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1. Introduction 

The central limit theorem is often used heuristically to justify the approximation 
of histograms for data by the normal curve. This argument can be made precise 
through the following model. There is some basic random variable X. Take the 
sum of n independent copies of X, and then take k independent copies of this 
sum: the data is considered as the sequence of observed values of these sums. 
Provided X is well-behaved, n is large, and k is large in relation to n, this model 
rigorously justifies the use of the curve to approximate the histogram for the 
data. The object is to explore this idea in detail. 

Let X 1 , X 2 , . . .  be independent, identically distributed random variables. 
Suppose the X i are integer-valued, and have period 1: 

g.c.d. {m: P(Xi=m)>O} =1..  

Suppose also E lX31<oo. Let S , = X I + . . .  + X  n. Take k independent copies of 
S,, and let Hn,k be their empirical histogram, but rescaled by the mean and 
standard deviation of Sn. If k increases rapidly enough, H,,k should tend to the 
normal curve. What is the critical rate of increase for k? To begin with, Sn has of 
order n ~ values in the centgr of its distribution, and there must be a large 
number of observations at each of these values, so k / n ~ o o  is a natural guess 
for the critical rate. However, this turns out to be a bit too slow: the right 
condition is that kin ~ log n ~  co. 

(1) Theorem. I f  k and n approach infinity in such a way that k/(n~logn)~oo, 
then H,, k converges uniformly to the normal curve, in probability. 

(2) Proposition. I f  k / n ~  oo but k = O(n ~ log n), then Hn, k converges to the normal 
curve pointwise but not uniformly, in probability. 

(3) Proposition. I f  k=O(n~), then H,,k does not even converge pointwise to the 
normal curve, in probability. 

* Prepared with the partial support of National Science Foundation Grant MCS75-09459 
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To state a more precise estimate, let 

/~=E(X1) and e 2 = V a r X 1 .  

Let N~ be the number of copies of S~ which equal j. So Nj depends also on n and 
k. And Hn,k(X)=~rn~Njk for x in the interval 

(4) ( j -  �89 <x  <(j  + �89 ~, 

Let H~ be the probability histogram for S,, rescaled to have mean 0 and 
variance 1. Thus, H,(x )=~n~P(S ,=j )  for x in the interval (4). 

Theorem (1) follows from the sharper result. 

(5) Theorem. I f  k/(n ~ log n)--* 0% then 

max(H~,k -- H~)/(n ~ log n/k) ~-+ a~(2n)- 41, 

min(H,,k -- Hn)/(n ~ log n/k)}--+ - o-~(2 re) - ~. 

The convergence is in probability. The max and min are taken over the whole 
line ( -  0% oe). 

Theorem (5) will be proved in Section 3, after some preliminaries are dealt 
with in Section 2. Proposition (2) can be sharpened in a similar way, and this will 
be done in Section 4, where Proposition (3) will also be established. 

2. Some Lemmas 

First, some results on the binomial distribution. Let N be binomial with 
parameters k and p, where 0 < p < 1. Both are varying. 

(6) Lemma. Let u > O. Then 

P {N > kp(1 + u)} < exp { -  g(u) kp}, 

where 

g(u) = (1 + u) log(1 + u) - u. 

This function of u is convex and strictly increasing. For  all positive u, 

�89 + u) < g(u) < �89 2. 

In particular, 

P {N > kp + m} < exp { - �89 + m)}. 

The main inequality is well known. For  a proof in a general martingale context, 
see [21. The behavior of g is easily checked. 

(7) Lemma. Fix ~ > O. There is a positive (5 such that for all positive integers a, b, 
k satisfying 

a > l / &  b > l / 6 ,  k>1/6 ,  a + b < 6 k ,  b < a ( k - a - b )  ~ 
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the ratio P(N = a + b)/P(N = a) is bounded between (1 _+ e) times 

~-~-~] e x p [ - g ( ! ) a ]  [ (k-a)p]b  
l a(1 - p ) ]  " 

Proof By Stirling's formula, the ratio of the two probabilities is asymptotic to 

k - a  ~ .  a ~ a a (k_a)k-a p b 

Since b/(k-a)  is small, the first factor is essentially one. Next 

(k--a)k-a ( k - a - b b )  k-~-b (k_a_b)k_~_b =(k--a) b 1-~ ~(k--a)b e b, 

because b2/(k - a - b )  is small. Then 

a a 1 
(a+b)~+b e b = e x p [ - g ( ~ ) a ] ~ "  

The lemma follows by collecting factors. 

(8) Corollary. Fix e > O. There is 6 > 0 such that 

p<b,  kp> l/6, m < 6 k  ~, m<6kp  

imply 

P ( N > k p + m ) > ( 1  1 a -e)(kp/2rc):m - exp{-�89 

Proof Use Lemma (7), with a the least integer above kp, and b running through 
the integers between m and 2m. Clearly, m=o(kp) makes a/(a+b) and 

( k - a )  p] b 
a ( 1 - p ) ]  both tend to 1, uniformly for b in the range m to 2m. And 

g(b/a) < �89 2 by (6), so eventually - g(b/a) a > - l b2/kp. 
As usual, P(N=a)~(2rckp) -~, which eventually exceeds (1-�89 (27ckp) -�89 

From then on, P(N = a + b) exceeds 

(1 - �89 rc kp) -~ exp{ -�89 

The sum of this expression for integer b's between m and 2m can be bounded 
below by 

2m 
(1-�89 -~ ~ exp{- �89 

m + 2  

By the usual manipulations, this can in turn be bounded below by 

(1 - e)(kp/2rc)~m - a exp{ -�89 

Here is another corollary of (7). 
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(9) Corollary. Fix u > O. For any e > 0, there is a ~ > 0 such that 

p<6, kp>l /~ ,  k~p<6 

imply 

P{g>kp(1  +u)} >exp{ - ( 1  +e) g(u) kp}. 

Pro@ Since k~p is small, Lemma (7) can be used, with a the least integer 
exceeding kp, and b the least integer exceeding kpu. This time, a/(a+b)~ 
1/(1 + u). 

Let a--kp+O, so 

[ (k-a)p]b ( l -OlkP~ ~ 
a(1 - p ) J  \ ~ ] '  

This has lim inf> e -~ > 1/e. Finally 

g (b) a~g(u)kp.  

The constants and the factor (kp) ~ can be absorbed by exp { -  ~ g(u)k p}. 
NOw another topic. 

(10) Lemma. Let X1, X2, ... be independent and identically distributed, taking 
the values {1, 2, 3}. Fix k. Let N i be the number of {X1 .... , Xk} equal to i. Then 

P{NI >nl and N2>n2} <_P{NI >nl} . P{N2>n2}. 

Proof. Let p(i)=P(Xl=i). Given N2=m, N 1 is distributed like a binomial 
random variable with parameters k - m  and p(1)/[p(1)+p(3)]. So f (m)=  
P(N1 > nl IN2 = m) decreases as m increases. Let qm = P(N2 = m) and q = P(N2 > n2). 
Clearly, 

1 "~ 1 k 

1--q~of(m) qm>~ ~ f(m) qm" 
t,/ n 2 + l  

Rearranging, 

2 f ( m )  qm > ~, f(m) qm - 1  
0 n 2 + l  

o r  

k k 

f(m) q,~ > ~ f(m) qm/q. 
0 1121- 1 

That is, 

P ( N  > nO > P {N > nllN2 > n2). 

The next fact is the local central limit theorem recorded here for ease of 
reference. Recall that X~, X2, ... are independent, identically distributed, integer- 
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valued, aperiodic, # = E(X0 ,  (7 -2 =Var  X~, and EIX31[ < oe. The local central limit 
theorem states: 

n~P(S,=j) = a -  1(2~)- ~ exp [ (11) 

In particular 

(12) 

(13) 

(14) 

1 ( j -  n uT] + O(n-+), uniformly in j. 

If e>0,  then n~maxP(S,=j)<(l+e)/a(2~z) ~ eventually. 
J 

Let C,(O)={j: I j -n#1<Oan~}.  

Fix e > 0. For sufficiently small 0, for all large n, 

n ~ min P(S, =j) > (1 - e)/cr(2~z) ~. 
j~Cn(O) 

3. The Proof  of  the Main Theorem 

For a moment, keep n fixed. There are k independent copies of S,. Recall that Nj 
is the number of these copies equal to j. After rescaling, the discrepancy H,,k(X) 
--H,(x) between the empirical histogram and the probability histogram can be 
expressed as 

n ~ (Nj - k p;)/k, pj = p(S, =j) 

for x in the interval (4). This discrepancy exceeds a y [(n ~ log n/k] ~ when 

N i 7> k pj -[- y [(k log n)/n~] ~. 

Let Aj=Aj(n,  y) be the event that this inequality is satisfied. Here, y >  0. 

(15) Lemma. Let T, be the set of j with [ j -n#[>a(n logn)  ~. Let B ,= v {Aj: 
jeT,}.  Then P(B,)~O, for each y. J 

Proof. Clearly, E(Nj)= kpj and Vat Nj < k pj. By Cebygev's inequality, 

1 n ~ 
P(Aj) < y2 log n pJ' 

So 

P(B,)< 1 n~ p(S,~T,). 
= yZ log n 

But the Berry-Eseen bound [1, p. 542] shows 

P(S,~ T,) ~ n - ~. 
So 

P(B,) = O(1/log n) --* 0. 

(16) Lemma. Suppose k/(n~ l o g n ) ~ .  Let y=( l+e )a -~- (2~)  -+ for some e>0.  
Define T, as in (15). Let D,= U {A/j6T,}.  Then P(D,)~O. 

J 
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Pro@ Lemma (6) implies 

P(A I =exp [-�89 0~ 
where 

0~ = y [n~ (log n)/k] ~ ~ O. 

Lemma (12) implies 

n~p~<a-l(2~z)-~+o(1) for all j .  

For large enough n, 

O,+n~pj<(l+5)a-l(2rc)  -~ for a l l j  

and then 

P(Aj) <- exp [ - �89 + e) log n] = n--~l + ~). 

But the number o f f s  not in T, is only 2o'(nlogn) ~, so 

P(B,) = O [(log n)+ /n ~/2] ~ O. 

By combining (15) and (16): 

(17) Corollary. Suppose k/n~ log n --+ oo. Let ~>0. Then 

P {max (H,,k -- H,) > (1 + 5) a~ (2 r:) - ~ [n~ (log n)/k]} --, O. 

In a similar way, under the same conditions one proves 

(18) P { m i n ( H , , k - H , ) < - ( l  +e)a~(2~)-~[n~(logn)/k]}--'O. 

This proves half of theorem (5). The proof of the other half begins with 

(19) Lemma. Suppose k/n ~ log n~oo. Let 0 > 0  and let C.(0)= {j: [j-nl~[ <One}, 
as in (13). 

Fix 5>0. Let y = ( 1 - e ) a - ~ ( 2 r c )  ~. Then 

{P(Aj): jeC,(O)} ~oo.  

Proof Since j is confined to C,(O), Lemma (8) can be used with m = y(k log n/n~) ~. 
(The relationship (11) can be used to verify this, from the condition kin ~ log n--.oo.) 
For large enough n, 

P(Aj) > 0.9 (2 ~z)- ~ y-  1 (n-~ pj/log n) ~ exp [ - �89 y2 log n/(n ~ p~)]. 

Now use (14). For sufficiently small 0, for all large n, 

nl p~>(1-- ~) ~-  1(2~) -~ for al l j .  

Then 

- y a / ( n ~  p~) > (1  - ~) 
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and 
P(Aj) > K(log n)- ~ n-  ~(1- ~) 

for all j e  C,(O). Here, K is a positive constant, and 0 must be small. Still, C,(O) 
contains 20 n ~ indices j, so 

{P(Aj): j e  C,(0)} > 20K(log n)- ~ n ~/2 --+ oo. 
J 

Plainly, this last holds for any 0, 

(20) Proposition. Suppose k/n ~ log n - ,  oo. Fix  e > O. 7hen 

P{max(H,,k -- H,) > (1 - e) a~(2~) - + [n~(log n)/k]} --+ 1. 

Proof. Use the notation of (19). It is enough to prove that 

(5 {A/j~c.(o)} 

has probability near 1. Here, y - - ( 1 - e )  a-~(2~) -I-, and 0 is small. Confine j to 
C,(O). Let 

X =  2 IAj. 
J 

What (19) says that E ( X ) - . o o .  The problem is to conclude that P ( X > 0 ) o l .  
Now 

X 2 = ~ 1Aj + ~ 1Aj 1A~ 
j j:~j '  

SO 

~(x  e) = E(x) + ~ P(Aj c~ Az). 
j:#j" 

Lemma (10) shows 

P(Ai ~ Ai, ) < P(Aj) . P(Aj,). 

So 

E(X 2) < E(X)  + ~ P(Aj) .  P(Aj,) 
j4;-j, 

< E ( X ) +  [ Z  P(AJ)] 2 
J 

= E ( X )  + [E(X)] 2. 

That is, Var X < E(X).  By Ceby~ev's inequality 

P ( X  < 0) < Var X/[E(X) ]  2 

<__ 1 / E ( X )  --, O. 

In a similar way, under the same conditions one proves 

(21) P { m i n ( n , ,  k - H n )  < - ( 1  - e) cr~(2u)-+ [n~(log n)/k]} ~ 1. 
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Theorem (5) follows by combining (17) and (20) for the first assertion, (18) 
and (21) for the second. 

4. The Case k ~ n -~ l o g  n 

(22) Theorem. Suppose kin ~ log n ~ 2, a finite positive constant. Then 

max(H,, k -- H,)/( n~ log n/k) ~ 

converges in probability to the number c(Z), which exceeds a~(2n) -�88 The number 
c(2) depends monotonically on 2; as Z tends to 0 it goes to 0o, as 2 goes to infinity 
it goes to a~-(27c) -~. In fact, let u(2) be the unique solution to the equation 

1 1 g(u)= ~a(2rOU2 

where g(u) was defined by (6) as 

(1 + u) log(1 + u ) - u .  

Then c(2) = (2/2=) -~ u(2). 

Note. m a x ( H , , k - H , )  is therefore tending to u(2)/(2~) ~. 

There is a similar result for the rain, with -c (2 )  in place of c(2). 
First, the analysis. 

(23) Lemma. Let 0 < 2 < 0 o .  There is a unique solution u(2) to the equation 

g(u)=�89 

Let c(2)= (2/2n)~ u(2). Then c is monotone decreasing, c(0 + ) =  ~ ,  c (~ )=  a~(2n) -~. 

Proof, The function g is continuous and strictly increasing, from 0 at 0 to 0o at 
0o. So u(2) is well defined. Since the right side of the equation is monotone in 2, 
so is u(2), and u ( 0 + ) =  0o. Since g(u)~�89 2 for small u, if 2 is large then u(2) is 
asymptotic to the solution of 

�89 2 =�89 a(2~)~/2, 

that is 

u(2)~a~(270~/2 ~ as 2--+ 0o. 
So 

c(2) --+ a~(2rt) -+ as 2--+oo. 

(24) Lemma. Suppose the conditions and notations of (22). Let ~>0. Let 
u=(1 +~)u(2). As in (15), define T, as the set of j with [j-nl~l > a(n log n) ~. Let 

A;= { N ~ > k p i + u k a -  1(2= n)-~}. 

Let D, be the union of Aj for j(~ T,. Then P(D,) --+ O. 
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Proof Let uj=ua-~(2zcn)-~p71. So Aj={Nj>kpj( l+uj)}  and (6) implies 

P(Aj) < exp [ - g(uj) k pj]. 

But 

g(uj) kpj = g(uj)/~ u o'- l(2Tc n) -½. 
uj 

Now (12) implies that for large enough n, 

uj > u/(1 + e) for all j. 

Since g is convex 

g s > g [u/(1 + + 

=g[u(;O]/u(;O. 

So 
g%) k pj > (1 + e) g [u(;0] k a -  1 (2re n)- 

>(1 + ½e) g(u(2)) 2 a -  z(27r)- ~ log n 

=½(1 +½ )logn. 
Thus 

P(D,) < a(n log n) ~ n- ~(~ +~) ~ 0. 

Since 

u k a -  i(27z n ) - ~ u  logn 

and 
y(k log nine) ~ ~ y log n, 

Lemma (15) shows P ( B , ) 4 0  for any u, where B, is the union of A s for jeT, .  

(25) Corollary. With the conditions and notation of (22), for any e > O, 

max(H,,k -- H,)/(n ~ log n/k) ~ < (1 + e) c(2) 

with probability tending to one. 

In the other direction, 

(26) Proposition. With the conditions and notation of (22), for any e > O, 

max (H,, k -- H,)/( n~ log n/k) + > (1 - e) c (2) 

with probability tending to one. 

Proof Define C,(O)={j: Ij-nl~l<On~}, as in (13), with 0 small and positive. 
Define A s as in (24). Let u = ( 1 - e )  u(2). Then 

(27) ~ {P(Aj): j~C,(O)}---roQ. 

Indeed, corollary (9) may be used for all j~C.(O): since pj~n -~, kP3 gets 
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large and k-~pi gets small. (This can be made rigorous using (12) and (14).) Fix 
e' > 0. Eventually, 

P(Aj) > exp [ - (1 + e') g(u) k p~]. 

For some 8">0,  which depends on e, 

g(u) = (1 - 8*) �89 ~ (2~)~ /~ .  

Eventually, 

k <(l + d) 2n~ logn, 

max pj<(1 + 8') n -~ a -  1(2rc)- }. 
J 

So 

P(Aj) > exp [ - ( 1  - 8*)(1 +8') 3 �89 log n]. 

Choose 8' so small that (1 -8" ) (1  + 8')3< 1-�89 Then P(Aj)>n -~+~*, so the 
sum in (27) is of order n ~*/~. 

The proof is completed as in (19). 

(28) Lemma. Suppose k/n~ logn---,O but k/n~+oe. Then max(Hn,k-Hn)~oe in 
probability. 

Pro@ Fix u > 0. Arguing as in (26), for any positive 8, eventually 

P(Aj) > exp [ -  (1 + 8") g(u) k pj], 

pj <a(1  +8) n-~a - 1(2n)-~, 

k<28n ~ logn 

so that for all je  C,(O), 

P(Aj) > exp [ - q(u, ~) log n] 

where 

q(u, e) =e(1 + 8) 2 g(u) ~-  1(2g)- ~ 

Choose 8 so small that q(u, 8)<�89 Then the sum in (27) becomes infinite, and the 
argument for (19) shows 

P( (3 Aj)-~I. 
j~Cn(O) 

This shows that 

max(H,,k -- H,) > u/(2 u) ~ 

with probability near one. Since u can be arbitrarily large, the results follows. 

The Proof of (2). Theorem (22) and Lemma (28) show that max(Hn, k -H , )  tends 
in probability to a positive constant or + ~ ,  preventing H,,k from converging 
uniformly to the normal curve. 
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For  pointwise convergence,  note  that  

n~(N~-k  pj)/k 

has mean  0 and variance n p j (1 -p~) / k~  n~/k. 

l l  

4. The Case k=O(n ~) 

To begin with, suppose k/n ~-~ 2, a finite positive number .  Fix x, a real number .  
Then 

H.,  ~ (x) - H .  (x) = G n~ (N i - k p ) / k  

where 

(j - n/1)/or n ~ ~ x. 

Now Nj is b inomial  with paramete rs  k and pj, and (11) shows that  kpj  tends to 

0~ = 2 a -  1 (2 re)- ~ exp ( - x 2/2). 

So Nj converges in distr ibution to N~ which is Poisson with p a r a m e t e r  0x, and 
H, ,k (x ) - -H , (x )  is dis tr ibuted like 

(~ / ; )  (Nx - 0~). 

(Asymptotical ly,  the N~'s are mutual ly  independent .  This is a bit surprising, 
for c independent  variables are involved. As a result, it is easy to see that  

max(H, ,  k - H , )  ~ oo in probabil i ty.)  

N o w  suppose kin ~--, O. The same a rgument  shows that  P(Nj = 0 ) ~  1, so 

H,. k (X) -- H ,  (x) ~ -- (2 u) -  * exp ( - x 2/2) 

in probabil i ty.  
Combin ing  these results proves  (3). 
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