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Summary. It is shown that certain one-dimensional unbounded spin sys- 
tems, which are superstable in the sense of [12], admit unique "regular" 
DLR measures, regardless of temperature. 

w 1. Introduction 

The present paper is a sequel to [8] (to be referred to as Part I below) and its 
main purpose is to employ the general theorem obtained there to show that, in 
the one-dimensional case, certain spin systems that have been discussed in the 
literature are uniquely determined by their specifications, regardless of "tem- 
perature". The spin systems in question are one-dimensional random fields 
. . . , X _ I , X o , X  1 .. . .  with state space ~ ,  whose distributions (DLR measures) 
admit superstable specifications generated by a long range pair potential of the 
form - J ( l i - j l ) X i X i  and a self potential F(Xi). In Theorem 2.8 we show that if 

~ p l J ( p ) ] < o o ,  then a specification of this nature admits only one "regular" 
p = l  

DLR  measure. This result was communicated to the 1983 Swansea Workshop 
1-93. 

Before discussing the problem, it is expedient to give the precise definition 
of the specification. We use the same notation as in Part I. The letter A will 
denote an arbitrary segment of integers, i.e. a finite set of integers of the form 
{i , i+1 . . . . .  j} (i<j). Let /~ be a positive number, J(-)  a real function on the 
positive integers such that IJ(P)l > ]J(p + 1)1, p = 1, 2,... and 

~, P IJ(P)I < oo (1) 
p = l  

and F: IR--*IR a continuous function satisfying the following condition: there 
are constants a > 0  and c such that, for arbitrary A = { i , i + l  . . . .  ,j} and 
~i~i+l "'" ~j e ~ j - i + l '  i< j  
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~, F((R)- �89 ~, J(lp-ll)~p~;> ~" (a~2o-c). 
p~A p , ~ A  pea  

(2) 

If w=(i~i+l...~j, z=~j+l~j+2. . ,  and x =  ""~i--2~i--l., let dw denote d~fl~i+ l...d~j 
and define 

fA(x,w,z)=exp{fl( - ~ F(~o)+�89 ~ J(Ip-tl)C~C~ + 

and 

pEA p,l~A 
p~-l 

OA(X, Z) = ~ fAX, W,Z) dw 
~ l ) - i +  1 

J(Ip-ll)~oC~)}, 
p~A, lCA 

q [ i , j ]  (x z) = qA(x, w, z) = aa(x, Z)-IL(x, W, Z). i - - l , j + l \  ~ W~ 

For  Br j-i+l) let 

[i,j] Qi_~,j+ l(X, B, z)= S q~(x, w, z)dw. 

The function qa(x,, z) and the kernel nil, j3 (x,-,z) are defined for all zeS~o, ~ i - - l , j + l  

x e T o, where 

The system of kernels wl[i,j] determines a specification {Q}=~r~i, Jlt ~ i - l , j + l  t '~ l ,  rn l" 
Specifications of this type can also be introduced for multi-dimensional spin 
systems, indexed by the elements of the d-dimensional lattice 7/e, and our 
discussion below contains references to such systems, although we will not 
define them formally here. A D L R  measure (equilibrium state) admitted by the 

specification {Q} is, by definition, the distribution on X I/ i  (N~=N for all i) 
of any random field ..., X 1, Xo, X1, --. satisfying i=- co 

P IJ(p)l'lXj+pl < oo, IJ(p)l'lx~_/< oo for all i,j = 1 
p = l  

and admitting the given specification. 
Condition (1) limits the interaction energy (see [10] for the case of a lattice 

gas), while condition (2) is the superstability condition introduced by Ruelle, 
who defined a general class of multi-dimensional superstable interactions in 
[12]. If F(~)=a~ 2 (c~>0) then a sufficient condition for the superstability of the 
above specification is 

oo  

~z> ~ IJ(p)l (3) 
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while if, say F(() = cr ~]2 + ~ (cr > 0, c~ > 0), then superstability holds automatically 
(cf. [2]). In [53 equilibrium states for Ruelle's multidimensional spin systems 
were obtained as limits of finite volume Gibbs measures. Specifications were 
employed in the investigation of interactions of the type considered here in 
[2, 3] and, for a special case, in [1]. 

In general there may be many DLR measures admitted by the specification 
described above (phase transition). For the one-dimensional harmonic (Gauss- 
ian) case with nearest neighbour interaction (F(()=cr 2, J (p)=0  for p>2 ,  
0~>J(1)>0) the DLR measures were determined in [1], where it was also 
shown that only one of these DLR measures is translation invariant. (As 
mentioned in Part I, this is an instance of a universal property shared by all 
"irreducible" one-dimensional Markovian specifications, as shown in [7]). 

In view of the possible occurrence of phase transition, attention was fo- 
cussed on a class of DLR measures which Ruelle called tempered ([11, 5]) and 
on the problem of possible uniqueness within this class. These tempered 

measures are distributions on X ~ under which, with probability one, the 
1 n i ~  - -oO 

_~ X 2 n = l , 2 , . . ,  is bounded. It will be shown below, in sequence 2n+1  i - - ,  ~' 

Theorem 2.5, that this requirement is equivalent to the condition supE]Xi] < oo 
i 

used in [2] (and originating from [4]) and also to the condition of tameness 
employed in Part I. Some further equivalent conditions will be given in Theo- 
rem 2.5. DLR measures satisfying these conditions will be called regular here. 

Uniqueness of tempered DLR measures was proved in [5] for ferromag- 
netic systems satisfying a special sufficient condition. A broader sufficient 
condition for uniqueness of regular DLR measures admitted by multi-dimen- 
sional spin systems was derived in [2] from Dobrushin's general uniqueness 
criterion ([4]). In our present context the result of [2] is this: if 

oo )1)_1 
supV(x,z)< 2fl ~, IJ(P (4) 
x , z  p = l  

where V(x,z) is the variance of the distribution Q[O], l(x,.,  z) on N., then exactly 
one random field .... X_I,Xo,X1,. . .  (up to equivalence in distribution) admit- 
ting the specification {(2} satisfies supE]Xi] < oo. (It is assumed in [2] that, for 

(>0 ,  F is of the form F(()=SG(t)dt , where G is a C x, convex, positive, 
0 

increasing function, and analogously for (<0.) As will be shown below, con- 
dition (4) may be unnecessarily restrictive in the one-dimensional case. If for 
instance F(()=~[~[ 2+a (c~>0, 6>0) then (4) is satisfied when the temperature 
1/fi is sufficiently high but will fail for low temperatures, although it is interest- 
ing that in the Gaussian case (4) reduces to (3) (1-2]). 

Our main result (Theorem 2.8) is that in the one-dimensional case super- 
stability and (1) are sufficient to imply that the specification admits exactly one 
regular DLR measure, regardless of the value of the temperature 1~ft. 
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w 2. The Results 

In T o and T o we introduce the norms I[z]lj= ~ IJ(P)I'ICpl and IIxHj 
p=l 

= [J(P)l'l(_p[ respectively, where z=(1~2.. ,  and x = . . . ( _ 2 ( _  1. (We assume 
p=l 

for simplicity that J(p):~O for all p. If J ( p ) = 0  for large p, ][" IIj will not be a 
norm, but it is obvious how the definition of II'lb should be modified in this 
case). Ruelle's important estimates ([-12]), which play a crucial role here, imply 
the following lemma. 

2.1. Lemma. For every b > 0  there are constants 7 > 0  and (3 such that if 
l<i<j<m,  ]lxlb<b, [Iz[lj <b and W=~i(i+l. . .( j~-~J--i+l , then 

uz,,~r'li'JJ~v- . . . .  ,,, z) < exp - 7 ~  + 5) , 

where ,~t~'~(x �9 z) denotes the density of  nEi,~l(x �9 z5 obtained as a marginal of  ~ll,m \ , , 
q [ l + l , m - l l z . .  . ,  Z).  

In fact, as pointed out in [3], if, given l<m,  the self potential inside {l+ 1, l 
+ 2  . . . . .  m - l }  is modified so as to include the interactions with all external 
spins (p, p < l  or p>=m, (see p. 48 of [3]), then Ruelle's estimates will hold 
uniformly in Hx[b <b, Ilzlb <b. 

For v__> 1, k > 1 we now set 

{ 1 ~ (2__<v f o r n = l , 2  .... ,k} 
M,.,(k)= L. (~--.(~: n .o=~ 

M~={~1~2... "-1 ~ (~<v  for all n > l } ,  
n p = l  

} = - (2_p<V for all n > l  , 
n p = l  

M~(k) = ~L(k) a M~(k). 

Then (cf. [5, Th. 1.1] or [3, p. 49]): 

2.2. Corollary. Given b > 0 and ~ > O, there exists v >= 1 such that 

QEi,Jl(x M , ( j - i +  1),z)> 1 --e l ,m \ , 

whenever l < i N j < m ,  [Ixlij<b, IIzHj <b. 

Let now ~(i)= ~ [J(p)l, i = 1 , 2  ....  and set K =  ~ pIJ(p)l= ~ ~(i). Clearly 
p = i  p = l  i = l  

~(i)__> ~(i + 1), i=  1, 2 . . . . .  
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2.3. Lemma. If z=C~:2...~M~, then 

~ral ln~l .  

IJ(p)l'lCpF~:v ~ IJ(p)l (r=1,2), 
p=l p=l 

p=l p=l 

P 
In fact if we set % = 0 ,  % =  ~ :2 (p>  1), so that O:p~Vp, then an elementary 

calculation shows that ~=~ 

n-1 
IJ(p)l C2 = ~ (IJ(p)l- IJ(p + ~)l)~ + IJ(n)l ~, 

p=l p=l 

n--1 i 
< 2 (IJ(p)l-lJ(p+l)l)vp+lJ(n)lvn=v IJ(p)l 

p=l p=l 

and similarly for the other inequalities. Note that 

_1 ] tp[~  :2 ~ _ < ~  for : l : 2 . - . E m v  - 
p=l p=l 

A DLR  measure H admitted by the specification {Q} is said to be weakly 
tame with respect to the norm [['[[s if for every e > 0  there is a d > 0  such that 

/)i{x~T0: LIx[Ij_<d}__>l-e and / l i{zeT0:  [Iz][j__<d}=l-e for all i. Corollary 2.2 
above and Proposition 2.4 of Part I imply that if H is weakly tame with 
respect to the norm [[. L[j, then for every e > 0 there is v => 1 such that 

f)i(M~)__>I-r and /Ii(M~)__>l-e (5) 

for all i. This, combined with Lemma 2.3 implies that it is sufficient to consider 
the kernels nri'&x .,z) defined for x~T,, zeT,, where "z~l,m ~ 

The metrics we introduce in T and 7" are the ones induced by the norms 

Ilzll,~ = ~ 'b(p)lC,,I and Ilxll~ = ~ '/'(p)lC_p[ 
p=l p=l 

respectively. Notice that if we regard (b(') as a mass function on {1, 2 . . . .  } , then 
it defines a finite measure on this space. The corresponding L 1-space is T and 
]1"[1r is its Ll-norm. Norm convergence in T is equivalent to a(L>L~)- 
convergence and therefore ([6, Prop. IV-2-3]) a subset C o T  is metrically 
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relatively compact if and only if its elements are uniformly integrable (= uni- 
formly 4~-summable), i.e. for every e > 0  there is 3 > 0  such that ~ ~(p) l ( , [<e  

for all ~1~2...~C and all subsets I of {1,2, ...} satisfying ~ ~ (p )<& 

2.4. Lemma. The sets IVI v and IVI v are compact subsets of T and 7" respectively, 
relative to the norms I['11~. 

In fact, )H~ is metrically closed and by Lemma 2.3 

where the set on the right is relatively compact, since its elements are uniform- 
ly ~-summable. 

Before proving the main result we link the condition of weak tameness with 
some other conditions that have been used in the literature ([2, 4, 5, 8, 11, 12]). 

2.5. Theorem. I f  17 is a DLR measure admitted by the specification {Q} and 
. . . , X _ > X o , X  1 .... is a random field with distribution 1I, then the following 
conditions are equivalent. 

(i) 1I is weakly tame with respect to the norm LI'IIj. 
(ii) For every e > 0 there is v > 1 such that (5) holds for all i. 

1 n 

X 2 n= 1, 2, is bounded (iii) With probability one, the sequence 2 n + ~  i = ,  ~ . . . .  
(i.e. 11 is tempered). - -  

(iv) There are constants y > 0 and 3 such that for every segment of integers A 
={ i , i+ l , . . . , j }  

17["Jl(d{j{~+t...d(j)<=exp{p~= (-7~g + 3)}d~,...d(j. 

(v) sup ElXi[ < oo, where E denotes expectation. 
i 

(vi) 1I is tame with respect to the norm I1"11~, in the sense of Definition 2.3 of 
Part I. 

Proof. That (i) implies (ii) was shown above, when (5) was established. Trivially 
(ii) implies (iii). The deeper implication (iii)~(iv) was proved in [5]; a state- 
ment of this can also be found in [2]. It is obvious that (iv) implies (v). 

We next prove that (v) implies (i). Suppose (v) holds and let p=supEIXil .  
i 

Given e > 0  let d = ~ ( 1 ) p e  -1 and note that, if (O,~,~,P) is the probability space 
on which the random field .... X_, ,  Xo, X1,... is defined then, for any i, 

P{],Xi+lXi+e...,Is>d}=P{~__ 1 ,J(p), 'lXi+p,>d} <=d-lE(p~, ,J(p)l'[Xi+p, ) 

<=d-~p ~ IJ(p)l=d-~P4)(1) =e, 
p - - 1  

establishing (i). To complete the proof of the theorem note that (ii)~(vi)~(i). 
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2.6. Corollary. I f  17 is translation invariant then it satisfies conditions (i)-(vi). 

In fact if H is t ranslat ion invariant,  then it satisfies (vi). Thus Theorem 2.5 
provides an alternative proof  of DeMasi 's  result in [3] that  a t ranslat ion 
inva r i an t /7  satisfies (iii) and hence also (iv). In connect ion with the equivalence 
of (i) and (vi) see also Corol lary  2.5 of Part  I. 

2.7. Definition. A D L R  measure /7 admit ted by the specification {Q} will be 
called regular if it satisfies any (and hence all) of the condit ions (i)-(vi) of 
Theorem 2.5. 

We will now verify that  hypotheses I -V of Par t  I hold with respect to the 
metric topology induced by 1]-][,. The specification is trivially translat ion 
invariant and hence hypothesis  I is true. If A = {i, i + 1 . . . . .  j}, then by (2) 

fA(X, W, Z) < I~ exp {fi( -- a (2 + ( ~  j ( lp  _ l I) (~) (p + c)} 
peA l~A 

= ~71 exp{fi( --a(  2 + b(x, z)(p + c)} 
pEA 

- gA(X, W, Z) say. 

Now if x.---*x, z.--+z in the norms H']I. (or even the norms "llj), then 
fA(X., W, z . )~ fa(x ,  W, z), gA(X., W, Z.)--~ g(x, W, Z) and ~ gA(X., W, z.)dw 
--*~gA(X, W, z)dw by an explicit calculation. This and the inequali ty 

fA(X,, W, Zn) < min{ fa(x , ,  w, z,), ga(X, w, z)} 

+ gA(X,, W, Z,,) -- min {ga(X ~, w, zn), ga(x, w, z)} 

imply j f ,~(x, , ,w,z, ,)dw--jfA(x,w,z)dw, i.e. 0.n(X,,Z,)---,aA(X,Z), and hence 
qA(x,, w, Z,)--'qA(X, W, Z) and ~ [%(x,,, w, z,,) -qA(x,  w, z)] dw--*O, since the %'s  are 
probabil i ty  densities. This establishes hypothesis II. The  absolute continuity of 
Q[i,j] ix �9 z) with respect to ~ i _ l , j + ~ ,  ~-~,j+~t , , t3t~,Jl (v .,~) (hypothesis III) is trivially true. 
Hypothesis  IV is an easy consequence of Corol lary 2.2 and L e m m a  2.3. 

There  only remains hypothesis V to verify. First note that if f l (w ), f2(w) are 
positive measurable  functions on a measure space M, such that  a I = ~ fa(w)dw, 
0" 2 = ~ f2(w)dw are finite, then M 

M 

S 10"1 1 f l ( W )  --  0"2 1 f2(w)]  d w  ~ 0"11 ~ [f l (W) __f2 (W) [ d w  + ]0"1~ - 0"~- 1] ~ fz(W) d w  
M M M 

~20"11S I f~(w)- f2(w) ldw<2sup 1 f2(w) 
M weM - - f ~  " 

If A = { 1 , 2  . . . .  ,i} and we set M=M,( i ) ,  
we obtain 

Q~d./~+ l (~, (.) c~ M. ( i), z) 
t3[ 1,i] (-.- A/f ~0 , /+  l t~ ,  ~.~. (i), z ) 

__<2 sup I i - e x p { f l  
wsM~.(i) 

fl(w) = fa(X, W, z), f2(w) = fa(Y:, W,-~), then 

Y, J(Ip-ll)((,-(~)(p/I (6) 
peA, l(iA 

where w = ( 1 ( 2 . . . ( / ,  x . . . .  ( - 2 ( - 1 ,  ff . . . .  ( - 2 ~ - 1 ,  z= ( i+1( i+2  .... z = ( i + l ( i + 2  . . . .  

OLo~jl I (~, M.  (i), ~) 
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Now suppose A is a metrically compact subset of T. Given e > 0  choose r so 

that ~ ( j )  is sufficiently small to imply ~ ( J ) [ q - ~ ] < 8 ~ -  for arbitrary 
j>=r j>=r 

...t/_2~/_ I~A. Since there is Co<C~ such that [~_r+ll__<Co, 
[~_r+21<Co . . . .  ,1~_11_<_c0 for arbitrary ...t/_2t/_l~A, it is clear that if k is 
sufficiently large then 

�9 (k +j)lt/_jl <4f ly  (7) 

and in particular if w, x and 2 above are such that weMu(i) . . . .  ~_k_l(_keA,  
. . .~_k_~_keA and (~=(z for l=  - k +  1, - k + 2  . . . .  ,0, then by Lemma 2.3 

1<=0 peA l < - k  p>ll[ 

8 
=v 2 ~(lll+l)(l(zl+[C~l)<~/~ 

t__< - k  

by (7). This, combined with a similar summation over l > i +  1, shows that the 
right-hand side of (6) is less than or equal to 2(e ~ -  1). This implies the validity 
of hypothesis V. Note that there was no need here to impose a restriction on 
the coordinates ~l, ~ for l=  - k +  1, - k + 2  . . . .  ,0, other than ~z=(~. 

2.8. Theorem. I f  (1) holds, then the specification {Q} admits exactly one regular 
DLR measure. This DLR measure is translation invariant. 

The existence of such a DLR measure was established in [5]; see also [2]. 
Uniqueness follows from Theorem 5.1 of Part I and Theorem 2.5 above (cf. 
Definition 2.7). Translation invariance follows as in Theorem 5.1 of Part I: i f /7  
is a regular D L R  measure admitted by {Q}, then so is any translate o f / 7 ,  
which must therefore coincide with/7.  

2.9. Corollary. I f  (1) holds, then the specification {Q} admits exactly one trans- 
lation invariant DLR measure. 

This follows from the fact that every translation invariant D LR measure is 
regular (Corollary 2.6; see also [3]). 

It is worth mentioning that in the present case an alternative approach is to 
verify hypotheses IV 1, IV 2 and V 1 of Part I, instead of IV and V. 
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