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An Invariance Principle 
for Conditioned Recurrent Random Walk 

Attracted to a Stable Law* 

BARRY BELKIN 

1. Introduction 

In this paper  we will be concerned with one-dimensional,  aperiodic, recurrent, 
n 

lattice r andom walk. We let S,, = x o + ~ X~ denote the n-th partial sum and assume 
~=~ 

that the c o m m o n  distribution of  the increments X~ lies in the domain  of at t ract ion 
of a stable law. Thus there exists normalizing constants B , > 0  and A, and a 
stable distribution G~ (e is the exponent  or index of the stable law) such that 

Sn 
l i m P  [ - - -A ,<<_x]=G, (x ) .  
.~o~ L B .  - J 

(1.1) 

Let A = {xl, x2, . . . ,  XM} be a finite set of integers and let T x denote the hitting 
time of  A, i.e., 

f m i n { n > 0 :  S, sA} if such an n exists 

~A = ~oo otherwise. 

In [-1] the au thor  considered the effect of the condit ioning T A > n on the limiting 
behavior  of  the distr ibution of  S n. In particular, the following result was proved. 

Theorem (1.1). I f~A(0)+  0 and 

(i) l < e ~ 2  
or 

then 

(ii) c~= 1, the attraction is normal (B, = na/~), and 

lim { ~ d F ( ~ ) = ~ < ~ ,  
x ~ o o  

- - X  

[ s" <xlr,>n]" =n, A(x). l i m P  
,~o~ t 13, = j 

(1.2) 

Here H~,A is a probability distribution with characteristic function T~,A with the 
following properties." 
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(i) I f  1 < c~ < 2 or if ~ = 2 and F has infinite variance, then 

1 

~g~, A (t)---- ~ ( t ) =  1 - b  Itr S X(1/e)-I ~ It(1 --X) 1/~] dx, 
0 

where q)~ is the characteristic function of G~ and consequently 

{ -c l t l~( l+isgn( t ) f i tan~z~/2)  for 1 < ~ < 2  
In q~(t) = It l(c+isgn(t)#) for ~--1 

=b[t l  ~. 

In particular, the limit does not depend on the choice of the set A. Furthermore, if 
D~ is the density corresponding to ~ ,  then 

Ix[ - 5 - g J  ~ b2 (x) = ~ exp 

is two-sided Rayleigh with a2= 2 c, and 

1 c b~(x): 
7"C C 2 ~- (X - -  1-/) 2 

is Cauchy (i. e., the limit is unaffected by the conditioning on T A > n). 

(ii) I f  e=2  and F has finite variance a, 

~aA( t ) - -~2( t )_ i ]  ~ E[SrA] t e x p ( _ f ~ )  " 
' R A ( 0 )  (7 

In this paper, using this theorem as a basis, we propose to extend the results 
of [1] to prove an invariance principle for the conditioned random walk. In the 
particular cases c~ = 1, 2 we shall actually identify the respective limit processes 
as the Cauchy process and the Brownian excursion process studied by Ito and 
McKean [6]. 

We remark that at several points it will be necessary to make heavy use of the 
results in [1]. Although some of the necessary definitions are not repeated here, 
an effort has been made to keep the notation consistent. 

2. The Invariance Principle for Stable Processes 

Suppose the underlying random walk has mean zero and finite variance (7. 
We construct a sequence P, of probability measures on C [0, 1], the family of 
continuous functions on the unit interval, in the following manner: Assign the 
probability 

] P =xi , . . . ,  ff]//~ =xn 

to the polygonal line segment ~e C [0, 1] with vertices at k/n, k=O, 1, ..., n such 
that ~ (0)--0 and ~(k/n)= x k otherwise. Define P, to be the resulting probability 



An Invariance Principle for Conditioned Recurrent Random Walk 47 

measure. Now if C [0, 1] is given the topology of uniform convergence, then it is 
known (see e.g. Donsker's original proof in [4] or a thorough treatment in [3]) 
that the sequence P, converges weakly to Wiener measure W on C [0, 1]. Stated 
in the form 

P. [f(~) < x] -~ W [f(~) < x], 

for any continuous functional on C[0, 1], this fact is generally known as the 
invariance principle. 

Suppose now that one substitutes 

P a]fln x l ' " " a ] f n  
[ Xl = St' --x,,ITA>n ] (2.2) 

with A a finite set of integers for (2.1) in the above definition of P,. The question 
naturally arises whether weak convergence to some limit measure on C[0, 1] 
still holds. We will show that not only does a limit measure exist, but that it 
corresponds to a Markov process whose (non-stationary) transition density may 
be determined explicitly. As stated earlier we actually identify the process as a 
modification of the Brownian excursions discussed by Ito and McKean in [6]. 

As an extension of this result allow the distribution F of X t to belong to the 
domain of attraction of a stable law for the cases mentioned above: 

(i) 1<c~<2 and E [ X 1 ] = 0 ,  
or  

(ii) ~ = 1, the attraction is normal and 

lim x ~dF(~)=p<oo. 
x ~ o O  

- - X  

One then assigns the probability 

[ $1 Sn ] (2.3) P - - = x  1,. . . ,  - x  n B. B~ 

to the appropriate polygonal line. 
The weak limit is then a stable process having the following characterization. 

Definition. The process ~(t) for t > 0  is stable of index ~, 0 < ~ < 2 ,  provided 
the characteristic function q)~(t, u) of the distribution of ~(t) has the form 

In ~b~ (t, u) = - t ]u]" [ 1 + i fi sgn (u) co (u, ~)], (2.4) 

where - 1 __< fl__< 1, and _/tan  
oo(u, c ~ ) - [ 2  ln u 

for ~4=1 

for ~=1.  
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Now it is a consequence of (1.1) that the finite dimensional distributions of the 
measures defined analogously to P,, but assigning the probability in (2.3) to the 
appropriate polygonal path, must converge to those of the appropriate stable 
process. However, the situation is complicated by the fact that the sample paths 
of the stable processes for 0 < e < 2 almost surely are not continuous. What can 
be shown however is that they belong with probability one to D [0, 1], the family 
of real-valued functions on the unit interval which are right continuous with left 
limits, provided separable versions are chosen. Therefore our first difficulty is 
the choice of an appropriate topology for D [0, 1]. This problem has been studied 
extensively by Skorokhod in [12] and Prokhorov in [113. We now describe 
Skorokhod's Jl-topology, the strongest among those which he studied for which 
our methods apply. 

The following characterization of J1 convergence (which we take as a definition) 
is based on the conditions for J~ compactness given by Billingsley [3]. It should 
be noted that this is not quite the characterization originally given by Skorokhod 
who assumes the elements of D [0, 1] to be left continuous at 1. Define the following 
(in the terminology of Billingsley) moduli of continuity for ~ in D [0, 1] 

A(To, ~)=sup {lr s, t~To} 
for T o = [0, 1] and 

Asl(p, ~)= sup min{l~(t)-~(tl)l ,[~(tz)-~(t)[ } 
t - -p< tl ~t-----t2 < t+p  

for p > 0. Then a sequence 4, in D [0, 1] converges in the J1 topology to ~ in D [0, 1] 
provided 

(i) 
and 

(ii) 

~ , ( t )~ ~(t) as n ~  oo on a dense set containing 0 and 1 

lira lim Aj,(p, ~.) =0  
p ~ O  n ~ o o  

lira lim A frO, p), r = 0 
p ~ O  n ~ o o  

lira lira A([1 - p ,  1), r  
p--~O n---~ ~ 

Suppose P, is a sequence of probability measures on D [0, 1] defined on the 
usual Borel field N generated by the cylinder sets {~(q)<xl,  ... , r xN} for 
finite N. In what follows it will be important to have criteria for the weak conver- 
gence of such a sequence. Following [3] in this regard we define a sequence P, of 
probability measures (on a general metric space S) to be tight if for every e > 0 
there exists a compact set K such that P, (K)> 1 - e  for every n. Then the desired 
conditions for weak convergence are contained in the following results proven 
in [3]. (We write P, ~ P  to denote the weak convergence of P, to P.) 

Theorem (2.1). Suppose 
(i) The finite dimensional distributions of P, converge to those of P. 

(ii) The sequence P, is tight. 
Then P, ~ P. 
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Theorem (2.2). The sequence P. is tight if and only if 

(i) For every ~ > O, there exists a constant A such that 

P. [sup~ I~ (t)l >A1 <~ 

(ii) lim lim P. [A j,(p, ~) > el = 0 
p ~ O  n ~ o o  

lim lim P~ [A([0, p), r  = 0  (2.5) 
p ~ O  n ~ o o  

lim lim P, [A ([1 - p, 1), r = 0. 
p---~ 0 n ~ o 0  

We remark that the above results remain valid if in the definition of weak 
convergence one assumes only that the real-valued functional on D[0, 1] is 
Ja-continuous almost surely [P]. Also an examination of the proof shows that if 
P. and P are concentrated on C [0, 1], then the conclusion of the theorem remains 
valid for functionals on C [0, 11 continuous in the subspace topology induced 
by Ja. This, however, is easily seen to be the topology of uniform convergence. 

Lemma (2.1). Assume the conditions of Theorem l.1. For 1<~_<2 define two 
sequences P~, ~ and ~, ~ of probability measures on D [0, 11 by assigning the probability 

in the case of P~, n, and 

S 1 S n _ _  Xn ] P [ - - = x l ,  
[ B. "" '  B. J 

$1 S. n] P [ - - = x  1, =x.ITA> 
[ B .  ""' B n 

(2.6) 

(2.7) 

in the case of ~, . ,  to the right continuous step function ~ with jumps at k/n, k = 1, 2 .... , n, 
and ~ (0) = O, ~ (k/n) = x k. Then 

lim lim Q.[Aj,(p, ~)>el  = 0  (2.8) 
p ~ O  n~ 'ao  

for e > O, where either {Q.} = {P~,.} or {Q.} = {~,.}. 

Proof As pointed out to the author by the referee, the validity of (2.8) for P~,. 
is a special case of a theorem of Skorokhod (Theorem 2.7 of [131). 

The key to the proof for the ~, .  is the demonstration of 

lim lim 1 P [max St"] >e;  T A>[n61]  = 0  (2.9) 
~ 0  n~.~ r~(A) L t__<a Bn - -  

for  every fixed e > 0. 

It is easily seen that if x+ =max  {x~A}, then for x > e  

W~"[S[.~I_k >-x B,,; TA >[ncS]-k]  

>--P[SE.~]_k>O; min Sj x+ 
- -  j<[n6]--k B. B. (2.10) 

>p[st .~]_k>O; min S ~ > _  eB. ] 
- -  j<[n~] - - k  B [ n a l _ k  - -  B[n~  d ' 

provided n is sufficiently large and Bt.a]_k ~ oe as n ~ ~ .  
4 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 21 
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Now 

where 

r s~ sj 1 
lim P / - - < x ~ ;  m i n - - > _  - x  2 =F~(xl X2) ~ o  L B~ j-<~ B,, - 1 

F, (x 1 , x2) = P [~ (1) =< x 1 ; ra in  1 ~ (t) > - x2] 

(2.11) 

and ~ (t) is the appropriate limit stable process. A proof of this statement can be 

patterned after the proof that in the finite variance case max S j_ converges 
j<n O" / Y I  

in distribution to sup ~(t), where r is a Brownian motion (see Theorem (1) of 
O < t < l  

Section 26 in [8]) or one can simply appeal to the invariance principal for the P~,,, 
which is already known. In particular then, 

[ -• l imP S . > 0 ; m i n  Sj > 61/~ =2(6,~) 
. ~  J=<. B . -  

with 2 (6, e) > 0. 

Therefore, for [n 31 - k > M = M (3, e) we have 

P[St .6l_k>0; min Sj >__ eB. ]>2(6,~) 
j<[n?d-k B[n6]_k -- BIn61 2 

Define z. = ~. (3, e) by 

�9 _ _ ~ e  . %=min : l < j < [ n 3 ] ,  B n -  

Then, in view of (2.10), we have the following estimates 

P [ m a x  S[nt] 
L t__<O B n 

>~; ~.<[n6]-M; TA> [n 6]] 

2 t"o3-M [ S k T A  ] <~(6,~) ~] ~ P ~~ >k 
x>~ k=0 Bn 

PxB"rSr.~j_k>XB.; TA> [n63 -k] 
2 [ SE,,~ 1 > ] 

< 2(6, e) P e; r.<[n6]--m; TA>[n6 ]] . = L B. - 

In addition, 

P [max Sc"~l 
L ~<6 B n 

>e;  % > [ n a ] - M ;  TA> [n6]] 

-<P [ Sf"~IB. >2-;e z.>=[n6]-M; TA>[n6] ] 

(2.12) 

(2.13) 

F S; ,s 1 
+ P / m a x  - -  > - - /  P [T A > In 5] - M].  

L;_-<M B. 2 J 
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Combining (2.12) and (2.13) we obtain 

2 ) ] P [ m a x  S[''I >6: T A > [ n a ] ] < ( ~ + l  P rA>[nc~ ] 
L t<=a B n - -  " J \ /~(o,  6) B n = 2  ' 

+ P [max Sj > 2-  r[, a]_ M (A). 
LJ<= M B. 

N o w  

r[,al(A) _ fa (1/a)-1 for 1 <c~<2 (see Lemma (2.1) of [13) (i) lim 
,4~ r.(A) [1 for ~=1 ,  

(ii) 

and 

(iii) 

lim P [max S. 6 -J _>--] =0 ,  
n~oo Lj<M B. -- 2 J' 

-->2 > n~ oo Bn 

with (iii)following from Theorem (1.1) (recall lim B~ =(~--(1/a)), where X has 
n ~  B[na] 

the distribution with characteristic function 

1 
T~(t) = 1 - b  Iti ~ ~ x (1/~)-1 ~( t (1  --X) 1/~ dx. 

0 

We obtain finally, therefore, that 

lira 
n2~'oo 

P [ m a x  S['t] _>6; Ta>[n8 ] ]  
L t<=a B, - -  

,~(A) 
( 2 )  

~< ~ -  1 15 (1/'a)-I P >2~i7 7 . (2.14) 

By (1) of Section 13 in [5] we have 

and thus 

1/x 

P [ l X l > R x ] < x  ~ [1 -T~( t ) ld t ,  
- 1Ix 

P >2~Y77 < ~ [ t l '~x (* / ' ) - ldxd t<K(6) (~  
= 4(51/~ -aa,z~/~ o 

for some constant K(6) not depending on 6. 
Observing that for fixed 6, 2(6, e) is non-decreasing as 6 --, 0, we have by (2.14) 

P [ m a x  S["I >e:  TA>[n6]]  
lira lim Lt~a B,, -- K ( e )  < lim 61/~ = 0. 
a~o ,,~o r.(A) - ~ o  2(a,6) 

This proves (2.9). 
4* 
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Define a random time ~ = r (p, e) by 

f{t: sup min(l~(t)-~(q)l,  ]~(t2)-~(t)l)>e } if such t exists 
" 1 ~  " t - - p < t l < t < = t 2 < t + P  

otherwise. 

Then for 6 > 0 we have 

P~,.[A~,(p, ~)> ~]=P.,.[~<a] + P~,.[6< ~<= I] ; 
this implies 

g~mmP.,.[As,(p,~)>e]<g-~= rt"~l(A) P [max Sj >s [Tx>[n f i ] ]  

+ tim rE"al(A) . - ~  r.(A) P.,.EAj~(p,~)>8]. 

(2.15) 

Applying (2.9), the fact that the lemma is already known to hold for the P.,., and (i) 
of the three facts listed above, we get 

lim lim P~ .[Aj~(p, ~)>~] =0 .  
p ~ 0  n~oo ' 

This completes the proof of Lemma (2.1). 

3. The Main Theorem 

We have already indicated that in the sense of Skorokhod's J1 convergence 

lim P~,. ~ P~. 
n ~ o o  

We now state our main result giving the analogue for the measures P~,.. 

Theorem (3.1). Suppose that the distribution F of X 1 belongs to the domain of 
attraction of a stable law of index ~, 1 < ~ <<_ 2. When ~ = 1 we require that the attrac- 
tion be normal and 

lira i ~ dF(O exists and is finite. 
3 C  

- - X  

Then the sequence P~,. of probability measures on D [0, 1] defined in (2;.7) converges 
weakly relative to Skorokhod's J1 topology to a probability measure P~ on D [0, 1] 
which for ~ # 1 corresponds to a Markov process with non-stationary transition 
m e a s u r e .  

The finite dimensional distributions of P~ are given by 

X 1  

~ [~ (q)_-< Xx, ~ (tk) < xk] = _ ~ __1 1/~ ~, �9 . . ,  ~ b ~ ( t i -  y0P~ [r>l-tl]dy~ 

i 2 P [ ~ [ T > I - t 2 ]  P~'[r  T > t ~ - t d  . . . .  (3.1) 
_~ P~I[T> I - q ]  

k P~Y~ IT > 1 --tk] 
"_ P ~ - ~ [ T >  l-- tk_l]  P~-x[r T>tk-- tk-1];  
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where DE is the density corresponding to the characteristic function ~ ,  and P~ is the 
weak limit of the sequence P~,,. 

When ~ = 1, 2 substantially more can be said. For ~ = 1 

lira ~ , ,  = lira P~ , =  P~, (3.2) 
n ~ o o  t t ~ o o  ' 

i.e. the weak limits of PI,, and ~ , ,  both correspond to the same Cauchy process. 
For ~ = 2, P2 is concentrated on C [0, 1] and corresponds to the process with tran- 
sition density p given by 

{ Ixj 
p O, o; ( - } t  , , 

N(lx21/1]/~-t2) for O ~ t l < t 2 ~ l ,  x l x 2 > O ,  
NOx, l/1/ -tl) 

p(tl , xl ; t2, x2)=O otherwise ; 

X 

1 ~ e -y2/2 dy. where N(x )=  ~ o 

Moreover, let X(t) for t > 0 be a standard Brownian motion, and for an arbitrary 
but f ixed time % >0 define 

(i) r = s u p [ t : t < r  oandX( t )=O]  and A = z o - Z ,  

IX(tA+v)l  
(ii) ~( t ) -  for 0 < t < l ,  

(iii) ~ = - 1 ,  +1 for X(%)<0,  X(zo)>0 respectively. 

Then e (t)= ~ ~ (t) is a Markov process with transition density p. 

Proof By Theorem (2.1) we have only to show that P~,, is tight and then prove 
the convergence of the finite dimensional distributions of P~,, to those of P~. 

We use the criteria in Theorem (2.2) to show the tightness of the sequence P~,,. 
The first of the three conditions in (ii) of the theorem is the content of Lemma 2.1 
and the second follows immediately from (2.9). The third condition as well as (i) 
of the theorem follow from the obvious analogues of (2.15) and the tightness of 
the P~,,. 

We now turn to the proof that the finite dimensional distributions of ~, ,  
converge to those of ~.  We begin with some definitions. 

Let 
1 SM ~dy #,(O,O;t, d y ) = ~ P [ ~  , TA>[nt]] 

#.(t~,yl. t2, dyzl=p.~ [ S~.,~,_~.t,, ~dy2; r~>[ntz]-[nt~l] 
' Bn 

for 0__< t~ < t 2 = 1, (tl, Yl) + (0, 0). 
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We then have 

P [ st"'11 <-xl, Sr"'k~]<-_xkl TA>n] 
[ B,, - ""'  B n 

x~ xl (3.3) 

= ~ I ... I ~,(0,0;  t l ,dy0 . . .~ . ( tk_ , ,  y~_~; t~,dy~), ,(t~,yk; 1, dy). 
- - G O  - - o 0  - - o o  

Now 

~,n[~( tO~x~, . . . ,  ~(tk)<Xk]=P [ ~ < X  1, ..., S[ntk]Bn <XklTA>n ] . (3.4) 

The convergence of the finite dimensional distributions of the ~ , ,  to those of 
will follow from 

! i m  _~c ~ x~c ~ .. .  _x~ ]An(O' O ; tl ,  dY l ) . . .~n( tk_ l ,  Yk_l;  tk, dYk) #n(tk, Yk; l, dy)(3.5) 

We now state without proof the following elementary result which will be a 
valuable analytic tool in the proof of (3.5). 

Lemma (3.1). Let v,, n = 1, 2 . . . .  be a sequence of finite (positive) measures on 
the a-field ~3 of Borel sets in R converging weakly to a finite measure v which is 
absolutely continuous with respect to Lebesgue measure. I f  f ,  is a sequence of 
uniformly bounded ~-measurable functions converging uniformly on compact sets 
to an everywhere bounded continuous limit f,  then 

~ f ,  dr,--, ~ f dv (3.6) 
B B 

as n ~ c ~  for B ~  provided the Lebesgue measure of the boundary of B is zero. 

For the Proof of (3.5) we will want to make recursive use of the lemma. For 
0 < tl < t 2 < 1 set 

x 

h,(t~,y~; t 2 ,x)=  ~ #,(t a,y~; t 2,dy2) 
--00 

h,(tl, Yl; t2)= lim h,(t 1, Yl; t2, X). 
x ~ o o  

Suppose that we have shown first that 

xi - 1 x1 
lim ~ ... ~ #,(0,0; ta,dya)...Ig~(ti_l,yi_l; t~,dy,) 

n ~ o o  - - o o  - - o o  

(3.7) 

. . . .  i ' ~ b  ,,-,  t �9 = ~ ... ~(tf '/ 'y,)dyl.. .P~ [r  ,_,)edy,; T > t , - t , _ , ]  dy,_, ,  
-oo - oo 

and second that as a function of y~, h,(t~, y~; t~+ ~, x) satisfies the appropriate con- 
ditions of Lemma (1.2). Then, by the existence of densities for stable processes, 
the limit measure is absolutely continuous with respect to Lebesgue measure, and 
hence by the lemma we obtain (3.7) with i replaced by i + 1. 
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We proceed then to verify (3.7) for 1 < c~ _<_ 2. Let 

R(4; tl, t2)= {4(t): t~[tl, t23} 
and 

Rt(~)=R(~; O, t); 

then except when yeA and y = 0  we have 

[ sr, tl _<x; TA> In t]] --h,(0, y; t, x) p~.y 
I_ B. - 

---P~,. [Rt(4)~ A,,= ~; 4(t)<-_x-y] 

for n sufficiently large, where the set A n is given by 

A 
A,~ --=--  - y. 

B. 

The required result in (3.8) below in the exceptional case can be handled by noting 
that, on the one hand, 

P[SE"~I-<--X;TA>[nt]]<=rE,~I(A)--,O as n--,oo, 
I_ B. - 

while for 1 < e < 2 for all points x, x is regular for {x} and thus 

P~ [4(t)<x;  r > t ] < P ~ [ r > t ] = O .  

For a Borel set C c R ,  let Zc(t, x, .) be the functional on D[0, 1] given by 

~)=S1 if Rt (4)c~C=~ and ~(t)<x 
)~c(t, x, (o otherwise. 

Then we must first show 

lim P~ [)~A. (t, x--y ,  4)= 1] =P~[Z~_y}(t, x--y ,  4)= 1] 
/ l ~ o O  ,/1 

=PJ [4 (t) N x; T > t], (3.8) 

and then demonstrate the uniformity of the convergence for y on compact sets as 
well as the continuity of the limit. A start in this direction is the following. 

Lemma (3.2). Let I=I(z ,  ~) be the open interval ( z - e ,  z +e), then Zi(t, x, ") is 
J :continuous almost surely [P,]. 

Proof. Assume 4, J a ~  4. We consider several possible cases. 

Case ( i) : )~x(t, x, 4)=0.  

Either R t (~)c~ I 4:45 or 4 (t)> x. We may assume ~ is right continuous on all 
of [0, 1] and continuous at t since both of these events occur almost surely P~. 
The criterion for J1 convergence then implies )~(t, x, ~,) ~ Z~(t, x, 4). 
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Case ( ii ) : 
Zi ( t , x , r  and /# , (~)n i=@. 

Let d=d(/~(~), i), with the usual definition of the distance between two closed 
sets in a metric space. Then, given any c > 0, choose from the set where 3, (t) ~ # (t) 
a partition, 0 = t o < q < . . .  < t k = 1, such that 

c 
max (t i - ti_ 1) < ~-~. 

l<__i<=k 

Then choose N so large that n > N implies 

om__< aXk I ~. (t,) -- ~ (t,)I<= ~. 

any such n it is clear that A],(c, ~ . ) > d  if Rt(#.)c~I4=~. This is enough to For 
guarantee the continuity of Z~ at 3. 

To complete the proof of the lemma we show that either Case (i) or Case (ii) 
must hold with probability 1 [P~]. Thus it must be shown that with probability 1 
sample paths coming arbitrarily close to a given open interval during [0, t], must 
in fact have hit it. This result can be gotten from a general theorem about stopping 
times for Hunt processes, but we give a direct proof. 

Let z n = T~(x, lm). Then z N increases to some limit z. By the existence of left 
limits along sample paths, z -  exists almost surely and clearly then ~ ( z - ) = x  
almost surely. The assertion of the last paragraph will follow if we can show that 
the probability of a jump at the random time z is zero. But 

implies 13 (z)-  { (-c -)1 > 6 
,5 

lim inf sup 13 (zu + t ) -  ~ (zN)[ > ~- 

for e >0  by the right continuity of sample paths. Consequently, applying the 
strong Markov property we obtain 

~ [ l r 1 6 2  6 - - ] ~ 0  as e ~ 0 ,  
Lt_-<t 

again by the right continuity of sample paths. Therefore it indeed must be that 

P~ Ix eRr(#) ] = P~ [x eRt(#)]. 

For c~ = 1, ~ [T > t] = 1 (see [10] for an elegant proof of this somewhat remarkable 
property of the Cauchy process). It follows that Z1 = 1 implies R t n I = ~. 

If 1 < c~____ 2, we still must prove that once an end point of an interval is hit the 
interior must also be hit. This, however, follows immediately from another result 
of Port [10] which states that for 1 < e__< 2 

lim P~Y [Tix} <_- e] = 1 for e>0 .  (3.9) 
y ~ X  

This completes the proof of the lemma. 
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Denote by A t (y, x, ~) the event 

[Rt(~) c~ I ( - y ,  e):# qs; ~(t)<=x -y ] ,  

and by A t (y, x) the event 

[Rt(~) c~ { - y }  ~ ;  ~(t)<=x-y]. 

Then Lemma (3.2) and Skorokhod's theorem imply that 

lim P~, [A t (y, x, e)] = P~ [A t (y, x, 0].  
n ~ c t )  ' 

Also by (3.9) we have 

Now define 

We now show that 

lim P~ [A, (y, x, e)] = P~ [A, (y, x)]. 
~ 0  

A(m. x~-  t (y, j - [R,(~)c~A, ,4=~;~(t )<=x-y] .  

iim ~,. [AT(y, x)] =e~ [A,(y, x)]. 

In view of (3.10) and (3.11) it is enough to show 

lim lim {P~,, [A, (y, x, e)] - P~,, [AI ") (y, x)] } = 0. 
e - -e0  n ' ~ o 0  

(Note that ACt'~ x)=At(y , x, ~) for large n.) 
Suppose that we are able to show that 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

then 

lim lim sup U(T>en]=O, 
~ o  n ~  I z l < ~ B ~  

lim~P~,,, [At (y,x, ~)~ -A(") (y, x)] 

< lim P~, [A t (y, x, e) - AI ") (y, x); T( y ~) < n (1 - e)] 

+l i rnP~, , [R(~;  1 - e , l , ~ I ( - Y ,  2 )  4=~b ] .  

Now if n is so large that 
max{]x]: xeA} < ~  

then B,, = 2 ' 

P~,, [At (y, x, 2)-ACt")(Y' x,; T ( _ y , 2 ) < n ( l - e ) ] <  [zI_-<~B.SUp PZ(T>en]. 

(3.14) 

Consequently, by the assumed validity of (3.14) and by Lemma (3.2) 

  olim (-,, 2) q 
Now an easy estimate using the existence for stable processes of a continuous 

transition density G satisfying the scalling property p~ (t, x) = t - 1/~ p~ (1, x t - 1/~), 
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implies 
lim P~ JR@; l - e ,  1 ) c ~ I ( - y ,  e)+@] = 0 .  
e ~ 0  

It follows then that  (3.13) is true. We  have therefore reduced the p roof  of (3.12) to 
showing (3.14). We  require the following lemma.  

L e m m a  (3.3). Let a(x) be the potent ia l  kernel  of a recurrent  r a n d o m  walk 
belonging to the domain  of a t t rac t ion of a stable law of index c~, 1 < c~ < 2, then 

(i) for 1 <  c~<2 ~c~ 
tan - -  

lim a(x)L(Ixl)_ 2 (1 +fi) ,  
x~_+oo Ix l  ~ - 1  7c( l+h  2) 

where Z(x)=l-F(x)+F(-x)=x- 'L(x)  Jor x > O  with L slowly varying, and 

h = f i t a n  2 '  

(ii) for c~ = 2, 0-2 < oo 
lim a(x) 1 

~ Ix l  0 . 2 ,  

(iii) Jor ~ = 2, 0 -2 = 0(3 

lim a(x)+a(-x) ~ ~ 2 d F ( ( ) = l .  
x ~  2x  - x  

Proof. For  1 < a < 2 it is not  difficult to show that  

1 ~ 1 - - e  ixt 
a(x)=~-j~  1-~b( t )  - - d r .  

By Theo rem (1) of  the Append ix  of [2] 

1 - c ~ ( t )  c 
lim - (1 + i  h), 

t~O+_ Z (@~) C1+C2 

and so the p roo f  is of an analytic nature  much  the same as the p roof  of 32.3 in 
[14] and the details will be omitted.  

For  ~ = 2, o -2 < Go we s imply quote  the results of  Section 29 in [14]. 

Finally, for a = 2, a 2 = oo we have 

a(x)+a(-x) 1 ~ 1 - c o s x t  
2 - 2 ~ _ ~  j 1-~(t) dt. 

Again by T h e o r e m  (1) of  the Appendix  of [2] 

1 -@(t)  1 
lim ~/, - - - ,  
t ~O  2 

t 2 ~ (2dF(~.) 
-- lit 

and we omit  the detailed estimates.  
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It is shown in [7] that  

P ~ [ T > n ]  r,+ x ~ g ( x , t ) v , ( t )  
P I T > n ]  r. t*o 

(3.15) 

where ~ v, (t) = 1 for n > 1, and lim v, (t) = 0 for t 4 0. 
t ~ 0  n ~ o o  

Proposi t ion 29.4 in [14] states 

(i) g (x, t) = a (x) + a ( - t) - a (x - t) 

(ii) a ( - t ) - a ( x - t ) < = a ( - x ) .  

F r o m  the representat ion in (3.15) and (ii) it follows that 

px[  T > n] <=(a(x) + a ( -  x)) r,,; 
and in part icular  

P[~B"~[T>en]<(a([eBn])+a(-[eB,] ) ) r~ ,q~fK, , (e ) .  (3.16) 

Combining Lemma  (3.3) above and Lemma  (2.1) of [1], we have for 1 < ~ < 2  
and n>=N(z) 

gn( '~)~g B(~gl) 1 ~ X-1 (c1@c2)] 

eB(n)  z [eB(n) ]  

where K is some absolute constant.  

Fo r  c~ = 2 we have the following estimate 

since 

eB. B[~,,] ~K' ] / e  as n o ~ ,  K,,(e)__< K'  ~ .  [e n] 
x: dF(x) 

-~B n 

n ~ x 2 d F ( x ) =  1 lim ~y -  
. ~  B. ixl<eB" 

(see e. g. (1.22) and the subsequent comments  in [1]). Thus, in each case we conclude 
that  

lira lira K ,  (e) = 0, 
e ~  0 tI~oo 

complet ing the verification of (3.14) and hence of (3.12) as well as the existence 
and identification of the limit in (3.8). The uniformity of the convergence on 
compact  sets is proved by contradict ion.  If Yl, Y2 . . . .  were a bounded sequence 
such that y, -~ y and 

IP~,,, [A~ ") (y,, x)] - P, [A t (y,,, x)] ] > 6 > 0, 

then, either 5 
,!ira P=,~ [ A*r")(y,, x ) v  At(y, x)] > ~ - ,  (3.17) 
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or b 
! im  P~ [A~(y,, x) v A,(y, x)] > ~- .  

Defining 
At(Y)= [R,(~) n { - y }  +q~] 

AI ") (y) = [R, (4) n A , *  4~], 

a straightforward argument  gives 

P~,, [A(t ") (y,, x) v A t (y, x)l <_ P,., [A(~ ") (y,,) v A t (y)J + P~., [[ ~ (t) - (x - Y) I -<- l Y - Y, I] 

Now by (3.16) and the estimates following it 

w P ' '  [A~') (y') v A, (y)] = O; 

while 

P [~-fl-<=x] ~ P~[~(t)<=x] 

as n ---* o9 uniformly in x guarantees that  

! i ra  P~., E l f ( t ) - ( x  +y)] ~ l y -  y,I] = 0 .  

(3.18) 

Thus (3.17) is impossible. A simple argument  using (3.9) shows that (3.18) is 
impossible as well. 

Finally the continuity in y of P, [A (y, x)] is an immediate  consequence of the 
impossibility of (3.18). 

This completes the p roof  of (3.5). Thus we have that for 1 < e < 2, P, is a prob- 
ability measure and we have identified its finite dimensional  distributions. We 
now dispense with the remaining cases. 

Our  assertions for e = 1 are largely a consequence of the fact that p x I T  > t] = 1 
for every x. The assertion in (3.2) thus reduces to showing 

,!im 
We proceed as in the case e > 1. 

First we note that 1 if ~ ( t ) < x + y  
Zy(t, x + y, ~)-= 

0 otherwise 

(3.19) 

is almost surely J l -cont inuous,  so Skorokhod 's  theorem applies and 

,!ira h, ( t , ,  y; t2, x) = P~' [3 (t2 - t,) =< x ] .  

Finally P1 y [ ~ ( t ) < x ]  is cont inuous in y, so all that remains to be shown in 
order  to justify the use of Lemma  (3.1) is the uniformity of the convergence in 
(3.19) for y on compact  sets. For  this it suffices to show that i fy ,  --* y as n ~ oo, then 

!ira 8,,, E%~ _-< t] = 0. (3.20) 
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However, by Lemma (3.2) 

lira P~,,, [ T~y,,~ < t] < lim P~,,, [ T~ o., ~) < t] = P1 [ T/(y, ~) < t] --* 0 
~t2~ oo 1 1 ~  

since 
e,[ye~,] =8  [y~R,]=0. 

as e ~ 0  

This proves (3.20) and therefore that Ji+m~.,,=P 1. We have already remarked 
that lira P~, = P~. 

~ o 9  

For r = 2 and y > 0 we have by the sample path continuity of Brownian motion, 

P~[{(tl)Edx ; T>q]=P2Y[~(q)edx �9 min ~(t)>0] 
O<=t<tl 

(exp[ 
2t1 ] 

for x > 0 .  

(X Jr- y)2 
2t 1 ] ) d x  

This last evaluation is a well-known result for Brownian motion which we simply 
quote (see e.g. 1.7 in I to-McKean [6]). The expression given in the statement of 
the theorem for p, the transition density of P2, follows easily. 

For the identification of the limit process we follow an approach of Ito and 
McKean in their treatment of Brownian excursions (see 2.9 in [6]). Let X(t) for 
t > 0  be a standard Brownian motion and define To, z, A, ~(t), ~, and e(t) as in the 
statement of Theorem (3.1). Letting Co(R {) denote the continuous real-valued 

N 
functions on ]7[ R+ which vanish at infinity (are zero outside some compact set), 
we choose i=1 

(1) f~eCo(RU+) and define fl(~)=fl(g(tl), ...,g(tN)) for some fixed choice of 
0 < t 1 < - . .  <tN=<l; 

(2) f2 ~ Co (R+), with f2 vanishing in some neighborhood of the origin. 
(3) J3 an arbitrary real-valued function on { -  1, 1 }. 
Also let 

1 (exp[ g(t,x,y)= 2 ~  

g(t, x, y)=0 

(x -- y)2 -] -- exp [ 2 t  (x+y)22t ] )  for xy>O, 0 < t < l  

otherwise; 

and ( x 2 ) (  ) 
~(0,0; , ) = ~ - e x p  N x for x > 0  

I 
g(t2_t i ,x i ,x2)  N x2 Xl 

D( t i ' x l  t2 'x2)= for x i , x 2 > 0 ,  0 < t l < t 2 < l  

tO otherwise. 
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We compute E[fl(~)f2(A)J3(~)] (the functions g(t,) . . . .  , g(tN), A, and ~ are 
Borel measurable on the Brownian paths). 

E [ f ,  (~) f2 (a) Y; (~)] 
oO =lim2=f[f,(Ix(t, i2-"+(~o-i2-"))l ixO,<,2-" + (~o-, 2-"))i 1 

. . . . .  : ] / i 2 - "  ' . . . .  ~ i 2 2 7 '  ! 

i i+11  

=�89 [ f 3 ( -  1 )+f3(+  1)] 

�9 some ~ < % -  t < ~ ; - [  f2 .Lm} ~ ,o ~o-~ 

- -  - -  t N _ I ) ~ - , X N - I ,  2 n , 

( ~ )  ;o( ' ) xl xN dxldx2...dxN g ( 1 - t s ) ~ , x N , b  db. . y ,  % ~ = ~  , . . . ,  

Replacing x k by x k for 1 <_k_<N, we obtain 

�89 [ f 3 ( -  l ) + f 3 ( +  i ) ]  

lim P X z o -  X(t)=O for �9 some ~ - < Z o -  t < ~ u -  / f2 
n~oo i = 0  

~(/ ) �9 ! g ~ ,  a, b db j ~(0, 0; tl, X1) P(tt, Xt; t 2, X2)-..}(tN_I, XN_I; tN, XN) 

~1,., ,x~)~(~,~, 4 ~.~x~ ~,  
where 

,(~,o,~1t- 
~ ( 0 , 0 ; t l , x l ) ! g  ~- ,a ,b  db 

l ( a xl ) a 1 ( a 2 ) 
- 1 / ~  R ( ~ )  exp tl ~ ]/i2-" a 2tl i2-" 

N 

sinh x 
with R (x) = 

X 

It is easily verified that 

!imo? (~v ,  a, xl) --- 1 
i 

uniformly in ~ T > e > 0  and xl<K<oo.  
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Thus, since fl  was assumed to vanish outside some compact set in RN+, and f2 
outside a compact in R+, we conclude: 

E If1 (e) f2 (d) f3 (~)] 

_ 1 - ~ -  ~da;  2 [ f 3 ( - 1 ) + f 3 ( + l ) ]  lim P X % 
n~o~ i=0 

i i + 1 ]  
X(t )=0 for some ~ - <  % -  t__<-f7- ~ 

(3.21) 
�9 ( / ) S ,o,o  . . . .  

�9 D(tN- 1, X u -  1 ; tN, XN) Jl (XI . . . .  , XN) d x l " "  dxN 

= �89 If3 ( -  1)+f3 (+ 1)] E [f2 (A)] ~ ~ (0, 0; t 1 , x,)/3 (q, x, ; t 2 , x2) . . . .  

�9 ~( tu_~,  xu_~;  tN, x ~ ) L ( x ~  . . . .  , xN) d x ~ . . . d x N .  

This shows that ~ is a standard coin tossing game which is independent of 
g(t), and that the latter is a Markov process with transition density b. From this 
it follows that e(t) is a Markov process with the transition density p given in the 
statement of Theorem (3.1). 

This completes the proof of the convergence of the finite dimensional distribu- 
tions o f P , ,  n to the correct limits for 1 _<e_<2 and thus the proof of Theorem (3.1)�9 

We conclude with several remarks. 

4. Remarks 

The question arises with regard to Theorem (3.1) whether the choice of the 
family of right continuous step functions as the support of the measures P~,, was 
really essential to the proof. In particular suppose we had defined sequences of 
probability measures H~,, and/I~,,  by assigning the probabilities in (2.6) and (2.7) 
respectively, to the polygonal line segment ~ with vertices at k / n ,  k=0,  1 . . . .  , n 
such that ~ (0) = 0 and ~ ( k /n )  = x k for 1 _< k_< n. Then, having already demonstrated 
the convergence of the finite dimensional distributions of the P~,, to those of the 
~ ,  it is an easy matter to show that the finite dimensional distributions of the 
H~,,, must have the same limits. However, one finds that for 1 < e <2 condition (ii) 
of Skorokhod's theorem must fail. One way to see this is to note that the almost 
surely [P~] Jl-continuous functional K~ for e > 0 defined by 

K~(~)= the number of jumps of ~ of magnitude exceeding e, 

fails to satisfy the conclusion of Skorokhod's theorem since the sample paths of 
the P, processes almost surely have jumps greater than e. 

For c~ =2, however, condition (ii) is satisfied, and in view of the remark im- 
mediately following the statement of Skorokhod's theorem, we see that with 
respect to the/~2,, and P2 the conclusion of Theorem (3.1) holds for functionals 
on C [0, 1] continuous almost surely in the topology of uniform convergence. 
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