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Characterizing the Gaussian and Exponential Laws 
via Mappings onto the Unit Interval* 

M. CSORG6 and V. SESHADRI 

1. Introduction 

Let (X, d )  be a measurable space and let C a be a set of probability distributions 
defined on d .  Let (q/, N) be another measurable space and let Y= T(X), X e X ,  be 
a measurable mapping of (X, d )  onto (0-#, ~). With this mapping every distribution 
PeCa induces on ~ a corresponding distribution which will be denoted by Q~. 

In general we will be interested in the mappings Y which satisfy the following 
two properties: 

Qr is the same for all P~Ca; in this case we write Q~. (1.1) 

If for some P' on d one has r r Qp, = Qe, then P'e ca. (1.2) 

In this paper (:Y, d )  is an n-dimensional Euclidean space of points X =  
(X1, ..., X,) with the a-algebra of Borel sets and the distributions belonging to ca 
have a product probability density 

f (x 1, O)f(x2, 0)...f(x,, 0), (1.3) 

where f is a one-dimensional density function and 0 is a parameter taking values 
in an appropriate parameter space. Given some density function of the form as 
in (1.3) with f ( . ,  .) specified, in particular we will be interested in mappings Y 
satisfying (1.1) and (1.2) in such a way that the induced distribution Qr will be 
that of k, k < n, ordered random variables of k independent uniformly distributed 
random variables on [0, 1]. In Section 2 f ( . , . )  of (1.3) is the exponential density 
with various spaces for 0. In Section 3 the product density of (1.3) is the finite- 
dimensional family of density functions of the Poisson Process. In Section 4 we 
deal with gamma densities of order 1In and in Section 5 f ( . , .  ) of(1.3) is the normal 
family. 

From the point of view of statistics our statements can be used to replace 
composite statistical hypotheses by equivalent simple ones in the spirit of Pro- 
horov's paper [4]. As regards to this point of view we will shortly publish another 
paper, in the Review of the International Statistical Institute, which will be based 
on the results of this paper and will also contain some further results satisfying 
the properties (1.1) and (1.2). 

* This work was supported by the Canadian Mathematical Congress Summer Research Institute, 
Summer 1968 and Summer 1969. 
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2. Preliminaries. Some Characteristic Properties of the Exponential Law 

We start with two theorems, which will play a fundamental role in the sequel, 
and which the two of us first proved in [6]. 

We consider the exponential families of density functions 

f ( x ) = B  -1 e x p ( - x / B ) ,  x > 0 ,  B>0,  (2.1) 

or more generally 

f ( x ) = B  -1 e x p ( - ( x - A ) / B ) ,  x > A ,  B>0 ,  (2.2) 

respectively written as Exp(0, B) and Exp(A, B) from now on. 

Also, the uniform distribution on I-0, 1] will be denoted by U(0, 1) from now on. 

Theorem 1. Let X 1 , X  2 . . . .  , X , ,  n> 3, be independent identically distributed 
positive random variables with continuous density function and mean B >0. Let 
S=Z'~Xi and define Z ,=Z~Xi /S ,  r= 1, 2 . . . . .  n - 1 .  Then the Z r act like ( n - 1 )  
order statistics of ( n - 1 )  independent random variables from U(O, 1) /f and only 
if the X i are Exp (0, B). 

Later on, and also to handle the exponential family of distribution functions 
Exp(A, B) in a similar manner, we will need the following well known lemma, 
whose proof can also be found in Section 7 of [1]. 

Lemma 1. Let X t, X2 . . . .  , X ,  be independent identically distributed positive 
random variables. Define 5i=(n+ 1 - - i ) (X(i ) - -X(i_l)) ,  i=  1, 2, ..., n, where X(o)=0 
and X(1)<Xt2)<...<Xr are the order statistics of our corresponding random 
sample. Then the ~i are independent Exp(0, B) random variables if and only if the 
X i are Exp(0, B) random variables. 

The extension to Xi when they are Exp(A, B), and the construction from 6i of 
a set Z* which acts like an ordered set of U(0, 1) random variables is given in 
Theorem 2. 

Theorem 2. Let XI,  X 2, ..., X , ,  n> 3, be independent identically distributed 
random variables with X i>  A for all i. Define 

6i=(n+ l - i ) (X( i ) -X( i_ l ) ) ,  i= l ,  2, . . . ,n ,  where X(o)=A 

and X(i ) are the order statistics of X i. Further let Ai = 6i/S(~), i= 1, 2 . . . .  , n, where 
n ~ _ _  r - -  S(6)=Z1 g)i , and let Z r - Z1Ai, r -  1, 2, ..., n -  1. Then the Z* act like (n - 1) order 

statistics of ( n -  1) independent U(O, 1) random variables if and only if the X i are 
Exp (A, B). 

3. A Characterization of the Poisson Process 

As an immediate consequence of the results of Section 2 we have the following 
two characterizations of the Poisson process. 

Let {X(t), t ~T}  be a real, stationary (strict sense), independent increment 
stochastic process. Let T= [0, + oe), and define X(0)= 0 with probability 1. 

Theorem 3. Let X(t) represent the number of  events occuring in the interval 1-0, t) 
and suppose that n events have occured at t~ < t 2 <.. .  < tn, where we take tn= t. 
Let sl be the time to the first event and for i > 1 let s~ be the time between the ( i -  1)-th 
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and the i-th event. Le t  t = s 1 + s 2 ~- . . . --~ s n and define z, =X[ sJt, r =  1, 2, ..., n - 1 ,  
n >  3. Then X( t )  is a Poisson process with mean 2 t i f  and only i f  the z~ act like ( n -  1) 
order statistics o f  ( n -  1) independent U (O, 1) random variables. 

Proof. {X(t), tel0,  + ~)} is a Poisson process with mean 2 t if and only if the si 
are mutually independent Exp (0, 1/2) random variables and Theorem 1 gives the si 
mutually independent Exp (0, 1/2) random variables if and only if z, act like ( n -  1) 
ordered independent U(0, 1) random variables. 

A Remark.  Theorem 3 is a special case of K. Nawrotzki's characterization 
theorem of the mixed Poisson process (see Satz 4 of his paper, Ein Grenzwertsatz 
fiir homogene zuf~illige Punktfolgen (Verallgemeinerung eines Satzes von A. R6nyi), 
Math. Nachrichten 24, 201-217 (1962)). 

Theorem 4. Let  X( t )  represent the number o f  events occuring in the interval 
EO, t) and suppose that n events occured at t~ < t2 < ' "  < t, = t. Le t  si, i = 1, . . . ,  n, be 
as in Theorem 3. Define T/= (n + 1 -  i)(s(i)- s(i_,)), i=  l, 2 , . . . ,  n, where S(o)= 0 and 

Z~ -- Z 1 s(i) are the order statistics o f  s i. Further let * - r Ti/S(T), where S ( T ) = X ~  T~ and 
r=  1, 2 , . . . ,  n - 1 ,  n > 3. Then the z* act like ( n - 1 )  order statistics o f  ( n - 1 )  inde- 
pendent U (O, 1) random variables i f  and only i f  X (t) is a Poisson process with mean 2 t. 

Proof. {X(t), t~ [0, + ~)} is a Poisson process with mean 2 t if and only if the 
si are mutually independent Exp(0, 1/2) random variables. Lemma 1 gives the si 
mutually independent Exp (0, 1/2) if and only if the T~ are mutually independent 
Exp(0, 1/2). Theorem 1 gives the T~ mutually independent Exp(0, 1/2) if and only 
if the z* act like ( n -  1) ordered independent U(0, 1) random variables. 

4. Characterizations of the Gamma Distribution of Order l[n 
First consider 

f ( x ) = ( B n ) - ~ x  ~- I  e x p ( - x / B ) ,  x>0 ,  B > 0 ,  (4.1) 

or more generally 

f ( x ) = ( B n ) - ~ ( x - A )  ~-1 e x p ( - ( x - A ) / B ) ,  x > A ,  B > 0 ,  (4.2) 

respectively written as F(�89 0, B) and F(~, A, B) from now on. 

The following lemma will be needed here in addition to the theory of Section 2. 

Lemma 2. Let  X1, X2 . . . .  , X , ,  n even > 2, be independent identically distributed 
positive random variables. Le t  }'1, Y2, . . . ,  Yk k = n / 2 ,  be defined as Y i=Xz i_~  + X2i ,  
i=  1, 2 . . . . .  k. Then the Yi are Exp(0, B) random variables i f  and only i f  the Xi  are 
F(�89 O, B) random variables. 

The Proof  of  this statement is trivial. 
Consequently, Theorem 1, Lemma 1 and Theorem 2 of Section 2 hold for the 

Y~ of Lemma 2. Putting Lemma 2 and Theorem 1 together we get 

Theorem 5. Let  X1, X 2 . . . . .  X , ,  n even > 6, independent identically distributed 
positive random variables. Le t  Yi = X2 i- a + X2 i, i = 1, 2 . . . .  , k, with k = n/2. Further 
let Sk= Z ~ Yi and define ~,=2[  YJS k, r =  1, 2 . . . . .  k - 1 .  Then the ~ act like ( k - 1 )  
order statistics o f  ( k -  1) independent random variables f rom U (O, 1)/f and only if  the 
Xi  are F(�89 O, B). 
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Putting Lemmas 1, 2 and Theorem 1 together we have 

Theorem 6. Let X 1 ,  X 2 . . . .  , X, ,  n even > 6, be independent identically distributed 
random variables with X i >  A for all i. Let Yi= Y2i_l + X2i, i = 1 , 2 , . . . , k ,  with 
k = n/2. Define 

d i=(k+l- i ) (Y(o-Y( i_ l ) ) ,  i--1, 2, ..., k, 

where Y(o)=2A and Y(i) are the order statistics of Yi. Further define Ki=dJS(d), 
i=  1, 2, ..., k, where S(d) = 2;~ di, and let (r - 2;1 Ki, r = 1, 2, ..., k -  1. Then the 
(* act like ( k -  1) order statistics of ( k -  1) independent U(O, 1) random variables 
if and only if the S i are F(�89 A, B). 

Proof. Let W/= X i -  A, i = 1, 2, ..., n, and let M i-- W Ei_ 1 + W2i, i = 1, 2, ..., k, 
with k -n /2 .  Then Mi>0,  all i, and di = (k+ 1 -  i) (M(o-Mti_I)), with M(o)=0, 
i= 1, 2 . . . . .  k. Let Ni=di/B, i=  1, 2, ..., k; then the values of K i and (*, defined in 
terms of Ni instead of di, are not changed. Now Lemma 2 implies that the Mi are 
independent Exp(0, B) if and only if the W~ are F(�89 0, B), that is if and only if X~ 
are F(�89 A, B). Lemma 1 gives the d~ independent Exp(0, B) and, consequently, 
the N~ independent Exp(0, 1) if and only if the M~ are independent Exp(0, B). 
Applying now Theorem 1 we get that the (* act like ( k -  1) ordered independent 
U(0, 1) random variables if and only if the d i are Exp(0, B). This completes the 
proof of Theorem 6. 

These results can be immediately generalized to hold for the F(1/n, O, B) and 
F(1/n, A, B,) families, with n > 2. Namely we have the following corollaries. 

Corollary 1. Let Xi, 1, Xi, 2 . . . .  , Xi,,, i = 1, 2, . . . ,  k, k ~ 3, n ~ 2, be k independent 
sets of n independent positive random variables. Let Yi=Xi, l+Xi,2 + . . .+Xi , , ,  
i= 1,.. . ,  k. Further let Sk = Z k Yi and define ~ =  Z~ Yi/Sk, r= 1, 2, ..., k - 1 .  Then 
the ~ act like ( k -  1) order statistics of ( k -  1) independent U(O, 1) random variables 
if and only if the Xi, j, j=  1 . . . . .  n; i-- 1,... ,  k are F(1/n, 0, B). 

Corollary 2. Let Xi, 1, Xi, 2 . . . .  , Xi,,, i = 1, 2, ..., k, k ~ 3, n___ 2, be k independent 
sets of  n independent random variables with Xi, j> A, j--1,  2 . . . . .  n; i=1,  2, ..., k. 
Let Yi be as in Corollary 1 and define 

d i=(k+l- i ) (Y(o-Y( i_ l ) ) ,  i=  1,2, . . . ,k ,  

where Y(o)=nA and Y(1) are order statistics of Yi. Further define ki=dJS(d), 
i = 1 , 2  . . . .  ,k, where S(d)=Xkdi, and let ~ , - X 1 K i ,  r = l ,  2,. k - 1 .  Then the 
~* act like ( k -  1) order statistics of ( k -  1) independent U(O, 1) random variables if 
and only if the Xi . j , j=  1, 2, ..., n; i= 1, 2, ..., k, are F(1/n, A, B). 

All one needs to prove these theorems is a restatement of Lemma 2 for k 
independent sets of n independent positive random variables, n>2,  for the 
F(1/n, O, B) case. 

5. Characterizations of the Normal Law 

In order to characterize the normal distribution via measurable mappings 
onto the unit interval we will only need the following simple lemma in addition 
to the statements of Sections 2 and 4. 
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Lemma 3. Let  X be a random variable. I f  X has the same density as - X ,  and 
i f  X 2 is a chi-square one (wri t ten as Z~ f rom now on) random variable, then X is 
normal with zero mean and unit variance. 

The Proof  of this lemma follows immediately from the assumed equality of 
the densities f ( x )  and f ( -  x) and the transformation y = x z. 

Theorem 7. Let  X 1 , X  2 . . . . .  X , ,  n - - 2 k + 3 ,  k>2 ,  be independent identically 
distributed random variables with mean # and variance a 2, - o o  < # < + 0% ~r> O. 
Le t  

Z 1 = ( X  1 - X2)/V/2, Z 2 = ( X  1 ~- X 2 - 2 X3)/V/6, ..., 

Z n _ l = ( X ,  ~- X2 ~-...AV x n _ l - ( n - 1 ) x n ) / V ~ ( n - 1 ) ,  Zn=(Xl--~...--~ Xn) /Vn , 

and define 

n - 1  2 2 r2=z +z  . . . .  , k + 1 -  
2 

Further let Sk+I=Z~+I Y/and define q* = Z~ YJSk + I , r =  1, 2 . . . . .  k. Then the ~l* act 
like k order statistics o f  k independent U(O, 1) random variables i f  and only i f  the X i 
are N(#,  a2). 

Proof  The random variables q* are independent of a 2, and we can therefore 
assume a 2 = 1, without loss of generality. From the theory of normal distribution 
it follows that Zi, i=  1, 2, ..., n, and therefore Z~, i=  1, 2 . . . .  , n -  1, are inde- 
pendent normal random variables if and only if the Xi are normal. Next we show 
that the Z~, i=  1, 2 . . . . .  n - 1 ,  are independent N(0, 1) if and only if the Z 2, 
i, 1, 2, ..., n -  1, are •2. To see this, we consider Z~. We know that Z1 has the same 
distribution as - Z ~  by construction. By assumption Z~ is 7~ 2 and Lemma 3 
gives ( X I - X 2 ) / I / 2  as N(0, 1) and Cram6r's theorem implies that X1 and X z  are 
N(#, 1). Consequently our basic assumption on the X~ implies that all of them are 
N(#, 1) and therefore all the Z~ are independent N(0, 1), where independence of 
Z~ is implied by the orthogonal transformation of X~ to Z~. An application of 
Lemma 2 gives the Y~ Exp (0, 2) if and only if the Z 2 are Z~, and it follows from 
Theorem 1 that the ~/* act like k ordered independent U(0, 1) random variables 
if and only if the Y~ are Exp (0, 2). This completes the proof of Theorem 7. 

In case we can assume the mean to be known, the first transformation of 
Theorem 7 is not necessary and in such situations the following theorem is 
applicable. 

Theorem 8. Let  X~, X2 . . . .  , X , ,  n =2k ,  k >  3, be independent identically distrib- 
uted random variables with known mean # and unknown variance a 2, - ~ < # < + 0% 
a > 0 and assume also that the X~ have symmetric distribution about #. Le t  

Z I : X 1 - / A ,  Zz..~--X2- # . . . .  , Z n : X n -  # 
and define 

Ya=Zf+Z22 ,  Y z -  2 2 2 2 k = n / 2 .  --Z3-~ Z4, .. . ,  Yk = Zn_l-~ Zn, 

Further let Sk = Z~ Y~ and define rl, = X~ Yi/S k, r = 1, 2, . . . ,  k -  1. Then the 'I, act like 
( k -  1) order statistics o f  ( k -  1) independent U(O, 1) random variables i f  and only 
i f  the X i are N (#, a2). 
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Proof The qr being independent of 0-2, we can again assume 0 -2 = 1, without 
loss of generality. As a result of our symmetry assumption on the Xi, the Zz have 
symmetric distribution about zero, and Lemma 3 gives the Z~ as independent 
g~ random variables if and only if the Zi are N(0, 1), that is if and only if the Xi 
are N(/~, 1). The rest of the proof is the same as that of Theorem 7. 

The method of this paper, that is characterisation of families of distributions 
via measurable mappings onto the unit interval has a wide scope of application. 
The next two statements are given here to further demonstrate this fact. 

Corollary 3. Let X1, X2, . . . ,  Xn, n ~  3 be independent identically distributed 
positive random variables with finite mean and an absolutely continuous distribution 
function. Let Y I = X  2 . . . . .  Y , = X  2, write S,=X'] Yi and define ~/r=X( Yi/Sn, r-- 
l, 2 . . . . .  n - 1 .  Then the ~ act like ( n - 1 )  order statistics of ( n - 1 )  independent 
U(O, 1) random variables if and only if the Xi have the Weibull density 

( 2 X ) B - l e x p ( - x 2 / B ) ,  x>0 ,  B>0 ,  

written as W(2, B) from now on. 

Proof From straightforward change of variable technique we get that the X~ 
are W(2, B) if and only if the Yi are Exp(0, B), and Theorem 1 gives the Yi Exp(0, B) 
if and only if the t/r act like (n -  1) ordered independent U(0, 1) random variables. 

Corollary 4. Let X1, X2, ..., X , ,  n = 2 k +  3, k>2,  be independent identically 
distributed positive random variables with finite mean and variance and an absolutely 
continuous distribution function. Let Y1 = log X1, ..., Y, = log X,. 

Let 

ZI=(Y~- Y2)/I/~, Zz=(Y~+ Y z -  Z Y3)/I/6 . . . . .  

Z,_I=(Yx+. . .+  Y , _ l - ( n - 1  ) Y,)/l/n(n- 1), Z ,=(YI+ . . .+Y , ) / ] /~ ,  

and define 

n - 1  VI ~_ Z 2 _t._ Z 2 ' V2 2 2 2 2 ~- Z3 nt- Z4 ,  , kq- ... Vk+I=Z,_2+Z,_I,  1= 
2 

Further let Sk+l=x~+l Vii and define rl* = X'I VffSk + l , r= 1, 2 . . . . .  k. Then the rl* act 
like k order statistics of k independent U(O, 1) random variables if and only if the 
Xi are distributed according to the logarithmic normal law, that is for x > 0 their 
density function is 

2 1 x-l(2rc0- ) -~exp(-1 /2a2( logx-kt ) )  2, - o o < # + o e ,  0->0. (5.1) 

Proof The Yi are N(#, a 2) if and only if the X~ have density as in (5.1). The rest 
of the proof is identical to that of Theorem 7. 
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