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Limiting Convex Hulls of Samples" 
Theory and Function Space Examples* 

LLOYD FISHER 

Introduction 

Suppose that Xl,  X2, ... is a sequence of independent identically distributed 
random variables. Let m , = m i n  {X1, . . . ,X,} and M , = m a x  {X 1 . . . .  ,X,}. Let 
R, = Ira,, M,],  the smallest interval containing the sample {X1 . . . .  , X,}, be called 
the range of the sample. The subject of the range of the sample (or equivalently 
the extreme values of the sample)has been extensively studied, the most fundamen- 
tal paper being that of Gnedenko [8]. 

The motivation of the present paper was to find a suitable generalization of the 
range to random variables taking values in a higher dimensional space. If the 
Xi's are random vectors in a linear space one possible generalization is the convex 
hull of the sample {X1, ..., X,} which reduces to R, if the space is the real line. 
It is this quantity that we shall consider here. This generalization was suggested 
by Professor Lamperti. 

The convex hull of a sample has been the object of previous investigations. 
R6nyi and Sulanke [11] have considered the problem of the asymptotic behavior 
of the expected area, perimeter, and number of vertices of the convex hull of i. i. d. 
points in the plane. Efron [3] has considered similar problems in two and three 
dimensions, but has emphasized fixed values of the sample size. He also considers 
the probability content of the sample. Geffroy [6, 7] shows that if the sample 
points come from a k dimensional normal distribution that the convex hull is 
"almost  ellipsoidal" in shape as the sample size becomes large. 

In this paper the question of whether or not the convex hull has a limiting 
shape shall be considered. The mathematical formulation is given below. 

1. Definitions 

Let X 1 . . . .  , X . . . . .  be a sequence of independent, identically distributed Borel 
random vectors taking values in a separable Banach space B. Let S, = {X1, ..., Xn} 
be the first n sample points. For  any bounded set A _~B let IAI = m a x  {l[Xl[  : XeA}. 
Let A~= {X: there exists YeA, ][ Y-X[[ <e}. For  two bounded subsets A and C 
of B let d(A, C ) = i n f { e > 0 :  A ~  C and C~___A}. Let R, be the convex hull of S, 
(the range of the sample). For  any set A ~ B and real number c let c A = {c X: X e  A}. 

Since we will be interested only in the shape of R n and not its size we shall 
change the scale until R, touches the surface of the unit ball, but is contained in the 
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unit ball. Thus, let 

NR,,=R,,/IR,,] if LR.]>O otherwise let NR,,=O. 

The N denotes normalized. Let N S ,  = S,/]S,I if ]S,[ > 0 otherwise NS,  =0.  

Let Tbe  a closed bounded subset of B and Y. a sequence of random subsets of B 
that are bounded with probabili ty one. Then we write: 

l i m Y , = T i . p ,  or Y,-- ,Ti .p.  
n - - ,  Go 

if for all ~>0,  P(d(Y,, T ) > e ) ~ 0 .  Similarly, ! imYn= T a.s. or Y,--*T a.s. if 

P(d(Y,, T) ~ 0) = 1. In the sequel Y, shall be N R ,  or NS, .  The possible limits T are 
required to be closed in order to give a unique limit. 

For  each X e B let X ~ = {X} ~, that is, the e-neighborhood of X. In the following w 
denotes weak since a weaker type of convergence is being considered. We write 

l i m i t Y ,= Tw. i . p ,  or Y , ~ T w . i . p .  
/ I - -+o9 

if X ~ T, e > 0 implies P(I1. ~ X ~ ~ 0) ---' 1 and X ~ T implies there exists e > 0 such that 
P(Y, c~ X ~ = 0) --* 1. Similarly, 

l i m i t Y , = T w . a . s ,  or Y , ~ T w . a . s .  
t l ~ o 0  

if XeT,  e > 0  implie@mP(Ymc~X~+O, m > n ) = l  and X r  there exists 

e > 0 such that!imP(Y,,  c~ X ~ = 0, m > n) = 1. 

2. Elementary Consequences of the Definitions 

The proof  the following easy lemma will be omitted. 

Lemma 2.1. I f  Z,-~ N R n or NS  n then 

(a) Z n ~  Ta.s. implies Z n ~  Ti.p., w.a.s. 

(d) Z n ~  T i.p. implies Z , ~  T w.i.p. 

(c) Z , ~  T w.a.s, implies Z , ~  T w.i.p. 

(d) N S , ~  T i.p.(a.s.) and T closed and convex implies NRn--* T i.p.(a.s. ) 

Lemma 2.2. Let Z , = N R ,  or NS~ then if Z,--*T i.p. or a.s., T is a compact 
subset of  B. 

Proof. Since the limit is a closed set by definition to prove the lemma it is 
necessary to show that the set is totally bounded. Let ~ > 0  be given, choose an 
N(e) such that n > g(e) implies P(d (Z,,  T) < ~/2) > �89 Choose any configuration 
of Z ,  such that Z~/2 >= T. The convex hull of Z,  is a polytope with n-vertices and 
since it is a bounded, closed subset of a finite dimensional subspace it is compact.  
Cover the convex hull with a finite number  of ~/2 spheres. Using the same centers 
but taking e spheres we have a finite e covering of T. 

Corollary 2.3. I f  T~_B has an interior and B is infinite dimensional then T 
cannot be a limit i.p. or a.s. of  N R ,  or NS, .  
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Example. Pick a countable dense subset Yi of the unit ball of 12 . Let T be the 
unit ball and let each X i have a discrete distribution which puts positive measure 
on each Y~ and is concentrated on Y~. Then NR,-- ,  T w.a.s, and NS,--, T w.a.s. 
but no limit exists i.p. or a.s. 

Theorem 2.4. In order that N R  ~ T i.p. (a. s.) it is necessary and sufficient that: 

(a) T is a compact, convex subset of B. 

(b) P(T~_NR, ) - - ,  1 for each e>0.  (!im P ( T ~ _ N R ~ ,  m>=n)= 1.) 

(c) I f  X is an extreme point of T then for each e>0,  P(NS, n X~4=0) --, 1. 
(~irn P(NS m n X ~ # O, m >= n) --* 1.) 

Proof Let CH be the operator that takes bounded subsets of B into the closure 
of their convex hulls. 

Since N R ,  is convex it is clear by Lemma 2.2 that i fa limit is to exist (a) must be 
satisfied. Further, for any limit T we have P(d(T, N S , ) < e ) ~ I  so that (b) must 
also hold. 

Only if: Let NS,  ~ T i.p. Let X be an extreme point of T. Then X q~ C H ( T - X  ~) 
for each e > 0  ([10], p. 132). Let f (c~)=d(CH(TO-X~),  X). We show that f ( 6 ) > 0  
for some 6 > 0. Suppose not then we may find a sequence of triples (X~, X~, 2,) 
where X~ and X~ ~ T -  X ~, 0 < 2, < 1 and Ii X -  [2, X~' + (1 - 2,) X~] It < 1/n. Since 
T -  X ~ is compact (being a closed subset of T) we may without loss of generality 
(by taking appropriate subsequences) assume that X~ ~ X a ~ T -  X ~, X~ ---~ X z E T -  X ~ 
and 2,--+ 2. Then, 

II X - [,~Xx + (1 - 2) X23 II =< II X - [2, X~ + (1 - 2,) X~] II 

+ II [ Z , -  X] X~ll + II [ , l , - ,~l  XNll 

+ 112 E N d ' - x l ]  II + I1(1-2) [x~ - X2] II 

and as the right hand side may be made as small as desired, X = X  1 + ( 1 - 2 ) X  z 
contradicting Xr  C H ( T -  X~). Let f ( J )  > 0. Since P ( N S , _  T ~ ~ 1, if P(NS,  n 
X ~ 4= 0) ++ 1 then by the above P({X} __ NR,)  +-, 1 since whenever NR,  -= CH(NS,)  c_ 
CH(T  ~ - X ~) then 0 < f (6)  < d (X, NR,)  < d(T, NR,). 

If: Assume (a), (b) and (c) note that P(d(NR, ,  T ) N e ) ~  1 iff P(NR,~_ T~)-~ 1 
and P(T~_ NR~) ~ 1. Since P(NR,_c T ~) ~ 1 by (b) to show that NR ,  ~ T i.p. we 
need only show P ( T _  NR~,)~1. Cover the closure of the extreme points of T by 
a finite number of e/3 spheres (which may be done since a closed subset of a com- 
pact set is compact). The probability that all the spheres have points of NS,  
approaches one by (c). By the Krein-Millman Theorem (l-10], p. 131), NR ,  has 
points within 2 ~/3 of each element of T when the above holds. Thus, P(NR~ ~_ T) -~ 1. 
The theorem for N R,  ~ T a.s. is proved similarly concluding the proof. 

Let p be the distribution of the Xi, that is, for each Borel set A_~ B we define 
# ( A ) = P ( X i ~ A  ). It is clear that if p({0})4= 1 then N R , ~ T  i.p. or a.s. or NS,--+T 
i.p. or a.s. implies I TI--1. However, in the case of weak limits this need not be 
true. 

Example. Let B = 12 . Let { U~}F= ~ be an orthonormal basis for 12 . Let # be discrete 
on c i U~ where c i is a sequence of real numbers. Let Pi = P({ci U/}). 
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If c i = i and Pl = 1 - e -  1 and for i > 1, Pi = e-  ~2 _ e-  (i- 1) 2 then IS, I/(log n) ~ ~ 1 
a.s. which implies NR,--. {0} w.a.s. 

If B is finite dimensional then the following lemma shows that if N R , ~ T  
w. i. p. then I TI -- 1. 

Lemma 2.5. Let B be finite dimensional then 
(a) NR,--* T i.p. (a.s.) iff N R , ~  T w.i.p. (w.a.s.). 
(b) N S , ~  T i.p. (a.s.) iff NS,-* T w.i.p. (w.a.s.). 

Proof. The only if portion of the lemma is contained in Lemma 2.1. We prove 
only (a) the proof of (b) being similar. 

Suppose that NR,  ~ T w.i.p. Let X, Ye T. If NR,  has points within e of X and 
Y then NR,  (being convex) has points within ~ of 2 X + ( 1 - 2 ) Y  where 0<2_< 1. 
Thus, T is convex. T is closed since if every neighborhood of X has points of T 
this implies that the probability that each neighborhood has points of NR, 
approaches one and X s T. Since B is finite dimensional the unit sphere is compact 
and thus T is a convex compact set (satisfying (a) of Theorem 2.4). 

If X~ T there exists a sphere S(X) about X such that P ( N R , ~  S ( X ) = 0 ) ~  1. 
Let S be the unit ball. For  a given e > 0 cover S -  T ~ with a finite number of S (X)'s. 
Since INR,[ < 1 it follows that P(NR, ___ T ~) ~ 1 and condition (b) of Theorem 2.4 
is satisfied. 

As in the proof of Theorem 2.4 NR,  has points in each neighborhood of each 
extreme point X of T with a probability approaching one and (b) of Theorem 2.4 
is satisfied so that it follows that (c) of Theorem 2.4 is satisfied and by Theorem 2.4 
NR,--, T i.p. the a.s. statement follows similarly concluding the proof. 

The following proposition shows that if 12 has bounded support the problem 
under consideration is trivial. 

Proposition 2.6. Let 12 have bounded support. 

(a) I f  12({0})= 1, N S , ~  {0} a.s. 
(b) Let 12({0})+ 1, if 12 has compact support C then 

N S , ~  C/ICl a.s. 

(c) I f  12 has noncompact support C then 

NS,--* C/IC] w.a.s. 

but NR n does not have a limit i.p. 

Proof. (a) is clear. Under either (b) or (c) it is clear that [S,I ~ I CI a.s. From this 
it is clear that P((C/lCl)~_NSm,m>=n)--,1 for each 5>0.  Further if XeC/ICI 
then for each ~ >0,  12((I C I X)~)> 0 and thus P(X~c~ NS, t-O)~ 1 giving the first 
part of (C). If NR,  ---, T i. p. then by Lemma 2.1, T = C/I C I. But C/I C[ is not compact 
which would contradict Lemma 2.2 so that (C) is proved. 

To prove (b) cover C/I CI with a finite number of e spheres then P(NS m inter- 
esects each sphere, m >_- n) --* 1 implying P(NS~ ~ T, m > n) --* 1 which completes 
the proof of (b) and the proposition. 
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3. Rate of Growth of S. 

Since Proposition 2.6 disposes of the problem when # has bounded support 
we assume throughout the remainder of  this section that l~ has unbounded support. 

The following theorem shows that S, must grow in an "orderly fashion." Let 
Mn= IS, l, the radius of the smallest sphere containing {X1, ..., X,}. 

Theorem 3.1. Let T be a convex set with at least two nonzero extreme points. 

(a) I f  N R , - ~  T i.p. then M n is relatively stable in probability. 

(b) I f  N R , - ~  T a.s. then M,  is relatively stable almost surely. 

Proof Pick X and YeT, X + 2  Y for any 2. X + 0 ,  Y=~0. We can find a contin- 
uous linear functional f on B such that f ( X )  > 0 and f (Y)  < 0. 

(a) Suppose the N R , - ~ T  i.p. then T is compact. Let f M = m a x { f ( X ) :  X ~ T }  
and fm= min {f(X): X ~T}. By the Krein-Millman Theorem we may find points 
X M and X m of T such that f~t =f(XM) and fm =f(Xm) and X~t and X m are extreme 
points of T. 

Consider the sequence of independent identically distribution random variables 
Z i =f(Xi).  Let Q, = max {f (x i ) ,  i= 1, ..., n} m, =rain  {f(Xi), i= 1,. . . ,  n}. 

Since X~t is an extreme point of T by Theorem 2.4(c) and the fact that f is 
continuous, 

P(Q,/M,>-_fM-5)-~I for each 5>0.  (3.1) 

By Theorem 2.4(b), P(NS,~_ T~)~ 1 and using the continuity o f f ,  

P(Q,/M,<=fM+5)--,1 for each 5>0 .  (3.2) 

By (3.1) and (3.2) Q,/M, --* F M i.p. In the same manner one shows that m, /M,~ f , ,  
i.p. Thus, Q,]m, ~ fu / f , ,  =t = 0 i. p. By Theorem A of the appendix Q, and m, are rela- 
tively stable i.p. Let Q,/a, ~ 1 i.p., a, a sequence of real numbers, M,/a,--, 1/F M i.p. 
so that M, is relatively stable i.p. 

Clearly (b) can be proved the same way concluding the proof. 

Corollary 3.2. I f  NS , -~  Ti.p. (a.s.) where T is not a line segment then M,  is 
relatively stable i.p. (a. s.). 

The restrictions upon the rate of growth of the sample may be extended to 
show that in certain directions the sample must grow at the same rate as M,, 
while in other directions the rate must be less then or equal to the rate of M,. 
These ideas are formulated below. 

The set of points on the surface of the unit sphere shall be indexed by O, that 
is, for each O there is an X(O)  such that IIX(O)ll = 1 and if IIXtl = 1 then X = X ( O )  
for some O. We topologize the index set by the metric d(O, O')= ]IX(O)-X(O')[[. 
c(O, 5) will denote the cone in the O-direction generated by the e-neighborhood 
of x(O) on the surface of the unit sphere, that is, c(O, 5)= {Y: there exists Z with 
IIZ-X(O)ll <5, rlZll = 1  and a c > 0  such that Y = c Z } .  

We shall also want to truncate cones. For  5 > 0, 6 > 0, and YeB, H Y I[ 4:0 define: 

c(Y, 5, 6)= {Z: I1/11YH = X(O), Z~c(O,  e) and IP/I[ < H Yrl +~}.  
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M(n, O, 5) denotes the random variable giving the maximum norm of the points 
of S, in c (O, 5): M(n, O, e) = max ({ I] X ill" Xi ~ C (O, e), i = 1, 2, ..., n}, 0). Let Y, be a 
sequence of random variables and a, a sequence of constants, we write Y. < a, i.p. 
if P(Y, < a,) ~ 1 and I1, < a, a. s. if lim P(Ym < % ; m _--> n) = 1. Similar definitions hold 

n ~  o9 

for Y,>a, i.p. (a.s.). 
The following definitions give the maximum and minimum radius of growth 

in a given direction for the normalized sample. 

RSIP(O)= l im inf{M(n, O, e)/M,<r i.p.}, 
~-~0 r>O 

RI IP (O)= l im  sup{M(n, O, e)/M,>r i.p.}, 
e~O r>O 

RSAS(O)=l im )nfo {M(n , O, e)/M,<r a.s.}, 
, ~ 0  = 

RIAS(O)=l im inf{M(n, O, e)/M,>r a.s.}. 
~ 0  r__>0 

(Recall that since # is unbounded M, = 0 only finitely often with probability one.) 
The following lemma is clear. 

Lemma 3.3. 1 __> RSAS (O) > RSIP (O) > RIIP (O) > RIAS (O)_-> 0. 

Theorem 3.4. Let NR,  ~ T i.p. (a. s.). 

(a) Let X = c . X(O), c >= 0 be an extreme point of T then RSIP(O) = RIIP(O)--  
IlXll (RSAS(O)= RIAS(O)=  ItXll). 

(b) Let T(O)=max{d: dX(O)er}=c .  I f  cX(O) is not an extreme point of T 
then RSIP (O)_-< c (RSAS (O) __< c) 

Proof. (a) We consider two cases, c > 0 and c = 0. 

(i) Suppose that X=cX(O)@O is an extreme point of T. First note that for 
each e > 0 we may choose a cone c (O, 3) such that (c (O, 6 ) -  c (c X(O), 6, 5)) c~ T =  ~). 
Geometrically the assertion is as follows: By taking a small enough cone with its 
apex at the origin and central ray through X we find that the intersection of the 
cone with T does not extend very far beyond X (in norm), (although the ray between 
0 and X may lie on the surface of T). 

Suppose the assertion is not true then there exists an 5>0  such that c(O, 3 ) -  
c(X, 6, a) contains points of T for each 6 >0.  Let Y, be such a point for 6 =  1/n. 
II g,l[ =< 1 since Y, e T  and [TI = 1. Note that {Y,, n-- 1, 2 . . . .  } u {Y: Y=rX ,  IIX[I + 
z---r-< 1} is a compact set since it is closed as any limit point of the Y,'s must lie 
on the segment of the ray generated by X in the set given above and the set is 
totally bounded since any covering of the line segment by e spheres contains all 
but a finite number of Y,'s. Thus, choose Y a limit point of Y,, n = 1, 2, ..., then 
II Nil->-[IXlt +5 and Y e T  since T is closed. Since # is unbounded 0 e T  and as Y is 
on the ray through X, X is not an extreme point which is a contradiction. 

Let e > 0 be given choose ~ as above. For  0 </3 < 6 if A is the closure of c (O, /? ) -  
c(X, fl, 2e) then A is contained in c(O, c5)-c(X, 6, 5) and A n T is empty. Also 
d(A, T) = a > 0 and A c~ T b is empty where b = a/2. By Theorem 2.4, (b), d(NS,, T) < b 
i.p. (a.s.) from which it follows that: 

M(n, O, fl)/M,<= IlXlh +25  i.p. (a.s.). (3.3) 
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From Theorem 2.4(c) it is immediate that: 

M(n, 6), fl)/M,> [[XH-~ i.p. (a.s.). (3.4) 

By combining (3.3) and (3.4)(a) is proved in the case where the extreme point is 
not the origin. 

(ii) Suppose that X = 0, then there exists an infinity of rays originating at the 
origin which intersect T only there (i.e. every straight line through the origin has 
at least one half line satisfying the above condition or 0 is not an extreme point). 
Let one such ray be in the 6)-direction. Consider the line segment L =  {r. X(O): 
e < r < 1 }. T n  L = 0. Let d (L, T) = 2 a > 0, then it follows that: 

M(n, 6), rain(a, e))/M,<e i.p. (a.s.) 

since c(6), rain(a, e))-c(eX(6))/2, a, e/2) is disjoint from T "/2. Thus, RSIP(6) )<0  
and by Lemma 3.3 equal to zero (RSAS(6))=0) completing the proof of (a). 

(b) The proof of (b) is similar to that of part (a) so we sketch the proof. For  
each e > 0 we can find a 6 > 0 such that the distance from T to c (6), 6) - c (T(6)) X(O), 
6, e) is positive. Using Theorem 2.4(b) we find that 

M(n, 6), 8)/Mn<= T(6))+e i.p. (a.s.) 

from which (b) follows. 

In the case that B is finite dimensional the type of behavior exhibited in the 
last theorem also gives a sufficient condition for a limit to exist. 

Theorem 3.5. Let B be finite dimensional. 
(a) Let 

A = {RSIP(6)) �9 X(6)): RSIP(6))= RI1P(6))} 

C={RSIP(6) ) .  X(6)), all 6)}. 

Then lira NR, = T i.p. for some T if and only if C is contained in the closure of the 
n ~  oo 

convex hull of A. 
(b) (a) holds with IP replaced by AS and i.p. replaced by a.s. 

Proof. We only prove (a) since the proof(b) is essentially the same. Theorem 3.4 
implies that if a limit exists A contains all the extreme points of T and is contained 
in T. The Krein-Millman theorem gives the only if portion of the theorem. 

Thus, suppose that C is contained in the closure of the convex hull of A, which 
we will call T. Choose e(6)) such that: 

M(n, 6), e(6)))/M,<RSIP(6))+a/2 i.p. (3.5) 

The cones c(6), e(6))) along with an e/2-sphere about 0 cover the compact set T. 
Choose a finite subcovering. Then we have by (3.5) P(NS,~_T~)--.1 since T ~ 
contains 

{0} ~/2 • {U c(T(6)) X(6)), e(6)), e/2)}. 
O 
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Let X be an extreme point of T. Then by the theorem mentioned previously, 
[10] p. 132, X is in the closure of A, thus if X = T(O) X(O), 

M(n, O, a)/M,> R I I P ( O ) - e  i.p. (3.6) 

As in the proof of Theorem 3.4 for each e>0  we can find a fi > 0 such that 
c(O, f i ) - c ( r ( o )  X(O), 6, 5) is disjoint from A. Since C is contained in A 

M(n, O,e)/M,<=RSIP(O)+e i.p. (3.7) 

By (3.6) and (3.7), XeA.  Thus, for each e>0,  P(NS, c~ X" +O)---,1. Since T is 
convex and compact by Theorem 2.4, N R , ~  T i. p. concluding the proof. 

As an application of this theorem the following result holds: 

Theorem 3.6. Let B be finite dimensional and # a product of Borel probability 
measure on the set of angles and of Borel probability measure on the radial distance 
from O, then: 

(a) I f  there exists a 0 o such that #({X: X = r X (Oo), r ~ 0}) = 1 then NR,--* T 
a.s. where T= {rX(Oo): 0_<r_< 1}. 

(b) Suppose that the radical measure does not put mass one on one angle. Let H 
be the support of the angular measure and A = {X(O): OeH}. Let T be the closure 
of the convex hull of A. Let F be the distribution function of the radical distribution. 

(i) 2irnNR,= T' i.p. for some T' iff ! im(1-F(kr)) / (1-F(r))=O for each k> 1. 

In this case T '= T. 

(ii) ! i m N R , = r '  a.s. for some T' iff S(1-F(kr) )  -1 dF(r)<oo for all k < l .  
o 

In this case T '= T. 
Proof. (a) is clear. Assume that the hypotheses of (b) are true. Suppose that 

N S , ~ T '  i.p. where T' has only one nonzero extreme point, that is, T' is a line 
segment from zero to X(Oo). Since the support of the angular measure is not a 
point we may find a closed set of angles A such that # (A x [0, oe)) = p > 0 and O o ~ A. 
Let M(A, n) be the maximum norm of the sample points whose direction is in A. 
Let M(A c, n) bear a similar relation to A c. Then M(A, n)/M, ~ 0 i.p. which contra- 
dicts Theorem B of the appendix. Thus, T' must have at least two nonzero extreme 
points and M, is relatively stable i. p. if (i) is true and a. s. if (ii) holds by Theorem 3.1. 
The conditions on the distribution function F are those that M, be relatively stable 
i.p. (a. s.), Barndorff-Nielsen [1], and the only if portion is proved. 

Let M, be relatively stable i. p. (a. s.) we show that NR,  ~ T i. p. (a. s.) completing 
the proof. If Oq~H it is clear that RSAS(O)=RIAS(O)--0.  Let OeH. We may 
find L(n), a slowly varying function, such that M,/L(n)-~ 1 i.p. (a.s.) [5, 8]. Since 
O s H  for each e>0,  p=#(c(O, e))>0. By the above and the strong law of large 
numbers, 

M(n, O, e)/M(n)~L(np)/L(n)~ 1 i.p. (a.s.). 

Thus, RSIP(O)= RIIP(O)= 1 (RSAS(O)= RIIP(O)= 1). The proof is completed 
by referring to Theorem 3.5. 
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4. Dense Convergence 

In general NR,-~T i.p. or a.s. does not imply that NS, converges to a limit 
since NS, converging is a more stringent condition requiring normalized sample 
points close to all points of the limit and not just the extreme points. The following 
theorem gives a case where this implication can be made. 

Theorem 4.1. Let T(O)=max {c: cX(O)~T} where T is a compact convex set 
with at least two nonzero extreme points which contains the origin. Let the distri- 
bution of the X i have unbounded support and let T(O) X(O) be an extreme point of 
T for each 0 then 

(i) N R , ~  T i.p. iff NS ,~  T i.p. 
(ii) NR,~  T a.s. iff NSn~ T a.s, 

Proof If NS, ~ T i.p. or a.s. the corresponding result for NR, holds by 
Theorem 2.4. 

Suppose that NR, ~ T i.p. By Theorem 3.1 M R is relatively stable i.p. thus we 
may choose a sequence L(n) such that M,/L(n)-~ 1 i.p.,Let T ( O ) > 0  and e > 0  be 
given. As in equations (3.3) and (3.4) we may choose a 6 > 0 such that 

P(T(O) (1 - e ) <  M(n, O, 6)/L(n)<= T(O)(1 + ~))--* 1. (4.1) 

Select an x e(0, 1). It is easy to see there exists an N such that for n>  N there 
exists a sequence n(m) with the property that ]L(n)x/L(n(m))-11 <e. 

Consider the sequence of random variables, 

{ ~ X i ' l i f X i ~ c ( 0 , 6 )  
Zi = otherwise. 

Let Q , =  {Zl/L(n),..., Z,/L(n)}. Then letting 

I=[T(O)x(1-3e), T(O) x(l+38)], P(Q,c~I.O)>P(M(n(m), O)/L(n)sI) 

= P(x T(O) (1 - 3 e) L(n)/L(n (m)))__< M(n (m), O, 6)/L(n (m)) 

< x T(O) (t + 3 e) L(n)/L(n (m)))> P(T(O) (1 - 4e) 

< M (n (m), O, 6)/L(n (m)) < T(O) (1 + 4 e)) 

which approaches one as m ~ or. Thus, we conclude that 

P(max {d(x, Q~): xeEO, T(O)]} > e ) ~ 0  (4.2) 

for each e > 0 where d (x, Q,)= m i n [ x -  Z]L(n) l. 

Let Xand  Yec(O, 6)and [/IX[I- It Nil[ <E and max(ll Nil, ][Xll)< Z(O)+fl, f l>0,  
then it is easy to see that ] IX-  YI[ <2(T(O)+fl)+e. 

Choose 6 so small that c (O, 6)c~ r_~ c (7c (O) X(O), 6, e) (see the proof  Theorem 
3.4) and that 46 < e. Then by the preceeding remarks and (4.2) we see that 

P(max {d(x, NS~): x~c(O, 6)} > 2 e ) ~  0. (4.3) 

Cover T with an open 2e sphere about  0 and c(O, 6) cones as outlined above 
for all angles where T(O)> 0. Since T is compact choose a finite subcovering. By 
(4.3) we see that P(NS~ ~ ~ T) --. 1. Since NR~ ~ Ti. p. we know that P(T2~ c NS~)---, 1, 
thus P(d(NS, T)<  2 e ) ~  1 and (i) is proved. (ii) follows in the same manner. 
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5. Examples of Limiting Shapes 
In this section three examples of limiting convex hulls are given. The following 

two results will be needed. 

Theorem 5.1. (a) Let # be a measure on n-dimensional Euclidean space, E ~, which 
is the product measure of N(&, a~) measures along an orthogonal set of axes. Let 
a~=max{a~, i= 1 . . . . .  n}. In the framework of section 1, let B = E  ~ and let each X i 
have distribution #. Then 

lira N S , =  {(xl, ..., x,): i (xi aa/ai) 2<1 } a. s. 
n . - . m  i = l  

The same limit is obtained if instead of NS ,  we use S,/a1(2 log n) }. 

(b) Let I~ be a measure on E" which is a product measure along an orthogonal 
set of axes of Poisson distributions with parameters )~, i = 1 . . . .  , n. Let B = E" and 
each X i have distribution #. Then, 

! i m N S " = {  (xl' ' ' ' 'x"):  i=l~xi<=l'xi>=O' i = l ' g '  " " n }  a's" 

Proof (a) follows from the stronger results of Geffroy [7] or from Fisher [5]. 

(b) Let G ( x ) = l - F ( x ) = e x p ( - 2 )  ~ 2ill! for x > 0  and G(x)= l  for x<0 .  
i = [x] 

That is, G(x) is the tail of a Poisson distribution function with parameter 2. Let 
L(y) = log(y)/log(log y). We now show that for x > 0 and y > 0, 

log G(xL(y))= - x log y +  o(log y) y --, oo. (5.1) 

Using the fact that G(x)~exp(--2),gv'l/[x]! as x--+ oo (where [x] is the integer 
part of x) we see that for fixed x, y + oo 

log G(xL(y ) )=log( (exp( -  2) 2LxL(Y)l/[xL(y)] !)(1 + o(1))) as y -+ oo 

= Ix L (y)] log 2 + o (log y ) -  log [x L(y)] !. 

Now [x L(y)] = [x log y/log (log y)] = o (log y) and using Stirling's formula we find 

log G (x L(y)) = - [x L(y)] log Ix L(y)] + o (log y). 

Note that as Z --+ 0% 

I Z log z -  [ z ]  log [Z]l < l / l o g  z -  [z ]  log Z l + IEZ] (log z - l o g  [z])l---o (z). 

Thus, 
log G (x L (y)) = - (x L (y)) log (x L (y)) + o (log y) 

= - x L(y) log L(y) + o (log y) 

= - x log y (log 2 y -  log a y)/log 2 y + o (log y) 

= - x  log y + x  log y log a y/log 2 y +  o(log y) 

which proves (5.1), 
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Let F be as above�9 For  x >  1 define N(x) as N(x )=min{y :  F(y-O)<__ 1 - l / x <  
F(y)}. Note that 

yG(N(y))<=l and l < y G ( N ( y ) - O )  by definition of N. (5.2) 

By (5.1), 0 < e < l ,  l o g y G ( ( l + e )  L ( y ) ) = _ + e l o g y + o ( l o g y )  so that 
y G ( ( l + e ) L ( y ) ) ~  0 and y G((1-1)L(y))--+ oo. Since G is nonincreasing, by (5.2) 
for large y, ( 1 + ~ ) L ( y ) > N ( y ) > ( 1 - e ) L ( y )  so that N(y)~L(y) .  The proof  of (b) 
now follows from Theorem 3.4 of [5]. 

A. Normal Distributions in 12 

For  a discussion of normal distributions in Hilbert space see Grenander [9], 
pp. 140-143�9 For  our purposes we summarize the results by noting that a normal 
distribution is a product measure of N(#z, 02) measures along an orthogonal set 
of axes where ~ a/2 < oo. 

i = 1  

Theorem 5.2. Let B = l 2 and X i have distribution # which is normal. Let Xz = 
(xl, x 2 . . . .  ) where x i is N(#i, 0-2) independently of  the other xfs. Let 0-2 = m a x  {0-2, 
i = 1, 2, 3 . . . .  }, then 

l imNSn= {(xl, ...): ~ (x i 0-jai)2<l} a.s. 
n~m i=1 

Proof Without loss of generality assume that #i--0 for all i and 01 = 1. By 
�9 m Theorem 5.1(a) if we "observe"  only the first m coordinates then h m N S ,  = 

n ~ o o  

(xl, ..., xm): ~ (xi/oi)2< 1 where NS'~ is N S ,  projected onto the m dimensional 
i = 1  

subspace of vectors whose only nonzero coordinates are in the first m coordinates. 
The same limit occurs when considering Sn/(2 log n) ~. 

We now proceed to show that in the full Hilbert space the limit is A = {(xl, ...): 
2 (Xl/0-i) 2~  1}. We prove this result by showing that "mos t "  of the coordinates 
i=1 
are "negligible." 

2 - - •  If [u[<�89 -2 then E(exp(ux2))=(1-2uog) ~. Since o2--,0 we see that 

( 1 - 2 u o 2 ) - } ~  1 + u o 2  as i--+ oo. 

Let IIX(n)JI 2 x 2 then E(exp(ulIX(n)ll2))= 2 1 = I ~ ( 1 - 2 u 0 i ) - ~  which converges 
i=n i=n 

if [u [ < �89 o-f 2 for each i > n since (1 - 2 u 2)- ~ ~ 1 + u 2 and ~ l u [ 0 2 < oe. 

By the general Chebyshev inequality if a, b, > 0  we have P(HX(n)I[2>b)< 
E (exp (a l[ X(n)H 2))/exp (a b). Let 0 < u < 1/(2 max 0-2). Then for any e > 0, P(H X(k)r] 2 > 

oo 

e 2 log n) < I~ (1 - 2 u 2)- ~/exp (u e 2 log n) =f(u) /n  2~. Let 1/e < u < 1/(2 max 0-2). 
i=k  i>=k 

(Note that this implies 2 max a2<e  so that k must be fairly large.) Let A(k, n) be 
i>k 

the event that a sample point has IlX(k)rl2>~Rlogn. Note that ~ P ( A ( k , n ) ) <  
n 

c (k, ~) + ~ f (u) /n  2 < oo when e u > 1 and where c (k, c) is a fixed constant. 
n 
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Let e > 0  be given. Choose k as above so that 2 max o-/2 < e. By the result of 
m--1 i ~ k  

Theorem 5.1(a), ~ (x(i, n)/ai) 2 <( l+e ) (2  log n) for all large n with probability 
i = 1  

one where x (i, n) is the i th coordinate of the n TM sample point. Recalling the inter- 
pretation of A(k, n) we use the fact that ~ P(A(k, n)) < oo (for each k) along with the 

/1 00 

Borel-Cantelli lemma to see that  with probability one ~ x (i, n)  2 ~ e 2 log n for all 
i=k 

large n. Thus, limit P (Sin/(2 log rn) ~ _ A ~, rn _>_ n) = 1. 
/ 1 ~ o o  

Noting that for large k the distance between A and the set A projected onto its 
first k coordinates is less than e the theorem follows from Theorem 5.1 (a) (since 
then P(NS~ m_ A, m > n) -~ 1) and the previous remarks. 

B. Poisson Process on K 

Let K be the space of real-valued functions on [0, 1] that are continuous from 
the right and have a limit from the left. K is topologized with the J 1-metric 
(e.g. Skorokhod [12]). Let /z be the measure on K associated with a Poisson 
process with parameter 2. 

Theorem 5.3. Let B = K and each X i have distribution #. Then l imN S, = {f: f is 

continuous and nondecreasing on [0, 1]. f(0)--- 0. f(1)___ 1} w. a. s. 

Note. Let W be the limit described above. Wis convex, closed and noncompact. 
Thus, N R ,  has the same limit and the limit cannot exist as a strong limit since the 
set W is not compact. 

Proof. Let e > 0 be given. Each sample point X n -  f/1 ~ K has only a finite number 
of jumps of height one in [0, 1] (Doob [2], p. 401) a.s. Let L(y) = log y/log(log y). 

The distance between f and g in the J 1-metric is less than or equal to the 
distance between f and g in the sup metric. Let f(n) denote the n th sample point 
chosen. Let W ~ be the e-neighborhood of W in the sup norm. We will show that 
P(f(n)/L(n)e W e, n>  N ) ~  1 as N-~ oo. Let h[" II denote the sup norm of functions 
in K. Let f(n) have jumps at z(1), ...,z(s). Define f as follows: f(0)=(n)(0), 
f ( z  (i)) = (f(n)(z (i))) + f(n)(z ( i ) -  (0))/2, f (1)  = f(1) and f is found by linear inter- 
polation in between the above points. Then II f ( n ) - f  Ib = �89 if we have a jump, = 0 
if there are no jumps. Thus, [If/L(n)-f(n)/L(n)]l<�89 By the proof of 
Theorem 5.1 (b), (5.2) P(f(n) (1)/L(n) N 1 + e/2, n_--> N) --* 1 as N -~ oo. Define h" (x) = 
rain (f(x)/L(n), 1). Then, 

P ( f  (n)/L(n)e W ~, n >= N) 

> P(l] h/1-f(n)/g(n)l I < e, n > N) 

> P(ll h~-f/g(n)H + ]bf/g(n)-f(n)/g(n)ll < e, n > N) 

> P(I] h" -_f/g(n)ll < e/2, n > g and �89 L(n) < e/2). 

By (5.2) this quantity approaches 1 as N ~ oo. Let f ~  W. Let e > 0 be given. Since f is 
uniformly continuous choose 6 > 0 such that I x -  y[ < 6 implies I f (x ) - f (y ) l  < e. 
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Consider the points x(i)=ig~/2 where i=0,  . . . , k - 1  and 0 < 1 - ( k - 1 ) 3 / 2 < 6 / 2  
and x(k)= 1. Define df(n, x(i))=f(n)(x(i+ 1))-f(n)(x(i))and dx( i )=x( i+ 1)-  x(i). 
The joint distribution of df(n,x(i)), i=1 . . . . .  k - 1  is the product measure of 
Poisson distributions with parameters dx(i). Since f ( 1 ) - f ( o ) < l  we have 
k - 1  

df(x (j)) < 1. From the proof of Theorem 5.1 (b) with a probability approaching 
j = O  

one as N ~  oo for n ~  N we may find a sample point f(i) with ]f(i)(x(j))/L(n)- 
f (x( j)) l<e for j = 0 ,  1, 2, ..., k and i<n. Let xe[x(j) ,  x ( j + l ) ]  and 

f(i) (x)=f(i ,  x), If(i, x)lL(n)- f(x)l ~ If(i, x ) /L(n)- f (x( j ) )  I 

+ [ f (x)- f (x( j ) )]  <e 

+ If(i, x (j))/L(n)-f(i ,  x)/L(n) I + If(i, x ( j ) ) /L(n) - f (x  (J))] 

<= 2 e + If(i, x (j))/L(n) - f (i, x (j + 1))/L (n)] < 5 a. 

Thus, f e W  and e > 0  implies !irnP(S,/L(n)c~f~.O, n > N ) = l  where thee  neigh- 

borhood is in the sup norm. Since f is continuous convergence to f is equivalent 
for the sup and J 1-metrics, thus the result also holds for the e neighborhood o f f  
in the J 1-metric. 

C. Wiener Measure on Ck([0 , 1]) 

Let Cg([0, 1]) be the space of k-dimensional real-valued continuous functions 
defined on [0, 1]. Let K = { f : f e  Cg([0, 1]),f(0)= 0, f is absolutely continuous and 

1 

~(f(t)) 2 dt<=l} where (f(t)) 2 is the usual Euclidean inner product of f(t)  with 
0 

itself. (The sup norm is used on Cg([0, 1]) with respect to the Euclidean metric 
in Ek.) 

The set K was used by Strassen [13] who proved the following theorem: Let x 
be Brownian motion in E k. Define x(n, t )=(2nlog(logn))-~x(n t) for te(0, 1). 
With probability one the sequence (x (n)) n > 3 is relatively norm compact and the 
set of its limit points coincides with K. Following Strassen we prove: 

Theorem 5.4. Let kt be Wiener measure on Ck([0 , 1]). Let each X i have distribu- 
tion #. Then lim NS,  = K a.s. 

n ~  o~ 

Proof. The set K is compact (Strassen [13]) and convex. Let L(n)= (2 log n) ~-. 
We show that l imS, /L(n)=K a.s. which gives the result of the theorem. Let 

n~oo 

f(n) = X,.  The first portion of proof involves showing that lim P(f(n)/L(n)eK ~, 
N ~ c o  

n > N ) = l .  The proof follows that of Strassen, pp. 212-214, [13] with a different 
normalizing factor (2 log n) ~ instead of(2 n log log n) ~ but goes through in the same 
manner and will not be repeated here. 

For  f e  Ck([0, 1]) let ]f(x)[ denote the Euclidean length of the vector f(x). 
Now let f 6 K  we show that 

lim P((S,/L(n))c~ff4=O, n__>N)=l for each e>0 .  (5.3) 
N + o o  

21 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 18 
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Choose a finite increasing set of points t(i), i = 1, 2 . . . .  , such that for all t in [0, 1] 
there exists an i such that ] f ( t ) - f ( t ( i ) ) [  < e/3 and also such that t(i + 1 ) -  t(i)< 8/6. 
Let f ( j ,  t) be the fh component of f(t).  

Now 

[ f ( t ( i ) ) - f ( t ( i - 1 ) ) l <  ~ I f ( t ) ld t<  (f( t))2dt  ( t ( i ) - t ( i - 1 ) )  ~. 
t( i-  1) xt(i-1) 

Thus, 

and finally 

tO) 

d( i )=- ( f ( t ( i ) ) - f ( t ( i -1 ) ) )2 / ( t ( i ) - t ( i -1 ) )  <= ~ (f(t)) 2 dt 
t(i--1) 

( f  (j, t (i)) - f  (j, t (i - 1)))2/(t(i) - t (i - 1)) ~ 1 (5.4) 
i,j 

1 

since the first sum is = Z d (i)< ~ (f(t)) z d t <1 by definition of K. 
i 0 

Let B be a k/-dimensional Euclidean space and m a measure on B which is a 
product measure of one dimensional normal distributions where I of the distribu- 
tions have variance t(i) - t(i - 1). Let N(x,  e, p) be the open square box with sides of 
length e and center at x in Euclidean p-space. The probability that f ( j ,  t( i))/L(n)- 
f( t( i))eN(O, e, k) for i=0,  1 . . . .  , l and some j < n  for all n > N  is the same as the 
probability that if we choose a sequence Y, of independent random vectors from E k 
with distribution m that for n> N, S,/L(n)c~ N((t(1) . . . .  , t(1)), 8, k ) i s  not empty. 
By Theorem 5.1 (a) this probability approaches one as N ~ ~ .  

Now with probability one for all large n the f(n)/L(n) are within 8/6 of K. Now 
if f - f  is in N(0, 8/6, k) at each t ( i ) , f (0 )=0  a n d f  is within 8/6 of K we see that 

] f ( t ) - f ( t ) l  < [ f ( t ) - f ( t ( j ) ) [  + If(t(j))-f(t(j))] 
+ If(t(j))-f(t)] < 8/6 + ~f(t ( f i ) -  g(t(j))l + I g(t (j))-- g ((t))[ 

+ [g(t)- f ( t )]  _-<48/6+ t(Ji ]g(t)l dt < 4 ~ / 6 +  I t ( j ) -  tl~<~ 

whe r e f  is within e/5 of g which is in K and te  [t(i), t ( i+ 1)] and the last step used 
Schwarz's inequality. Since K is compact, lim P( (S , /L (n ) )~ -K ,n>_N)=I  and 
the proof is complete. 

Acknowledgment. The author wishes to express his deepest thanks to Professor John Lamperti 
of Dartmouth College who directed the research presented in this paper. Many of these results were 
announced in [4]. 

Appendix. Relative Stability of the Extreme Values of a Sample 

Theorem A. Let X1, ..., X , ,  ... be a sequence of  i.i.d, r.v.'s with distribution 
function F such that 0 < F(x) < 1 for all x. Let 

M, = max {X~, ..., X,}, 

rn, -- min {X 1 . . . . .  X,}. 
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Then (A)/f M , / m . ~  I+-0 i.p. then M,  and m, are relatively stable in probability," 
(B)/f M,/m,--* l=t= 0 a. s. then M,  and m. are relatively stable almost surely. 

Proof. (A) Geffroy [6] proves that  if M, + m, is stable i.p. then M, and m, are stable i.p. 
Let M, and N, be the maximum and minimum of a sequence of random variables with distribution 

function 
(F(e x) for x -> 1 
/ 

F(x)={F(O) for - 1 < x <  1 
| 

[ F ( - e  N) for x <  - 1. 

Assuming that  X1, . . . ,X ,  has points > 1  and points < 1  we see using max( logal  . . . . .  l o g % ) =  
log (max (a I . . . . .  am)), that  we can define (for large n) M, = log 3//,, and r~, = - log I m, I. Since M,/I m , l ~  e = 
lip 4.0 i.p. log M , - l o g  Im. t - l og  e ~ 0  i.p. Thus, M , + N ,  is stable i.p. By the results of Geffroy, M,, and 

are stable i.p. Thus, M, and m, are relatively stable i.p. proving (A). 

(B) Suppose that Mr/m . ~ 14=0 a.s., then M, and m, are relatively stable i.p. by (A). Let L(n)= 
rain {xlF(x - O) < 1 - 1/n < F(x)} and G (n) = min {xlF(x - O) <= 1In < F(x)}. Then by the result s of Gne- 
denko [8] M,/L(n)~  1 i.p. and m,/G(n)-~ 1 i.p. where L and G are slowly varying functions. 

Suppose that  M,]L(n)+~ 1 a.s'. Then there exists an e > 0  such that 

o r  

P(M, >L(n) (1 +e) i.o.) > 0 

P(M,<L(n ) (1 -e )  i.o.) >0 .  

We will assume that  the first inequality holds (the proof for the other inequality proceeds in an 
analogous manner). In this case 

(A.1) P(M,>L(n)  (1 +e) i.o.)= 1 since the event is in the tail field of the i.i.d.r.v.'s X i. 

Let p=F(0) ,  q =  1 - p = l - F ( 0 ) .  Let A(n, c) be the event that m>n implies that the number  of 
nonpositive Xi among X1, ..., Xm lies in the interval [p m ( 1 -  c), p m(1 + c)] = I,,,c. For each c > 0 the 
strong law of large numbers gives, 

(A.2) lim P(A(n, c))= 1. 
n ~ e e  

Let B (n, k, l, r) be the event {[mjG (n) - 1 t < e/2, I is the number  of nonnegative Xi's among X1 . . . . .  X, 
and r is the number  of nonnegative Xi's among X1 . . . .  , X,+,}. Let c(m) be the event Im,,]G(m)-l[ <e/2. 
By (A.2), the fact that  G is a slowly varying function and m,/G(n)~ 1 i.p. we have: 

(A.3) lira min P(c(n+k)lB(n, k, 1, r))=l 

where �9 is the condition k=0 ,  1, 2, ..., lel,,,t ' reI~+k, 1 . 

Let E(n,k) be the event {Im,fG(n)-l l<e/2,  M,+i<L(n+i)( l+e) ,  i = 0 , 1 , 2  . . . . .  k - l ,  M.+t> 
L(n + k) (1 + e)}, Noting that A(N, 1)_~ U B (N, k, l, p) for each k___ O, it is probabilistically 
clear that t~t,,, 1, PEIN+k, 1 

P(c( N + k)I E(N, k )~A(N ,  1))= P(c( N + k)I E(N , k)c~ A( N, 1)r k, l, p)) 

(A.4) __> min P(c(N+K)IA(N,  1) ~ B(N, k, I, p)) 
1E1N, 1, P ~ I N  + k ,  1 

= min P(c(N+k) IB(N , k, l, p)). 
I e l N ,  I ,  p e l N  + k ,  1 

(Since P(c(N +k)l A(N, 1)c~ B(N, k, 1, p))=P(c(N +k) lB(J ,  k, l, p)).) 

Let 

D (N) = ~) (E (N, k) c~ c (N + k)). 
k = l  

21" 
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Choose N so large that P(A(N, 1))>__�88 by (A.2) and rain P(c(N+k)]B(N, k, l,p))>�89 by (A.3). 
Then, l e l N , l ,  pEIN+k , I  

oO oO 

P(D(N))= Z P(E(N, k) cTc(N +k))>= ~ P(E(N, k) cTc(N +k)~A(N, 1)) 
k ~ l  k = l  

= ~ P(E (N, k) A(N, 1)) P(c (N + k) lE (N, k) A(N, 1)) 
k = l  

GO 

>=�89 ~ P(E(N, k)n A(N, 1)) 

by the selection of N and (A.4). Thus, 

P(D(N))> �89 (P (~=IE(N, k)) -P(A(N, 1)c))=�89 (P (kU=IE(N, k)) -- ~) . 

By M,/L(n)~ 1 i.p. and (A. 1) we see that  

Thus, 

(A. 5) P (D(N)) 

Since the event {D (n) happens i. o.} lies in the tail field of X1, X2 . . . .  the probability must  be 0 or 1. 
By (A.5), P(O(n) happens i .o . )=l .  But D(n) implies that for some k>0.  

]M,+~jG(n+k)-ll<~/2 and M,+k/L(n+k)>(l+~). 

Since M,/m, ~ 14 = 0 i.p. G (n + k)/L(n + k) ~ I. Thus, 

m,+k > ]G(n+k)[(l+e) >]l] (1+3~/4)  
m,+ k ]L(n+k)](l+~/2) 

for small ~, large n + K, when D (n) happens. But D (n) occurs i. o, a. s. contradicting M,/m, --, a. s. End of 
proof. 

T h e o r e m  B.  Let  0 < p < 1 and X 1, X2, ... be a sequence of independent, identi- 
cally distributed random variables. Let  Y~ be a sequence of Bernoulli trials with 
probability p of  being one (independent of  the Xi's ). Let  

r e , - - m a x { Y / X i ,  i= 1, .. . ,  n} , 

M ,  = m a x  {(1 - Y/) Xi, i = 1 . . . . .  n} 

then it cannot happen that m, /M,  ~ 0  i.p. 

Proof. Let F be the d.f. of the X i. Let N(n) = ~, 
n p 

i= 1 Y/and Q (n) be the event N(n) > ~ - .  By the weak law 

of large numbers, P(Q (n)) ~ 1 as n ---, 0o. It is clear that:  

(A .6 )  e(m. < eM.tN(n) =j)  ~ P(m,, < e M.IN(n ) = k) 

for any k < j  and ~ > O. Now, 

P(m.<eM,,Q(n))= i P(m,,<~M.]N(n)=j).P(N(nl=j) 
j =  [ ~ ] + 1  

np 
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where we have used (A.6). Suppose that m , / M , ~ O  i.p. then since p ( m , < e M , ~ Q ( n ) ) ~ l  as does 

p ( Q ( n ) ) w e m u s t h a v e P  m , < e M ,  lN(n)= ~ -  ~ l f o r e a c h e > 0 .  

The following probabilities P will all be conditioned upon the event N(n)= In p/2]. Let x , =  
inf {y: F"-t,p/21 (y)__> �89 If F(x)=  1 for some finite x, the theorem is clear so we assume that F(x)<  1 for 
all x. Then x, --* o0. If m, > x, - 1 and M, < x, then m, /M,  > i - 1Ix, so that 

(A. 7) P(m, > x, - 1, M, < x,) = F"-t,p/2~ (x,). (1 - F t" p/zl (x, - 1 )) --* 0 

which implies F t"p/2~ ( x , -  1)~  1. Now by definition of x,: 

F , - t , p / 2 1 ( x _ l ) < � 8 9  

so that 

F I"pl2] (x. - 1) _-< F npl2 (x. - 1)IF(x. -- 1) < (F"-  [npl2] (X n -- 1))pl2/F(x" __ 1 ) < (�89 -- 1) 

which approaches (�89 1 since p > 0 contradicting the implication of (A.7) and giving the desired 
result. 
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