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A Class of Games that Evolve 

g z I o  MARCHI*  

1. In many real life situations which might be described in terms of extensive 
games from a theoretical point of view, the payoff is split in each step of the game 
but not in the terminal part. This is what happens in many parts of the economy. 
In these situations the standard description for extensive games seems inadequate 
since the players have to use foresight at each step. 

Here we intend to introduce a brief description of such games, together with 
some remarks about them. 

2. Let us consider a finite set of natural numbers T={1,  2, ..., n} which de- 
scribes the set of discrete times during which the process will be carried on. For  
the sake of simplicity, we consider only the case of two players N =  {1, 2} and we 
recursively define the following kind of two-person game, which will be called 
briefly a two-person evolutionary game, by 

~t(o(1, ..., t -  i)) = {ZI, t(o-( 1 . . . . .  t -  1)), Z2,t(o'(1 . . . . .  t -  1)); 

Al, t (a(1 . . . . .  t -  1))(', "), Az,t (a(1 . . . .  , t -  1))(', ")} 

for t e T. The set of strategies available to player i ~ N at time t ~ T: Zi, t (a (1 . . . .  , t - 1)) 
is a non-empty subset of a euclidean space Rn% which depends on the previous 
choices a(1 . . . . .  t -  1)= (a(1) . . . . .  a ( t -  1)). For  s<=n 

a (s) = (a 1(s), a2 (s))a Z, (a (1 . . . .  , s - 1)) = Zl,s (a (1 . . . . .  s -  1)) x E2, s (a (1 . . . . .  s - 1)). 

The payoffs 
Ai, ,(~r(1 . . . . .  t -  1)): X,(a(1 . . . . .  t -  1))-* R, 

which also depend upon the strategies just chosen, are real functions. 

In the following, we assume, for the sake of simplicity, that the multivalued 
functions Zi, t have convex and compact images and are both lower and upper- 
semicontinuous. This lower and upper-semicontinuity is with respect to the variable 
a(1 . . . .  , t -  1) in the graph J~t-i of those strategies for which a(s)~Xs(a(1 . . . . .  s -  1)) 
for all s =< t. Furthermore,  the payoffs are continuous on the corresponding graph. 
Also for notational ease, we drop the arguments. 

We are concerned with the simplest case of zero-sum games, when all the payoffs 
of the second player a r e  A2, t = - A1, t. 

At each time the players are in a conflict of interest situation in which the in- 
tensity of interaction is measured by the payoffs. Now, at a given time the players 
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have not only to take into account the possible amount of winning or losing at the 
present juncture but also the strategical possibilities in the future. Otherwise, 
what appears to be a good action in the present may result in a disadvantageous 
position at some subsequent time. Indeed, this observation about foresight arises 
from a common form of behavior in real life. But, of course, such foresight is 
nothing more than the estimation of the importance of the unit of the gain in future 
times seen at the present time. We measure it at time t for the player i e N  by 

? l - - t  

) o  , _ 2k 2~,t=( i,,, ... , 2779 >-0 with ~ i,~=l. 
k = O  

In other words, 2 k is the value of time t of the unit of payoffat  time t + k  for the i ,  t 

player i. The 2's are personal criteria and outside the formal rules of the games. We 
call them the weights at time t. 

Under the weight 2~, t at time t; it is reasonable to believe that the safe level for 
the first player is given by 

Vl,t= max m ~ n  {2~ 
a l ( t ) E 2 i , t  2t ! 2 , t  

+ max min .{2~ ,A~/+~(a(t))(a~(t + 1), a2(t+ 1)) 
( r i ( t + l ) ~ l , t + l ( a ( t ) )  a 2 ( t + l ) a ~ z , t + l ( a ( t ) )  ' " 

+ max rain {.,175 ~- ~ AI,,_ ~ (a (t , . . . ,  n - 2)) 
a i  ( n - -  1 ) e , ~ l ,  n - 1 ( a ( t  . . . . .  n - -  2 ) )  a 2 ( t  - 1 ) e Z 2 ,  n -  1 ( a ( t  . . . . .  n -  2 ) )  

�9 1) ,  1) )  

+ max min ~ t t A 1  n(a(1,...,n--l))(al(n),a2(n)))...} 
a l ( n ) e . ~ l , . ( a ( 1  . . . . .  n - l ) )  a z ( n ) e Z 2 , n ( c r ( 1  . . . . .  n - l ) )  ' ' 

or more concisely 

vl,t = max rain {2 0 tA1 t(al(t), a2(t))+v~,,(al(t), az(t)) } 
0"1 ( t ) ~ l ,  t O ' 2 ( t ) E ~ 2 , t  ' , 

= max min ~ .  l(al(t), o- 2 (t)), 
a l ( t ) ~ , ~ l , t  0"2 (Q ~z~2, t 

where the meaning of the expression v~, t and ~, l is clear. 

We notice that in virtue of the assumptions made on the strategy sets and the 
payoff functions, the expressions just considered are well defined. 

We want to show that indeed this value is the safe value in the t-th step of the 
game. In order to verify this we have to introduce the game in which our player 
finds himself at time te T, under his own weights 2Lt. Such a zero-sum game is 
given by , - t  

Alt={Cx,t , C2,t; c~Lt(', ")= 2 2~,tB,,t+~(', ")} 
s = O  

where the strategy spaces are the cartesian products 

C,, t = Cza(o-(l . . . . .  t -  1)) 

=Xx,,(a(1 . . . . .  t -  1)) • X*,,,+~(a(1 . . . . .  t -  1))• • X*t,,(a(1 . . . . .  t -  1)). 

The sets X* are  defined recurs ively as fol lows:  the  first one X~t,t+l is the  set of  
all the functions f~,t,t+l defined on Xt such that fi, t,t+x(a(t))eZi, t+l(a(1 . . . . .  t)). If 
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ft,t+k denotes the pair of functions, (fl,t,t+k,f2,t,t+k), then the k-th set/~tt,t+k is the 
set of all the functions fi,~,t+k which assign to the vector ( a ( t ) , f , , + l  . . . . .  f , t + k - O  
an element 

f , , , , ,+~(~( t ) , f , , ,+ ,  . . . .  , f , . , + , - 1 )  

~Zl, t+k(a (] . . . . .  t - -  ]), a( t ) ,  ft, t+ l (o( t ) ) ,  f t , t  + 2 (0" (t), f , t  + l (O(t)))  . . . .  , 

f . t  +k -  a(a(t), f , t  + l (a( t ) )  . . . . .  f , t  +k -  2 (a (t), ft, t+ l (a( t ) ,  ...)))). 

Similarly, the modified payoffs B i t+s are defined on Zt x X Z ' t +  s and are given by 
' r ~ s  ' 

Bi, t+~(a(t), f t , ,+l  . . . .  , f , t+s )  = Ai, t+~(a(t), f , , + l  (a (t)), f , ,+z  (~r (t), ft, t + 1 (a (t))), 

. . . .  f , t  + s(a(t) ,  ft ,  t + l (a(t))  . . . .  , ft ,  t +s_ l (a(t),  ft,t  + l (a(t),  . . .)))). 

F r o m  this, we see that the only functions in the sum payoff of the new game 
that actually determine a variation with respect to f , t+  . . . . .  , f , ,  are the last 
n - ( s + t ) + l  of them; that is, Bi, t+ . . . . . .  Bi,,. Then, it follows at once that with 
i=t=j : 

�9 mirl ~i , t (a l ( t ) , f i , , , ,+l  . , f i , , , , ,  aj(t) ,  f j ,  t,t+l . . . . .  f j , , , , )  
( a j ( t ) , f j , t , t +  1, . . . ,  f j , r , n ) e C j , t  " "  

= rain ~j(t))  ~J(')~xJ,~ { 2 ~ Bi, t ( a i ( t), 

1 + min {2i,,B~,,(a~(t),f~,, , t+l, f j , , , t+l)  

+ . . . +  

+ rain, {2~5 'B , , , ( a ( t ) , f , ,+a  . . . .  , f~,,,,,fj,,, ,)}...}. 
f j . . . .  ~ v) . . . .  

On the other hand, from the relation between the B's and A's the last number 
equals the minimum of the primitive payoff function 

Ai , ,  (a (t), f , t  + l (a (t)), . . .  , f t , , - 1  (a (t), ft, t + 1 (0" (t)), 
. . . ,  f , , ,  _ ~ (~ (t), . . .  ,)), f~,,,, (o- (t), f , , ,  +1 (~ (t)), . . . ,  f , , ,  -2 (o- (t), f~, ,+l  (o- (t)), 

- . . ,  f,, ,-2 (~(t), ...)), ~j(n)), 

on the variable o-j(n). In a similar fashion, by applying analogous arguments to 
the previous minima and after taking the maximum on the set Ca, t one sees that 
the safe value of game At is exactly the same as the value vl,t. Therefore we state 
the following: 

Lemma 1. The safe value at t ime t in the evo lu t ionary  game  F~ wi th  weight  21, t 
is g iven by  vl,t .  

Similarly, one can obtain the expression for the corresponding minimax value 
w m at the t-th step by an appropriate change of indices and a reversal of the order 
of the min and the max. Such a value is to be considered with respect to the weights 
of the same player and verifies wl,t > vx,t. 
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3. Now, it is reasonable to ask whether the behavior of both players is optimal. 
In general the problem is complicated because of the shape of the corresponding 
payoff faced at time t. First, we will consider one of the simplest cases; namely, 
that in which the players' foresight at any given step is limited to the next two steps, 
that is, when the weights 2k, t at time t<n--2 are all zero for k>2.  In such a case 
the modified payoff of our player is given by 

2~ a2(t)) + max min 21,tAi,t+l(o.(t), al(t +1), a2(t + 1)). 
O'l(t+l)EZ~l,t+ l 0"2(t+l)E~2,t+ 1 

We need the following definition. We say that the payoff Al,t+i is a M-pseudo 
concave function in o.2(t+l) with respect to al(t ), a2(t ) and a i ( t + l  ) if for all 
a2(t)eE2,t; o.l(t) and Kl(t)eZi,,; 0__<p__<l and all 

o.i(t+l)eZl,t+l(ai(t), a2(t)), al(t+l)eEl,,+l(al(t), o.2(t)) 

there exist elements 

a2(t+l)~Z2,t+i(al(t), o.2 (t)), a2(t+l)eE2,t+i(o.l(t), o.2(t)) 
and 

o.f (t + 1) e El, , +l (o.~ (t), o- 2 (t)) 

where af(t)=po.l(t)+(1-p)~l(t), such that for all 

0 -p ( t  -~- l )  ~ Z2,  t +1 (0-~ (t), a2 (t)) 

the following is satisfied 

A 1,,+ , (a~ (t), a 2 (t), o.~ (t + 1), aS (t + 1 )) 

> p Al,t+ 1 (O-l(t), a2(t), ai(t + 1), a2(t + 1)) + (1 - p)A1, t + i(~Yi(t), o.2(t), al(t + 1), ff2(t + 1)). 

We note that the order of the variables in the above definition is important. 

The following result concerns the concavity of the function M 1 defined by 1,t 

M~,,(al(t ), a2(t))= max min Ai t+l(a(t), a i ( t+ l ) ,  a2( t+l)) .  
r  l(a(t)) r l(a(t)) ' 

Lemma 2. A necessary and sufficient condition for the concavity in O'l(t ) for 
fixed a2(t ) of the function M i is that the payoff function A1 t+i be M-pseudo 1 , t  

concave in a2 (t + 1) with respect to al(t), a2 (t) and al (t + t). 

Proof. From the definition of the function MLt, we have that for an arbitrary 
pair of strategies o.l(t) and ~l(t), for all 

al(t + 1)eZL,+l(al(t), o.2 (t)); 8l(t+l)~Zl,~+l(8l(t), a2(t)) 

the following two inequalities hold: 

Ml, t(o.l(t), o'2(t)) ~ . omin . . . . . .  A1 t+l(o.,(t), o.2(t), o.l(t+l), o.2(t+l)) 
a 2 ( t + t ) e z 2 , t + l ( a l ~ t ) , ~ r 2 ( t ) )  " 

and 

MLt(CYl(t), o.2 (t)) > min A 1 t+i(~i(t), a2 (t), ~ i ( t+  1), a2(t + 1)). 
a 2 ( t + l ) 6 ~ 2 , t + l ( f f l ( t ) , f f 2 ( t ) )  " " 



A Class of Games that Evolve 275 

On the other hand, if a~eZ 1 t+l(a~(t), a2(t)) where a~=p al(t)+(1-p)61(t),  
0 < p _< 1, is a point on which the'maximum M~, t (a~ (t), a 2 (t)) is reached, then the 
concavity of M 1 implies that 1, t  

min  Al,t+l(af(t), a2 (t), af(t  + 1), a2(t+l)) 
a 2 ( t  + 1 ) E.~2, t + 1 (0" f (t), 0"2(t)) 

> p . . . .  min . . . . . .  A1 t+ 1(o"1 (t), 0- 2 (t), 0-1 (t + 1), 0" 2 (t -]- 1)) 
a 2 ( t q - l ) E 2 . 2 , t + l l • l ( t ) , a 2 ( l )  ) " 

+ ( 1 -  p )  . . . m i n  . . . . . .  A1~+1(61(0, ae(t), 61(t + 1), ~2(t + 1)). 
2 ( t + l l ~ 2 ~ 2 , t + l ( ~ l ( t ) , c r 2 ( t ) )  ' 

Now, if 

a2(t+l)eZ2,t+l(al(t),a2(t)) and 82(t+l)eZ2,t+l(61(t), a2(t)) 

are two strategies such that the respective minima on the right hand inequality 
are attained, then the assumption of the lemma holds. Similarly, the condition 
guarantees the above property regarding the minima. It is easy to see that this is 
equivalent to the required concavity. (q.e.d.) 

We note that for a l ( t )=  61(0 the condition is always fulfilled. Indeed, take 
af (t + 1) to be a maximum strategy in El,,+ 1(al (t), az (t)) and a2 (t + 1), 62 (t + 1) in 
Zz, t+l(al(t), az(t)) to be some strategies where the corresponding minimum is 
reached on al(t) and a 2 ( t )  respectively. Therefore, the condition links relations 
between different points at(t) and 61 (t). 

Similarly, the function Al,t+l will be called a M-pseudo convex function in 
a 2 ( t +  1) with respect to at(t), az( t  ) and a l ( t + l  ) if for all al(t)eZl,t, a2(t  ) and 
62 (t) e Z2,t; 0 =< p __< 1 there exist strategies 

al(t+l)EZ2,t+l(al(t), a2 (t)), 61(t+l)EZl,t+l(al(t), if2 (t)) 

such that for all 

a2(t+l)6Z2,t+l(al(t), az(t)), ~2(t+l)eZ2(al(t), a2 (t)) 
and 

ar (t + l) zl,, (al (t), (t)) 

where a~ = p a 2 (t) + (1 - p) a2 (t), there exists an element 

a~ (t + 1) 6 Z2, t +1 (al (t), a~ (t)) 
with the property 

AI,t+I (al (t), at~ (t), a~(t + 1), a~ (t + i)) ~ p Ax,t+t (al (t), a2 (t), a t (t + 1), a 2 (t + 1)) 

+ (1 -  p) A1,,+1 (al (t), (t), 61(t + 1), (t + i)). 

Now, we present a simple result regarding convexity of the function M~,t 
which will be used later. Its proof  is Similar to that of the result just considered. 

Lemma 3. I f  the payoff function Al,t+l is M-pseudo convex in a2 ( t+ l )  with 
respect to a 1 (t), a 2 (t) and a 1 (t + 1), then the function M~,t+l(a 1 (t),.) is convex for 
any 61 (t). 

Using the properties described in the statements of the lemmas we can derive 
immediately the following result which guarantees the optimal behavior. 
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Theorem 4. Under the conditions of  Lemmas 2 and 3, if  the payoff functions 
Al,t and Ai,t+ i are concave in 0-1(t) and 0-1(t+1) and convex in 0-2(t) and 0-2(td-1) 
respectively, then vi,t = wl,t. 

Proof. By virtue of L e m m a s  2 and 3 the funct ion vl, t is concave in 0-1(t) and  
convex in 0-2 (t). Therefore the min imax  theorem guarantees  the existence of a 
saddle point  for the function inside the expression for vl, t. Since at such a point  
a* (t) we have 

max  min  l(~.(,))Al,t + 1 (0-* (t), ai (t + 1), 0" 2 (t -b l))  
al(t§ a2(t +1)~2,t + 

= min  max  A1 t+~(0-*(t), 0-1(t + 1), 0-2(t + 1)), 
a2(t+l)E~2,t+l(a*(t)) al(t+i)eXl,t+l(a*(l)) ' 

the equality vl,l=w~,t is obtained. (q.e.d.) 

It should  be pointed  out  that  the condi t ions  of concavity and convexity cannot  
simply be replaced by more  general ones of quasi-concavity and  quasi-convexity 
since convex combina t ion  of functions with these propert ies do  not  have the same 
proper ty  in general. 

Consequent ly,  we get the following simple condi t ion for the set of strategies 
satisfying L e m m e  2. 

Given the strategies a i (t), al  (t), 0-1 (t + 1), al  (t + 1), let ~"f (0-1 (t), 61 (t), 0-1 (t + 1), 
f f l ( t+l ) )  be the set of elements 

(a10(t + 1), 0-2 (t + 1), a2(t + 1))e Zl,~+l (0-f (t), o- 2 (t)) 

X Zl, t+ 1 (0-1 (t), 0-2 (t)) X Zl , t+  1 (r (t), 0" 2 (t)) 

such that  for all 0- 3 (t + 1) e Z2,t + 1 (0-10 (t + 1), 0-2 (t)): 

A i,,+ i (a~ (t), 0-2 (t), 0-10 (t + 1), 0-~ (t + 1) 

>= p Al,t + l(0-1(t), a2(t), 0-1(t + 1), a2(t + 1)) + (1 - p)Al,t+i(Si(t), 0-2(t), ai(t + 1), 0-2(t + 1)) 

is convex. 

Corollary 5. Under the conditions of  Theorem 4, the set Jf(al( t ) ,  ~l(t), a l ( t +  1), 
~l(t-[- 1)) i s  convex. 

Proof. Indeed,  for such a pair of points  (#~( t+l ) ,#2( t+l ) ,~( t+l ) )  and 
Ap (0-1(t + 1), 0-2 (t + 1), ~ ( t +  1)) and  0 < # <  1, we have 

Al,~+l(o-f (t), 0-2 (t), # ~10 (t + 1) + (1 -/~) 810 (t + 1), 0-3 (t + 1)) 

:> # AI,,+ 1(0-10 (t), 0-2 (t), ~10(t + 1), 0-~(t+ 1)) 

+ (1 - / 2 ) A  i,~ +i (0-10 (t), 0-2 (t), ~10 (t + 1), 0-3 (t + 1)) 

> p {p AI,,+ l(ch(t), a2 (t), 0-i(t + 1), a2 (t + 1)) 

+(1 - # )  Al,,+l(0-1(t), 0-2 (t), 0-1(t + 1), ~'2(t + 1))} 

+ (1 - p) {# AI,, + l(ffl(t), 0-2 (t), ~l(t + 1), a2 (t + 1)) 

+ (1 - #) AI,t + l(al(t), 0-2 (t), al(t + 1), ~2 (t + 1))} 

=> p Al,t + l(ai(t), 0-2 (t), 0-1 (t + 1), p 82 (t + 1) + (1 - #) &2 (t -1-1)) 

+(1 - p )  Ai,t+i(al(t), a2 (t), a l ( t +  l), ~t~2(t+ 1)+(1 - # )  ~2( t+  1)). 
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The first inequality follows from the concavity of the payoff function. The 
second is a consequence of the assumption and the last are as follows from the 
convexity in the remaining variable. Therefore, the set under consideration is 
convex. (q.e.d.) 

It seems natural that an adequate rational concept of optimal behavior for the 
whole evolutionary game is that for which at every step, with the corresponding 
weight, the players choose optimal strategies for the game A~. If the weight at time 
t is 21, t and if(t) is the played saddle point at this time then our player will get 
Al,,(ff(1, ..., t - 1 ) ,  if(t)). Now, if instead of considering the second player as 
attacking the first one, one considers him with his own weights then we are faced 
with a time t with the two person game 

At= Cl,t, C2,t; ~ 2sl,tBm+s, 2s2,tB2,t+s 
s~O S 

which is non-zero sum. This is very interesting since the primitive game was zero- 
sum. The actual situation is transformed into a non-zero sum. Of course, this 
change has been produced by the different foresights of each player. When their 
foresights are equal, that is, k k 21,t = 22,t then the actual game A t at time t is zero-sum. 
If both players play a maximin strategy in their respective situations, then both 
will win more than the corresponding values at each time. 

We have considered that both players are in a conflict of interest situation 
since from the beginning, the game was zero-sum. But, since the players have 
different foresights, the entire situation will be non-zero sum. Therefore, it is natural 
to consider some further concepts of what a solution is to be. We notice that for 
which the joint strategy ~(t) is a saddle point in the game 

{Zm(ff(1 . . . . .  t -  1)), Zz,,(ff(1 . . . .  , t -  1)); AI,t(~(1 . . . .  , t -  1))(', ")} 

does not fit our requirements, since it is independent of the foresights. One concept 
of solution which would fit the intuitive idea is that one for which the joint strategy 

(t) is an equilibrium point in the game 

Fit = Zm,  Z2,3; ~ 2~1,t Al,t+s, 2 )s~2,t A2,t+s 
s ~ O  s=O 

evaluated on the point 6 ( t + l ,  ..., n) having the same property. Such a point 
if(1 . . . .  , n) will be called a complex equilibrium point. An existence theorem for 
such points will be presented in the following paragraph where we will consider 
that the multivalued functions of the strategy sets are given by a natural but more 
restricted kind of function. Indeed, in order to prove it in the generality we have 
used up to now, one might have to introduce many restrictive assumptions on the 
payoffs. 

A more adequate concept which is neither as stable as the first one nor as 
instable as that of the complex equilibrium point is just a point 6 (1 . . . .  , n) which is 
an equilibrium point in the game 

O t =  { Cl , t ,  C2 t; ~)1 ~1 , 1 , t , / 9 2 , t }  

20 z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 18 
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considered as the permissible joint strategy if(1 . . . .  , t -1 ) .  When )~l,~=J.2,t this 
coincides with the first concept. Perhaps, such an intermediate point better fits the 
intuitive idea of solution as it commonly is understood in real life. 

In the case with which we are dealing, the foresights have only two values 
different than zero. Therefore the functions v!,., are just the maximum functions 
M 1 An existence result which is essentially Theorem 4 is as follows: i,t " 

Theorem 6. Under the condition of Lemmas 2 and 3, if the payoffs AI,, and A1,T + I 
are concave in ~h(t) and eh(t + 1) and A2.t, Az.t+l are convex in ~z(t) and ~2(t + 1) 
respectively, then there exists an intermediate point. 

We note that this is still true under the non-zero condition. 

It is interesting to compare situations having different foresights. If the weight 
at time t is 21,t and at time t + 1, 21.t+ 1 which is given by ~k _ ~k + 1/1 ~o then 1 , t + l  - - ' ~ l , t  I*--I~l , t~ 
we get that v m +,(~7 (t))= vl,t (ff (t))/1 -2t~ . Therefore given a foresight at time t the 
best thing to do with respect to this weight is to proceed with the new modified 
weight obtained by dividing by 2 - 2 ~ t, which means following the same foresight 
since the division is only a matter of homogeneity, and so on. Indeed, if one changes 
the foresight then with respect to the old foresight he will be sure to receive a value 
which is less than the safe value. From this, we deduce that after changing foresights 
one will lose winnings with respect to the old point of view. Again, we recall that the 
weights are not intrinsic components of the game. This is just the same as what 
happens in real life. 

From a technical point of view we only have treated situations having at most 
states two stages in the weights. For them we derived some results. One can go 
further and get similar results by examining the properties of the payoffs just as 
easily as we have done above. We will not go through this. Even though it is easy, 
it is technically quite involved. We prefer to show in the next paragraph that this 
complication can be eliminated by introducing some adequate functions for the 
strategy sets. 

If all the payoff functions Al,t for t_<n-1  are identically zero, then one can 
derive the existence of optimal behavior for games with perfect information, by 
only considering the weights 2~., =0  for k+  n -  t and 2~5~= 1. In this case we have 

vl, ,= max min vl,t+l(~l(t), a2(t)). 
al(t)~,~l, t a2(t)= Z2, t 

One can obtain the Zermelo-von Neumann-Kuhn theorem (see [1, 2], and [4]) 
for such games with perfect information which differ by having no discrete sets 
of strategy. 

4. We now proceed with our treatment by considering that the strategy sets are 
obtained from the following functions which will be defined recursively by ~+1 
whose domain is 

/ ~ t ( f t _ l ( . . . ( i ~ 2 ( X l ,  $2 )  , $3 )  . . . . .  St) ) x St+ 1 = ~ t  x St+ 1 

with values in R . . . .  = R  ..... .  x R "2 , - ,  where the set St=S1,, x $2, t is non-empty, 
compact and convex. The image 

F,+ I(F,( ... (F2 (s (1), s (2)), s(3)) . . . .  ), s(t + 1)) 

= PI.,+ I(Pt( .. .(F2 (s(1), s (2)), s(3)) . . . .  , s(t)), s( t+ 1)) 

x ,e2.,+,(~ (...(F2(s (1), s(2)), s(3)) . . . . .  s(t)), s(t+ 1)) 
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is such that it gives a convex set ~ + l(Ft (... (F2 (s (1),s (2)), s (3)), ..., s (t)), S, + 1), which 
is the joint strategy set Zt+~(s(1, ..., t)). Moreover, ~+a is an homeomorphism. 
The first joint strategy set is just Za = S~. From the fact that the functions F, are 
homeomorphisms, we have that the sets @ are contractible and the corresponding 
multi-valued functions are upper and lower semi-continuous. 

Now, by introducing the functions Ft+l which equal ~+1 but only are defined 
t + l  

on S(t+ i )=  I-[ Sk, by 
k ~ l  

Ft+l(s(1, ..., t +  1))=Ft+l (Ft ...(F2 (s(1), s(2)), s(3)) . . . .  ), s(t + 1)) 

we can see that the joint strategy sets are homeomorphic to S(t + 1). Thus, the whole 
evolutionary game is given by 

~rn= {Sl,t, S2,t; AT, t } 

where the new payoff function is given by 

AT, t(s (1, . . . ,  t))=Al,t(s(1), F2 (s(1), s (2)), ..., Ft (s(1), ..., s(t))) 

for s(1, ..., t)~S(t). 

From here on, we only have to consider the maximin, minimax, etc. values 
on the fixed sets S t. Then, the existence of stable points can be established in this 
general case by examining the lower and upper sets (introduced in [3]) of the cor- 
responding partial games at each step A t or its equivalent. We note that we have 
to observe them in their respective order. 

For the complex equilibrium points we derive the following: 

Theorem 7. I f  for all t and all o-(1 . . . .  , n) the image by the homeomorphism of the 
set of the points ~l(t) and the set of  strategy ~2 (t) where 

and 
Al, t  (o'(1 . . . . .  t -  1), ", cr2(t ), o r ( t+  1 . . . . .  n)) 

A l , t  (o" ( ]  . . . . .  t - -  1), O'l(t), ", O" (t'q- 1 . . . . .  n)) 

reach their maximum and minimum respectively, are convex, then the evolution game 
has a complex equilibrium point. 

Proof For a joint strategy s(1, ..., n) in S(n), let us consider for the step t, the set 

~,~(s(1 . . . .  , n))= @~,t(s(1 . . . .  , n))x @2,~(s(1, ..., n))cSt 

to be the set of all the points ~(t)eS t such that on them the respective payoffs of 
game//3 considered at s(1, t - 1 ,  t +  1, n) and with the new functions A" �9 " ~  " ' ' ,  1 , t  

and A~',t, reach their maximum. Such a set is convex by the condition stated in the 
hypothesis. From the continuity of the payoff the graph of ~/'t is closed. If ~ indi- 

n 

cates the cartesian product lTI ~t, by the Kakutani 's fixed point theorem we have 
t = l  

the existence of a point g(1 . . . .  , n) such that for all t: g(t)e~5(~(1, ..., n)). Such a 
point is a complex equilibrium point. (q.e.d.) 
20* 
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Finally, we remark that one can treat intermediate points in a related way by 
examining some lower and upper sets. 
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