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On the Converse of Hopf's Ergodic Theorem 

G. HELMBERG 

Let (E, ~,  re) be a probability space and let T be a sub-Markovian endomor- 
phism of s176 ) with conservative part C and dissipative part D (cf. [1] 
V.4 and V.5; we shall also further adhere to the terminology of [1]). The purpose 
of this note is to show the following theorem: 

Theorem 1. The following two conditions are equivalent: 

a) lira T k 1D=O and there exists a function f e ~  + satisfying f T = f  and 
k ~  oo  

{ f > O } = C .  
b) For every h e S ~  the sequence 

1 k hi 
converges a.s. on E. 

In order to avoid confusion it should be pointed out that this theorem stems 
fi'om a correction of problem V.6.6 in [1J which should read as follows: 

Theorem 1'. The following two conditions are equivalent: 

a) There exists a function f e  ~ +  satisfying f T = f  and {f  > O} = C. 
b) For every he ~ the sequence 

{ 111 ~ Tkh~ 
n +  1 k<=n J 

converges a.s. on C. 

We shall further rely on Theorem 1', the proof of which proceeds exactly along 
the lines indicated by the hints given in [1], and we shall use the following lemma: 

Lemma. Suppose Ilh.[I co < c for all n > 1 and 

Then 

lim a.s. h ,=h .  
n ~ o o  

lim a.s. Th, = Th. 
n ~  c~ 

Proof Let/1,= infhm and hn=su p hm. Then _h, eL~~ h,,e 5~ and 
m>=n rn~n 

hn__-<hm<h, for m > n ,  

lim T h, = h = lim ], h,. 
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We conclude 

!irn "r Th,= T!im~ h_,= Th= T]im+ h ,=  lim $ Th,, 
n ~ o o  

rh.< rhm< Th. for re>n, 

Th. ~ inf Thm ~ sup Thm <_<_ Th., 
m>=n m>_. 

lima. s. T_h, < lira inf Th,, < lim sup Th,, <-_ lima. s. Th,, 
n~O0 tl--*oO n l ~ n  n ~ o o  r t l > n  . w o o  

Th = lira a.s. Th,,. 
m ~  oo 

Proof of Theorem 1. We may assume ~(C)>0. Furthermore we note that 
lc(T1D)=(1 c T) 1D~0 (cf. Corollary 1 of Proposition V. 5.2 [1]). Thus we have 
1D> T I o >  T 2 lo>_-.-, and therefore in general there exists the non-negative limit 

lima. s.  T k 1 D = lima. s. - - 1  _-~o Tk 1D" 
k ~ o o  n ~ o o  r l +  i -  k _  

a) => b) Let h~W+(E,o~, ~). By the implication a) ~ b) of Theorem 1', there 
exists the limit 1 

h '= lim a.s. 1 c -  ~ r k h. (,) 

Starting from the decomposition T= TI. + TI c we show by induction that 

k 

T k h = ~. (TID)k-*(TIc)lh 
/ = 0  

and therefore 

~ T k h  = ~ ~(TID)k-l(Tlc)lh 
k = 0  k = 0  / = 0  

= ~ (TID)m(TIJ h 
/ = 0  m = 0  

n - - l  

= ~ (rlD)mh+ ~ ~ (TID)m(TIc)(TIJ -~h 
m = 0  1 = 1  m = 0  

n 

= ( . y h +  ' - l h -  ` - ' h  
m = O  / = 1  l = i  r e = n - - l + 1  

We now consider separately each of the terms on the right-hand side. 

(TID)"h< 1+ ~, TmlD . 
m = 0  H-'~- 1 m = l  

(1) 

For n ~ oe this term vanishes a.s. on E by the remark preceding this proof. 

) 1 ~=lCH(TIc) l ~ h= CH Tic) l h . 
n + l  l= n + l  n l=o 

(2) 
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For n ~oo the expression between parentheses converges a.s. on E to h' by (,) 
(cf. also Corollary 1 of Proposition V.5.2 [1]). Furthermore it is absolutely 
bounded by IIhll~. By the lemma this term converges a.s. on E to CHh'. 

Note that outside of a suitably chosen fixed ~-null-set we have 

era(X)= ~ (TIo) k Tlc(x)j,O for m ~ o o ,  
k = m + l  

(TID)k(TIc)(TIc)Z-~ h(x) < Ilhlloo ~ (TID) k Tlc(x)= Ilhll~ era(x), 
k = m + l  k = m + l  

n + l  1=1 (TID)k(TIjh (x) 

= n + l  T1 c (x) 
l = n - m + l  

m h n - m  
--< n + l  II I[oo + n ~ i -  Ilhlloo era(X) 

<2  IlhHo o em(x ) if n>n(x), 

and therefore 

1 ~1 (rlD)k(rljh (x)=0. 
lira n + ] - l =  k= I+1 n ~ o o  

(3) 

From (1), (2), and (3) we conclude 

b) ~ a) Define 

n 

lim 1 ~o rk h = CH h'. 
,-oo n + l  k =  

1 
s  n + l  ~'lTk" 

k<n 

Precisely as in the proof of Theorem 1' it is shown that the sequence {f,},~ 1 
converges (in the topology a(5~1,5~ to a function f~5~ 1 which satisfies f T = f  
and {x: f(x) > 0} = C. The last assertion of a) follows from 

1 2 Tk 1D 0 = D ~ f = ,~lim f,, = ~im~ ~ n~--~k =<, 

1 
= ~ lim - -  ~ T k 1 D = ~ lira T k 1 D 

n ~  n +  1 k~oo k<=n 

by the remark preceding this proof. 

The limit h' in (,) may be identified by applying Hopfs ergodic theorem 
([-1] Proposition V.6.3) to the Markov operator T' induced by Tin C ([-1] Proposi- 
tion V.5.2, Corollary 1). Denoting by <g the ~-algebra of invariant sets in C and 
taking account of the last line in the proof of the implication a) ~ b) we obtain: 
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Corollary. I f  any of the equivalent assertions a) or b) of Theorem 1 holds, then 
for any h 

oo E~(lcfh)  
lim a.s. - ~ - 1  ~ Tkh=CH E~(lcfh)  - ~,(TID)kT E~( lc f  ) 
, ~o  n + l  k-<n E~(lcf )  k=0 " 

The following example shows that the equivalent assertion a) and b) of 
Theorem 1' do not imply the stronger assertions a) and b) of Theorem 1. Let (E, ~ )  
be the space of integers in which all singleton sets are measurable and let the 
probability 7r be chosen equivalent to counting measure on (E, ~ )  (e. g. ~ (x)= 
(3.21xl) - ~). Let z be the left shift transformation in E given by z x = x - 1  and define 
the Markov operator T on ~v~o(E, ~,  ~z) by 

Th(x)=h(zx) for all x~E. 

Then C is empty and condition b) of Theorem 1' is trivially satisfied. On the other 
hand, it is easy to construct a function h assuming only the values 0 and 1 for which 

1 
n+  1 k=Z-"0 TkY" h(x) 

oscillates between zero and 1 for all x e E. Thus assertion b) of Theorem 1 fails. 
Indeed, we also have lim T k 19 = 1 4= 0 on E in this example. 

k ~  oo 
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