtain the desired upper bound: 

C(S,) < [min U(y)]- 1 = c2 r ~ltx- 11 
y~S~ 

The lower bound for C(Sr) is established by first proving: 

W,L(x ) =- ~ U ( y -  x) #L(dy)<= c r a2+~l- ~ a2/~2, (3.3) 
Sr 

where x = (xl, x2)~R a~ +a:, #L is Lebesgue measure in R a~ +a2 and c > 0 is independ- 
ent of r and x. This is done by interchange of orders of integration and using 
Lebesgue measure #L(dyl) and #L(dy2) in R a' and R a~ respectively to obtain: 

co 

WuL (x)= ~ j Pl (t, Yl --Xx) P2 (t, Y2 --x2) d t #L (dy) 
Sr 0 

co 

< ~ [ ~ Pl(t, Yl--x1)#L(dyl)" ~ p2(t, y2--X2)#L(dy2) ] dt 
0 lyl[ < r  ly2] < r  

co 

= [. P[IXdt)+Xll  <r].  e[IX2(O+XNI <r] dt 
0 

co 

= ~ P[[XI(1)+Xl t-1/~'l<rU1/~]. P[[X2(1)+x2 t-1/~2l<rt -1/~] dt 
0 

teL2 r~l 

0 r~2 r~l 

where the inequality preceding the sum is justified by the boundedness of Pl (1, Yl) 
and P2 (1, Y2). Now use the facts that r > 1 and c~ 2 < d2 + ex - ~1 dff~2 to obtain (3.3). 

Having established (3.3) we define a measure #(E) on Borel subsets E of Sr by: 

# (E) = c - 1 r - d2- ~, + ~1 d2/~2 #L (E). 
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Then Wu(x)< 1 for all x and: 

C (St)  > # (St)  = c l  r -  az -  e, + ~ a2/e2, rd~ + d2, 

which completes the proof of the lemma. 

Lemma 3.2. Let X(t), r, and Sr be as in Lemma 3.1 and define the delayed hitting 
probability of Sr starting from x by: 

Q(x, r, T)=Px[X( t )eSr  for some t> T],  

where T > 0 .  Then positive constants c3 and c4, independent of x, r, and T, can be 
Jound such that: 

(i) Q(x, r, T)<ca C(S~) T1-2; 

(ii) Q(x, r, T)>c4 C(Sr) T 1-z if  Ixl<_r and T>(2r)% 

Proof Both parts use the following equality whose proof is patterned after 
by Jain and Pruitt [5] in the transient stable case: 

Q(x , r ,T )=  j p ( T , y - x ) ~ ( y , S , ) d y  
Rdl  + d 2 

= I ; I p ( T , y - x ) p ( t , z - y ) d y d t v ( d z )  
sr o R"~+d2 (3.4) 

oo 

= ~ j p ( T + t , z - x ) d t v ( d z )  
Sr 0 

oo 

= p1(1, (yl -Xl)  t-'/e,) p2 (1, (y2 t-1/ez) at v(dy), 
Sr  T 

where v is the capacitory measure on S,. Using (3.4), (i) is an easy consequence 
of the boundedness of the p~(1, x) and the fact that 2 >  1. The hypotheses in (ii) 
imply that for any y =(Yl, Y2) in S~: 

]yi-xil<-2r<=Tlle' for i=1 ,2 .  

Now using the lower bounds for stable densities in closed neighborhoods of the 
origin, we obtain (ii) from (3.4) in the same way as (i). 

We conclude this section with two lemmas whose proofs parallel those of 
Lemmas 3.1 and 3.2. 

Lemma 3.3. Let X(t) be defined by: 

X (t) ~ (X 1 (t), X 2 (t)) =- (X:~, a~ (t), Xez" d~ (t)), 

where 2 >_ ~1 > dl = 1 and a 1 > a 2 . Let S, be the closed sphere in R e~ + ~ of radius r <= 1 
which is centered at the origin, and denote the capacity of this sphere with respect 
to X(t) by C(S,). Then positive constants c 5 and c6, independent of r, can be found 
such that: 

c5 r eztz- 11 <= C (S~) < C 6 r ez[z-  1], 

where 2 = d I ~[ 1 + d2 ~21 > 1. 



Lower Envelopes near Zero and Infinity 267 

P r o o f  The  kernel  for X(t)  is given by 

oo 

U(y) = S Pl( t, Yl) P2 (t, Y2) dt 
0 

where y = (Yl, Y2) ~ Re1 + as and Pi (t, Yi) is the density of X i(t) for i = 1, 2. Let  v be the 
capac i to ry  measure  on Sr and observe that :  

1 > S U(y) v(dy)> C(Sr). min  U(y). (3.2') 
Sr yeS~ 

Obta in  lower bounds  for U(y) inside Sr in the same way as before:  

min U(y) > c rain {r ~'I1 - xJ} = c r "~L1- z~, 
y ~ S r  i = 1,  2 

since r__<l. Using this in (3.2'), we obta in  the upper  bound  for C(Sr). 

The  lower bound  for C(Sr) is established by first proving:  

W.L (x ) =- ~ U ( y -  x) #L (dy) < c r e' +~-  ~=d~/~,, (3.3') 
Sr 

where x = (Xl, Xe)eR dl +as, # is Lebesgue measure  in R e* +as and  c > 0 is independent  
of  r and  x. Proceeding  as before we have:  

~3 

W,L(x)< ~ PEIX~(t)+ x~l <r] . PElX2(t)+ x2l <r] dt 
0 

r c~l r ~2 o0 

< j d t+  j a[rt-1/~]a~dt+ j b[rt-1/cq]al[rt-1/~2]~1'dt 
0 r~l rer 

< r "1 + a r d l +  ~ 2 [ 1 -  dl/~l] _~_ b r a' + d2 r ~ 2 [ 1 -  J.]. 

N o w  use the facts tha t  r__< 1 and cq > d  1 +0e2-0~2dl/~ 1 to obta in  (3.3'). 

Next ,  define a measure  be(E) on Borel subsets E of S, by: 

be (E) = c- 1 r-  d~- ~ + ~a~/~ beL(E)" 

Then  W~(x)__< 1 for all x and:  

C (S,) >= be (S~) = cs r-  a,- ~ + ~a~/~. ra~ +a~, 

which comple tes  the p roof  of the lemma.  

L e m m a  3.4. Let  X(t), r and S~ be as in Lemma3.3and define Q(x, r, T) as before. 
Then positive constants c 7 and c8, independent of  x, r, and T, can be found such that: 

(i) Q(x, r, T)<__c v C(S,) T I - z ;  

(ii) Q(x, r, r)>=c 8 C(S~) r ~-~ if Ix l<r and r > ( 2 r )  "~. 

Proof Proceed  as in the p roo f  of L e m m a  3.2. 

Section 4. Lower Envelopes near Zero and Infinity 

We now consider  the p rob lem of finding m o n o t o n e  functions which limit 
the behav io r  of  IX(t)[ as t approaches  zero or infinity, where X(t)  is a process 
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with stable components. Takeuchi has done this in the transient symmetric 
stable case near zero in [11] and near infinity in [-12], while Taylor [13] asserts 
that Takeuchi's results near infinity can be extended to include any stable process 
of type A. His results take the form of an integral test which has the same form 
at zero as at infinity. We too will establish an integral test, but the test near zero 
will differ significantly from that at infinity. 

To consider IX(t)l near infinity we suppose that h(t) is a positive and non- 
decreasing function defined for all large real numbers t. Since X(t) will prove to 
be transient we assume h(t)> 1. By using the Hewitt-Savage zero-one law [4] 
we will show that the following event has probability zero or one: 

[IX(t)lNh(t) i.o. as t--,oe]. 

By this we shall always mean that with probability zero or one there is an increas- 
ing and unbounded sequence {t~(co)}~= ~ of times such that [X(t~(co), co)[ <h(tj(co)) 
for all j. 

h(t) will be said to be in the lower class, Loo, with respect to the process X(t) 
if the above event has probability zero and in the upper class, U~o, if the event 
has probability one. Hence, if h ~L~o and g (t)__< h (t) for all large t we have g~L~, 
and similarly g e U~ if h e U~ and g (t) > h (t) whenever t is large. 

Our first integral test is given in Theorem 4.1, where we consider processes 
of the type defined in Lemmas 3.1 and 3.2. As a corollary, we then obtain the 
desired integral test near infinity for X(t) as defined in (1.1). 

Theorem 4.1. Let X (t) be defined as in Lemma 3.1, and let Loo and U~o be as above. 
Then a positive non-decreasing function h(t) as defined above belongs to Loo or 
U~ according to whether the integral 

I h -  ~ {h(t)}~l~x-al dt 
t ~ 

converges or diverges, where 2 = d 1 c~ 1 + d2 0:21. 

Proof Suppose that the integral converges. Let 2 =d~ ei- 1 +d2d 21 and define 
events Mn by 

M,=[CO: IX(t, co)[<h(t) for some t in [2", 2"+~]], 

for n=  1, 2, 3 . . . . .  Then, since h(t)> 1, Lemmas 3.1 and 3.2 give: 

P[M,]<Q(O, h(2"+~), 2") 

{h(2,+a)},,lx_,l 2.+2 {h(t)ff, Ex_,l 
<c2c3 2,tx_ 11 <c S tz dt. 

2 n + l  

Thus, ~ P[M,]<c .  Ih< o0. By the Borel-Cantelli lemma, P [ M , i . o . ] = 0  and h 
n 

is in L~. 
Conversely, suppose that the integral diverges. We accomplish the proof 

by means of several lemmas. 
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Lemma4.1.  Without loss o f  generality, we may assume that h(t)<=t 1/~ when 
X( t )  is as above. 

Proof. We must show that assuming the theorem valid for functions which 
never exceed tl/% we can show h to be in Uo~ whenever Ih = ~ .  So let h be any 
function for which the integral diverges and define h*( t )=min{h( t ) ,  tl/~}. Then 
h* < h, h*(t) < t 1/~, and h* is non-decreasing. Therefore: 

2n+~ {h*(t)} ~ltz-ll 2". {h*(2")} ~t4-1~ c2 "-1.  {h*(2")} "~t4-al 
t4 dt>= {2,+1} 4 -- {2,_1} 4 (4.1) 

2 n 

for some c > 0 independent of n. 

If h* (2")= h (2") for all large n, the above expression is: 

c2 , -1  {h(2,)}~t4-11 2- 11 
�9 {h(t)}~'[z- dt,  
{2,_1} 4 >c2._, ~ t4 

so that Ih,=O0. Since h*eUoo by hypothesis and h*<h ,  we have h in Uoo also. 
On the other hand, if h*(2")=2 "/=* for infinitely many values of n, for such n 

we have (see (4.1)): 

2". {h* (2")} "~t4-11 
= 2 - 4  

{2"+1} 4 

Therefore Ih, = oo in this case also. Once again we conclude that h is in Uoo and 
the lemma is proved. We note in passing that Lemma4.1 remains valid if we 
replace t ~/~1 by c ?/% where c is any positive constant. 

Next we obtain a lower bound on the probability of returning to a large sphere 
in [T1, T2] which is of the same order as returning in [T,, oo]. Using both parts 
of Lemma 3.2 we prove: 

Lemma 4.2. Let  X( t )  and Sr be as in Lemma 3.1; also let Tl>(2r)  ~' and x e S r .  
Then positive constants c 9 > 1 and Clo , independent o f  r and x, can be found such 
that when T 2 > c 9 T 1 : 

p x [ x ( t ) e S ~  for  some te[T1, T2]]=>qo C(S~) T11-~ 

Proof. Choose c 9 > (2 c3/c4) 1/(~- 1) > 1. Let T 2 >= c 9 T 1 . The probability of interest 
is at least: 

Q(X, r, T1)-- Q ( x  , r, Z2)~.~ Q ( x  , v, T 1 ) -  Q(x  , r, c 9 T1) ~ C(Sr) [-c 4 Z 1 -  4 - c 3 ( c  9 Z l ) l -  4], 

from which the desired results follows. 

The next step in the proof of the theorem is to make use of the fundamental 
lemma along the lines of Borel-Cantelli [11] : 

Lemma4.3.  Let  { Q , , n = l ,  2,3 . . . .  } be a sequence o f  events o f  a common 
probability space. Suppose that (i), (ii) and (iii) are true. 

(i) ~ ,  P [Q.] = oo. 

(ii) PVQ.i.o.3=0 or  1. 
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(iii) There exist two positive constants Cll and c12 with the property that to 
each integer j there corresponds a finite subset Sj of positive integers such that: 

~P[Qj~Qi]<c l lP[Qj ]  and P[QS~Qk] 
i~Sj 

<c12P[Qj]'P[Qk] when kr k>j.  

Then P[Q, i.o.] = 1. 

We now apply Lemma 4.3 to events Q, defined by: 

Q ,=  [IX(t)l <h(c"9) for some t in [c~, c~+1]], 

where c 9 > 1 is the constant which appears in Lemma 4.2. Once the three condi- 
tions of the lemma are verified for any h whose integral diverges, we will have 
shown that such h are in Uo~ and the proof of the theorem will be complete. 

To verify (i) note that by Lemma 4.1 c~ > [2h(c~)]% so that we can use Lem- 
mas 4.1 and 3.1 to obtain (for some c > 0 independent of n): 

,, . - 1  11 d {h(t)}~<+~- u 
{h(c~)}~'~z-q c[c9-c9 ] {h(c~)}"'rx- >=c y t; v dt. 

P[Q.]>CloCl c.t~_~l - {c~_1}~ <~-' 

Thus, ~ P [Q,] = ~ .  
n 

For (iii) we first show that if k >j,  

P [ Q j n  Q~] <=PEIX(t)l <= h(c~)+h(c k) for some t ~  c k-d9+x] �9 P[-Qs]. (4.2) 

This is done by defining r.v.'s o-,(~o): 

, , [inf{t->c~: IX(t, co)l<h(c"9) for some t_<c~ +1} 

~176 ].c~ +~ + 1 otherwise. 
Then 

P [Qj c~ Qk] : P [as < c9 ' ;  a k < ck9 + 1] 
c j + l  

= ~ P[]X(t)[<=h(c k) for some t~[c k, ck+l]laj=s ]" P[aj6ds] 
4 

=< P []X(t)[-< h(c~) + h(c~) for some t => c ~ -  c~ + 1]. p [a j=< c~ + 1]. 

The final inequality, justified by the strong Markov property, establishes (4.2). 

Letting k > j + l  and using Lemma 3.2, we obtain an estimate on one of the 
factors in (4.2): 

P [IX(t) l < h (rig) + h (c k) for some t > c k - c~ + 1] 

< Q (0, 2 h (ck), b c k) for some b > 0 independent of k and j 

{2h(ck)}',rz- 11 
~c2e 3 (bck)Z_l <Clz P[Qk] by Lemma 4.2. 

Use of this result and (4.2) gives (when k > j +  1): 

P [Qj n Qk] < c12 P [Qj]" P [Qk], 
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where C12>0  is independent of k and j. Now we take S~={j+ 1} and c11= 1 to 
establish (iii). 

(ii) of the fundamental lemma is difficult to verify directly, so we define 
Q * c Q , , n = l ,  2 ,3 , . . . , by :  

Q* = [Ix(j)[ < h(c"9) for some integer j in [c~, c~+1]]. 

(ii) can easily be verified for the events Q* using the Hewitt-Savage zero-one 
law [4] and the fact that the process has independent increments. We omit the 
details. Suppose that we could show that, for all large n, P [Q,] < c P [Q*] for some 
c > 0 which does not depend upon n. Then (i) and (iii) of the fundamental lemma 
would hold for the Q* since they hold for the Q,, and we could conclude that 
P [Q* i.o.] = 1. Thus we would obtain P [Q, i. o.] __> P [Q* i. o.] = 1 and the proof 
of the theorem would be complete. 

We now show that P [Qn] = c P [Q*] for all large n and some c > 0 independent 
of n. First observe that 

P [Q*] __> P [IX(t)[ ___< h (c~)/2 for some t~ [c~, c~ + 1_ 1]]- a 

where a = P [M(1)_< �89 > 0 and 

M(t) = sup IX(s)[. 
O<_s<t 

This follows from the fact that if 

and if 

then 

IX(t, og)l<h(c"9)/2 for s o m e  t = a ( @  in Lc9'- n, C9n+l 1- ] 

sup IX(t, o~)-X(a, ~o)l <�89 
a<t<_a+l 

IX(j, 09)1 ~ 2-1 [1 +h(c"9)]<h(c"9) for some integer j in ec9r,, c9,+lqj. 

Estimate the first factor, a,, on the right in the above estimate of P[Q*] by 
Lemmas 4.2 and 3.2(i) to obtain (for all large n): 

a, >= c a o ca {h (c~)/2} ~[z- 11 > b Q (0, h (c~), c~) 
C~[A- 1] = 

>bP[lX(t)l<h(cn9) for some t~[c"9, c~+a]]. 

Therefore P [Q*] > a b P [Q,] = c P [Q,] for all large n, where c = a b > 0 does not 
depend upon n. This completes the proof. 

Before generalizing the above theorem, we state and prove a lemma whose 
proof depends upon Khinchine's [6] results about upper envelopes near infinity 
in the stable case. 

Lemma 4.4. Let X~,, (t) be a stable process of index ~ < 2 in R", and let 0 < 0 < c~. 
T h e n ;  

P HX~,, (t) l < t 1/~ for all large t] = 1. 

Proof For e in (0, 2), Khinchine's results imply that the event 

[IX~, a(t) l =< h (t) for all large t] 
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has probabi l i ty  1 or 0 according to whether  the integral 

ao  

{h(t)} -~ dt  

converges or diverges, where h(t) is defined for all large t and t-1/ 'h(t)  increases 
mono tone ly  to infinity as t approaches  infinity. Thus:  

P[lX~,a(t)l<t 1/~ for all large t] = 1. 

Applying this to each of the n projections of X~,, (t) onto  the coordinate  axes and 
using the triangle inequality, we obtain the desired result. If e = 2, the conclusion 
follows from the law of  the i terated logarithm. 

We now obtain the desired generalized integral test near  infinity in 

Corollary 4.1. Let X (t) be defined as in (1.1). Let h (t) be as defined in Theorem 4.1, 
and Loo and U~ be the lower and upper classes (near oo) respectively with respect 
to X(t). Then: 

(i) I f  e .<d . ,  h is in Loo or U~ according to whether the integral 

{h(t)Id"- ~- 
ta./ ~. d t 

converges or diverges. 

(ii) I f  c~.>d., h is in Loo or U~o according to whether the integral 

~o {h(t)F"-lE~-lJ? dt 

converges or diverges, when 2 =d,  a2 1 + d,_ i c~2Jl. 

Proof of (i). Suppose that  the integral, Ih, converges. Then, according to 
Theorem 2, Tay lor  [13], with probabil i ty  1 

h ( t )<  ]X=., an ( t ) [ -  [X.(t)l < IX(t)[ 

for all large t, so that  heLlo. 

Conversely,  let Ih = oo. Again by Taylor  [13] : 

P[IX,(t)I <=h(t)/n i.o. as t - ,  oo] = 1. (4.3) 

Choose  0 so that  a,  < 0 < e ,_  1. Then  0-1 = e~- a _ ~ for some ~ > 0 and: 

{tl/~ d t  = S t -  1- ~E~~ ~.1 d t  < oo. 

By Taylor 's  theorem we therefore have: 

?/~ ]X~(t)] for all large t with probabi l i ty  1. 

According to L e m m a  4.4 for 1 _< i___ n -  1 : 

[X~(t)l _-< t ~/~ for all large t with probabi l i ty  1. 
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Therefore,  for all large t with probabil i ty  1, we have: 

[X(t)l < IXl(t)[ + " '  + IX, (01 _-< ( n -  1) tl/~ IX, (t)[ < n IX,(t)l. 

We use this in (4.3) to complete  the proof  of (i). 

ProoJ'of(ii). Denote  the integral in (ii) by Ih, and first suppose that  I h < oo. Then:  

h(t) < ](X,_ 1 (t), X,  (t))[ =< IX(t)l 

with probabi l i ty  1 for all large t by Theorem 4.1. 

Conversely, let I h = oo. Again by Theorem 4.1 : 

P [1 (X._ 1 (t), X ,  (t))] =< h ( t ) / (n-  1)i. o. as t ~  oo] = 1. (4.4) 

Choose  0 so that  e ,_  1 < 0 < e ,_  2. Then  0-1 = ~,--~1 - e for some e > 0 and:  

{tl/~ ~",1E~-11 d t=S  t- i-~Ez-l l  dt < oo. 
t z 

By Theorem 4.1 we therefore have: 

t 1/~ < [(X,_ ~ (t), 3;, (t))[ for all large t with probabil i ty  1. 

According to L e m m a  4.4, for 1 _< i _ n -  2: 

]X~(t)[ < ?/o for all large t with probabi l i ty  1. 

Therefore  for all large t with probabi l i ty  1 we have: 

[ X  (t)[ ~ [ X  1 (t)[ --[- �9 - - -[- [X n_ 2 (t)[ + [(X._ 1 (t),  X n (t))[ 

_-< (n - 2) t i/~ + I(X,_I (t), X,  (t))[ < (n - 1) [(X,_l (t), X,  (t))[. 

We use this in (4.4) to complete  the p roof  of (ii). 

We turn now to the situation when t is near  zero. Since X(0, co)--0, we assume 
h(t) to be a non-decreasing function which vanishes at 0 and is less than 1 for 
small t. Blumenthal 's  [1] zero-one law implies that  the event 

[IX(t)l<=h(t) i.o. as t ~ O ]  

has probabi l i ty  zero or one. By this we shall always mean that  with probabi l i ty  
zero or one, there is a sequence {ts(co)}s~ 1 of times which decrease mono tone ly  
to zero and for which 

IX(t, (co), co)l =< h(t,(co)) 
for all j. 

The  function h(t) will be said to be in the lower class, Lo,  with respect to the 
process X(t)  if the above event has probabi l i ty  zero and in the upper  class, Uo, if the 
event has p robab i l i t y  one. The  propert ies  ment ioned  immediately after the 
definition of Loo and Uo~ now hold for small t. 

Our  first integral test near zero is given in Theorem 4.2, where we consider 
processes of the type defined in Lemmas  3.3 and 3.4. As a corollary,  we then 
obtain the desired integral test near zero for X(t)  as defined in (1.1). 
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Theorem 4.2. Let X (t) be defined as in Lemma 3.3, and let L o and U o be as above. 
Then a positive non-decreasing function h(t) as defined above belongs to L o or U o 
according to whether the integral 

{h(t)} ~2[~-11 
Ih = -- ~ t' ~ dt 

o 

converges or diverges, where 2 = d 1 c~ 1 + d2 ~21. 

Proof The proof closely parallels that of Theorem 4.1 and is sketched below. 

First suppose that Ih < Oe and for n = 1, 2, 3 . . . .  define events E,: 

E,=[lX( t )[Nh(2  -") for some t in  [2 -"-1,  2-"]] .  

PIE,]  <Q(O, h(2-"), 2 - " -  1)< c 

Therefore, ~ P [E,] < oe and h is in L o . 
n 

Conversely, let Ih = Oe. We first obtain 

2-,~+~ {h(t)}~[a- q 
t~ ~ dr. 

2 - n  

Lemma 4.5. Without loss of generality we may assume that h(t)< t 11~2 when X(t) 
is as above. 

Proof Define h* (t) = min {h (t), t 1/~2} and proceed as in the proof of Lemma 4.1. 

The counterpart of Lemma 4.2 is given below in Lemma 4.6; the proof, which 
we omit, uses both parts of Lemma 3.4. 

Lemma 4.6. Let X(t) and S r be as in Lemma 3.3; also let T 1 _>(2r) ~2 and x~Sr. 
Then positive constants qa  > 1 and c14, independent or r and x, can be found such 
that when T2~c13 TI : 

Px[X( t )6S ,  for some t in  IT1, r2]] ~> c14 C(Sr) T11-'t. 

Now define events Q, by: 

Q, = [[X(t)[ =< h(cF~) for some t i n  [ci-3", ci-3 ~+ 1]], 

and proceed as before using Lemmas 3.3, 4.5 and 4.6 to verify (i) of the fundamental 
lemma, while (ii) follows easily from the Blumenthal zero-one law [13. 

For (iii) of the fundamental lemma we first show that if k > j, 

eEQjc~ Q k ] < P H X ( t ) l < h ( e ~ ) + h ( c ~ )  for some t>=crj-c[~+l] �9 PEQk]. (4.5) 

Letting k > j + 1 and using Lemmas 3.3 and 3.4 we have (for some positive constants 
b and c independent of j and k): 

P [IX(t) l =< h (ci-f) + h (ci-~) for some t >__ c J -  ci-~ + 1] 

{2h(ci-~)} "2[~-11 
<Q(O, 2h(c;~),bc~2)<=c6c 7 (bcTaJ)Z_ 1 <=ce[Qj], 

where the final inequality is justified by Lemma 4.6. Use of this estimate in (4.5) 
and the choice Sj= {j+ 1} suffices to prove (iii) of Lemma 4.3, so that the proof 
of the theorem is complete. 



Lower Envelopes near Zero and Infinity 275 

Before generalizing Theorem 4.2 we prove a lemma whose proof  depends 
upon Khinchine's [6] results about upper envelopes near zero in the stable case. 

Lemma 4.7. Let  X~,,  ( t ) be a stable process o f  index ~ < 2 in R", and let 0 > ~. Then 

P [[X~,,(t)l < t i/~ for  all small t] = 1. 

Proof. For c~ in (0, 2), Khinchine's results imply that the event 

[IX,, l(t)[ < h ( t ) f o r  all small t] 

has probability 1 or 0 according to whether the integral ~ h(t) -~ dt converges or 
o 

diverges, where h(t) is defined for all small positive t, h(t) decreases monotonely 
to 0 as t approaches zero, and t-1/~h(t) approaches infinity as t approaches zero. 
Reasoning as in Lemma 4.4 completes the proof when c~e(0, 2). 

The following corollary gives the generalized integral test near zero. 

Corollary 4.2. Let  X ( t) be defined as in (1.1). Let  h ( t ) be defined as in Theorem 4.2, 
and L o and U o the lower and upper classes (near O) respectively with respect to 
X(t).  Then: 

(i) I f  cq < dl, h is in Lo or U o according to whether the integral 

{h(t)}~'-al dt 
J tdd~ ~ 

converges or diverges. 

(ii) I f  el  > dl, h is in L o or U o according to whether the integral 

{h(t)}~2tx- il 
t~ dt  

o 

converges or diverges, where 2 = d 1 ~ i + da ~ i 

Proo f  of(i). Using Takeuchi's [11] method near zero, Theorem 2 of Taylor [13] 
can be proven for lower envelopes near zero with respect to type A stable processes 
X~,, (t) of stable index c~ < n in R" (provided that the scaling property holds if e = 1). 
Therefore, if we assume that the integral in (i) converges, with probability 1 

h(t) < lx~,, ~,(t) l -  Ix,(t)l =< fx(t) l 

for all small t, so that h e L o .  

To prove the converse let the integral in (i) diverge and use Taylor's theorem 
near zero to obtain 

P[ lX i ( t ) [<h( t ) /n  i.o. as t ~ 0 ] =  1. (4.6) 

Choose 0 so that c~ 2 < 0 < cq. Then 0-1 = cq 1 + e for some e > 0 and: 

{F~ dr= ~ t - ~ + ~ - ~ ' 1  dt< 
o o 

By Taylor's theorem we therefore have: 

?/o< ]Xl(t)[ for all small t with probability 1. 
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According to Lemma 4.7, for 2 < i <  n: 

IXi(t)l_-< t 1/~ for all small t with probability 1. 

Therefore for all small t with probability 1 we have: 

IS(t) l _-< IXl(t) l + . . .  + Ix. (t) l _-< ISl(t)[ + ( n -  1) t 1/~ < n ISa (t) l. 

Use of this in (4.6) completes the proof of (i). 

Proof  o f  (ii). Denote the integral in (ii) by Ih and first suppose that Ih < oo. 
Then by Theorem 4.2: 

h(t) < [(X1 (t), X2 (t))[ _-< IX(t) l 

with probability 1 for all small t. 

Conversely, let I h = oo. Again by Theorem 4.2: 

e [I (X1 (t), X 2 (t))[ = h ( t ) / (n-  1) i.o. as t ~ 0] = 1. (4.7) 

Choose 0 so that a 3  < 0 " ~ 0 ~  2 . Then 0 - 1 = e 2 ~ + e  for some e > 0  and: 

{ tl/0}~212 - 11 
t x -- ~ t - l+~[~- l ld t<oo .  

0 0 

By Theorem 4.2 we therefore have: 

t~/~ [(X 1 (t), X2 (t))l for all small t with probability 1. 

According to Lemma 4.7, for 3 - i _< n: 

IXi(t)[ <_<_ t 1/~ for all small t with probability 1. 

Therefore for all small t with probability 1, we have: 

Ix(t)l < [(xl(t), x2 (t))] + IX3 (t)l + ' "  + Ix.(t)l 
=<_ [(x,(t), x2  (t))l + ( n - 2 ) t  1/0 < ( r / -  1)[(X1 (t), x2(t))l. 

Use of this in (4.7) completes the proof of (ii). 

Remark 4.1. In the above proofs we have not actually needed to assume that 
all of the components of X(t)  as defined by (1.1) are type A. It suffices to know that 
those components whose indices appear in a given integral test are type A. Thus 
in Corollary 4.1, if e, < d,, we need only assume X, (t) is type A; and if a, > d,, we 
need only assume X,_ 1(0 and X,(t)  are type A; similarly for Corollary 4.2. 

Remark 4.2. For h(t) of the type indicated in the proof of Lemma 4.4 and X(t)  
as defined by (1.1), the event 

[]X(t)l <h(t)  for all large t] 

has probability 1 or 0 according to whether the integral 

oO 

{h(t)} -~" dt 
converges or diverges. 
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oO 

Proof. If the integral converges, so does S h(t)-~Jdt for l<__j<(n-1). Thus 
IXj(t)l<h(t)/n for all large t with probability one by Khinchine's theorem for 
l Nj<n. By the triangle inequality IX(t)l<__h(t) for all large t with probability 
one. If the integral diverges, the event 

[[X.(t)l Nh(t) for all large t] 

has probability zero; since this event contains the event of interest, the proof is 
complete. 

Remark 4.3. For  h(t) of the type indicated in the proof of Lemma 4.7 and X(t) 
as defined by (1.1), the event 

[-]X(t)l <h(t) for all small t] 

has probability 1 or 0 according to whether the integral 

S {h(t)}- ~ dt 
o 

converges or diverges. 

Proof. The proof is analogous to that of Remark 4.2. 

Remark 4.4. In (ii) of Corollary 4.1, the critical power of t in passing from con- 
vergence to divergence of the integral is t 1/~"-1, and in Remark 4.2 the critical 
power is t:/% Therefore, for any e>O it can be shown that if c%>d. for X(t) as 
in (1.1): 

P It -~+ ~/ . . . .  < IX(t) l < t ~ +a/=~ for all large t] = 1. 

In the stable case (type A) of index e < d in R d it can be shown that: 

P[t-~+I/~<lX~,~(t)l<f +1/~ for all large t ] = l ,  

so that there is less room for fluctuation of ]X~,a(t)[ than for IX(t)l (when c~,>d,) 
as t approaches infinity. Similar observations using (ii) of Corollary 4.2 and 
Remark 4.3 can be made near zero. 

Remark 4.5. We have been unable to establish complete results if ~, = d, = 1 in 
Corollary 4.1 or if el = dl = 1 or 2 in Corollary 4.2. 
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