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On the Converse of Hopf’s Ergodic Theorem

G. HELMBERG

Let (E, #, n) be a probability space and let T be a sub-Markovian endomor-
phism of %, (E, # =) with conservative part C and dissipative part D (cf. [1]
V.4 and V.5; we shall also further adhere to the terminology of [1]). The purpose
of this note is to show the following theorem:

Theorem 1. The following two conditions are equivalent :

a) kl_lflg) T*1,=0 and there exists a function fe £ satisfying fT=f and
{f>0}=C.

b) For every he &, the sequence

1 k
{n+1 ,E‘,,T h}

In order to avoid confusion it should be pointed out that this theorem stems
from a correction of problem V.6.6 in [1] which should read as follows:

converges a.s. on E.

Theorem 1°. The following two conditions are equivalent :
a) There exists a function fe #,* satisfying f T=f and { f >0}=C.
b) For every he &, the sequence

1
T*h
{n—i—l kén }

We shall further rely on Theorem 1, the proof of which proceeds exactly along
the lines indicated by the hints given in [1], and we shall use the following lemma:

converges a.s. on C.

Lemma. Suppose ||h,|| ,<c for all n=1 and

lima.s. h,=h.

n— O

Then
lima.s. Th,=Th.

n— 00

Proof. Let h,= inf h,, and h,=sup h,,. Then h,e & _, h,e ¥, and

?®'n
mzn

h,<h,<h, for m=n,
lim 1 h,=h=lim | h,.
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We conclude

lim 1 Th, —ThmTh =Th= Tllmlh ——llmlTh

H~ O

Th,<Th,<Th, for m=n,
Th, < inf Th,<sup Th, < Th,,

mz2n mzn

lima.s. Th,< lim inf Th, <lim sup Th,<lima.s. Th,,

n— 0 n—so mn nso© Mm2n s O

Th=lima.s. Th,,.

m— o0

Proof of Theorem 1. We may assume n(C)>0. Furthermore we note that
1c(T1p)=(1,T) 1p=0 (cf. Corollary1 of Proposition V.52 [1]). Thus we have
1,2T1,=2T*1,=-- and therefore in general there exists the non-negative limit

hn

1
S YT,

k=0

lima.s. T 1,=lim a.s.

k— Ao o0

a)=>b) Let he ¥} (E, % n). By the implication a)=>b) of Theorem 1’, there
exists the limit
W=limas.1 —I—ZT"h (¥)
R—> 0O o Cl’l+1 k=n '

Starting from the decomposition T=TI,+ TI. we show by induction that

k
T h= 3 (T1pf (T}
I=

and therefore

Y TEh= _Z i (L) {(TL)
NIRRT
I=0 m=0
= z (TID)mh-l-Z ”Z TID)'"(TIC)(TI )l )

I=1 m=0

_Z(TID)”‘thZCH(TI ylh— Z Z (TLY" (TI)(TI)" ' h.

I=1 m=n—1+1

We now consider separately each of the terms on the right-hand side.

1 m llhll my
n—Z(TID) hs-—= ( ZT ) (1)

For n— o0 this term vanishes a.s. on E by the remark preceding this proof.

1 n 1'%
FZCH(TI)I e CH(n+1 . lzo( 1) ) 7
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For n—oo the expression between parentheses converges a.s. on E to A’ by ()
(cf. also Corollaryl of Proposition V.5.2 [1]). Furthermore it is absolutely
bounded by | k]|, . By the lemma this term converges a.s. on E to CH I

Note that outside of a suitably chosen fixed n-null-set we have

i (TLY T1.(x){0  for m—oo0,

k=m+1
S (T I, S (TL)F Tle)=[hl. & (),
k= m+1 k=m+1
1 Z[ Y (LM ] @
”+11=1 ke=n—1+1 b ¢
< LS L+ u#"im[ S (11 Fric] )
=n+ll=n-—m+l * " n+l =1 Lk=n_1+1 b ¢
< b+ L (0
§2Hh|[m3m(x) if ngn(x),
and therefore
k ! _
) [H;H(TID) (T1,) h] (x)=0. 3)

From (1), (2), and (3) we conclude

lim
now N+ 1

Z T h=CHW.
b) =a} Define

fi= ZlT"

k<n

Precisely as in the proof of Theorem 1’ it is shown that the sequence {f,}* ,
converges (in the topology ¢(¥;, #,)) to a function fe %, which satisfies fT= f
and {x: f(x)>0}=C. The last assertion of a) follows from

0= ff-—hm jf—hmfthT"

k=n

p=] lim T*1,
k<n ke o0

by the remark preceding this proof.
The limit /" in (%) may be identified by applying Hopfs ergodic theorem
([1] Proposition V.6.3) to the Markov operator T” induced by T'in C ([1] Proposi-

tion V.5.2, Corollary 1). Denoting by & the o-algebra of invariant sets in C and
taking account of the last line in the proof of the implication a) = b) we obtain:
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Corollary. If any of the equivalent assertions a) or b) of Theorem 1 holds, then
forany h
. E¢(l.fh) 2 E¢(1.fh)

lim a.s. Trh=°H = 2= Y (T1, T — 5L ",
1w n+1 ké:n E(1. ) k=0( P E“(1. f)

The following example shows that the equivalent assertion a) and b) of
Theorem 1’ do not imply the stronger assertions a) and b) of Theorem 1. Let (E, #)
be the space of integers in which all singleton sets are measurable and let the
probability © be chosen equivalent to counting measure on (E, %) (e. g n(x)=
(3.2%)~1). Let  be the left shift transformation in E given by 7 x=x— 1 and define
the Markov operator T on ¥ _(E, % n) by

Th{x)=h(zx) forall xeE.

Then C is empty and condition b) of Theorem 1’ is trivially satisfied. On the other
hand, it is easy to construct a function 4 assuming only the values 0 and 1 for which

1 &
Wit )

oscillates between zero and 1 for all xe E. Thus assertion b) of Theorem 1 fails.
Indeed, we also have ,}im T*1,=120 on E in this example.
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