Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1984

On the Absence of Phase Transition in One-Dimensional Random Fields

II. Superstable Spin Systems

F. Papangelou

Department of Mathematics, The University, Manchester M139PL, U.K.

Summary. It is shown that certain one-dimensional unbounded spin systems, which are superstable in the sense of [12], admit unique "regular" DLR measures, regardless of temperature.

§1. Introduction

The present paper is a sequel to [8] (to be referred to as Part I below) and its main purpose is to employ the general theorem obtained there to show that, in the one-dimensional case, certain spin systems that have been discussed in the literature are uniquely determined by their specifications, regardless of "temperature". The spin systems in question are one-dimensional random fields $\dots, X_{-1}, X_0, X_1, \dots$ with state space \mathbb{R} , whose distributions (DLR measures) admit superstable specifications generated by a long range pair potential of the form $-J(|i-j|)X_iX_j$ and a self potential $F(X_i)$. In Theorem 2.8 we show that if $\sum_{\rho=1}^{\infty} \rho |J(\rho)| < \infty$, then a specification of this nature admits only one "regular" DLR measure. This result was communicated to the 1983 Swansea Workshop [9].

Before discussing the problem, it is expedient to give the precise definition of the specification. We use the same notation as in Part I. The letter Λ will denote an arbitrary segment of integers, i.e. a finite set of integers of the form $\{i, i+1, ..., j\}$ $(i \leq j)$. Let β be a positive number, $J(\cdot)$ a real function on the positive integers such that $|J(\rho)| \geq |J(\rho+1)|$, $\rho = 1, 2, ...$ and

$$\sum_{\rho=1}^{\infty} \rho |J(\rho)| < \infty \tag{1}$$

and $F: \mathbb{R} \to \mathbb{R}$ a continuous function satisfying the following condition: there are constants a > 0 and c such that, for arbitrary $\Lambda = \{i, i+1, ..., j\}$ and $\zeta_i \zeta_{i+1} \dots \zeta_j \in \mathbb{R}^{j-i+1}, i \leq j$

F. Papangelou

$$\sum_{\substack{\rho \in A}} F(\zeta_{\rho}) - \frac{1}{2} \sum_{\substack{\rho, l \in A \\ \rho \neq l}} J(|\rho - l|) \zeta_{\rho} \zeta_{l} \ge \sum_{\rho \in A} (a \zeta_{\rho}^{2} - c).$$
(2)

If $w = \zeta_i \zeta_{i+1} \dots \zeta_j$, $z = \zeta_{j+1} \zeta_{j+2} \dots$ and $x = \dots \zeta_{i-2} \zeta_{i-1}$, let dw denote $d\zeta_i d\zeta_{i+1} \dots d\zeta_j$ and define

$$\begin{split} f_A(x,w,z) &= \exp\{\beta(-\sum_{\rho \in A} F(\zeta_\rho) + \frac{1}{2} \sum_{\substack{\rho, l \in A \\ \rho \neq l}} J(|\rho - l|) \zeta_\rho \zeta_l + \sum_{\rho \in A, l \notin A} J(|\rho - l|) \zeta_\rho \zeta_l\},\\ \sigma_A(x,z) &= \int_{\mathbb{R}^{j-i+1}} f_A(x,w,z) \, dw \end{split}$$

and

$$q_{i-1,j+1}^{[i,j]}(x, w, z) \equiv q_A(x, w, z) = \sigma_A(x, z)^{-1} f_A(x, w, z).$$

For $B \in \mathscr{B}(\mathbb{R}^{j-i+1})$ let

$$Q_{i-1,j+1}^{[i,j]}(x,B,z) = \int q_A(x,w,z) dw.$$

The function $q_A(x, \cdot, z)$ and the kernel $Q_{i-1,j+1}^{[i,j]}(x, \cdot, z)$ are defined for all $z \in \vec{T}_0$, $x \in \tilde{T}_0$, where

$$\begin{split} \vec{T}_0 &= \left\{ \zeta_1 \zeta_2 \dots : \sum_{\rho=1}^{\infty} |J(\rho)| \cdot |\zeta_{\rho}| < \infty \right\}, \\ \hat{T}_0 &= \left\{ \dots \zeta_{-2} \zeta_{-1} : \sum_{\rho=1}^{\infty} |J(\rho)| \cdot |\zeta_{-\rho}| < \infty \right\} \end{split}$$

The system of kernels $Q_{i-1,j+1}^{[i,j]}$ determines a specification $\{Q\} = \{Q_{i,m}^{[i,j]}\}$. Specifications of this type can also be introduced for multi-dimensional spin systems, indexed by the elements of the *d*-dimensional lattice \mathbb{Z}^d , and our discussion below contains references to such systems, although we will not define them formally here. A DLR measure (equilibrium state) admitted by the specification $\{Q\}$ is, by definition, the distribution on $\underset{i=-\infty}{\overset{\infty}{\times}} \mathbb{R}_i$ ($\mathbb{R}_i = \mathbb{R}$ for all *i*) of any random field ..., X_{-1}, X_0, X_1, \ldots satisfying

$$P\left(\sum_{\rho=1}^{\infty}|J(\rho)|\cdot|X_{j+\rho}|<\infty, \sum_{\rho=1}^{\infty}|J(\rho)|\cdot|X_{i-\rho}|<\infty \text{ for all } i,j\right)=1$$

and admitting the given specification.

Condition (1) limits the interaction energy (see [10] for the case of a lattice gas), while condition (2) is the superstability condition introduced by Ruelle, who defined a general class of multi-dimensional superstable interactions in [12]. If $F(\zeta) = \alpha \zeta^2$ ($\alpha > 0$) then a sufficient condition for the superstability of the above specification is

$$\alpha > \sum_{\rho=1}^{\infty} |J(\rho)| \tag{3}$$

256

Absence of Phase Transition in One-Dimensional Spin Systems. II

while if, say $F(\zeta) = \alpha |\zeta|^{2+\delta}$ ($\alpha > 0$, $\delta > 0$), then superstability holds automatically (cf. [2]). In [5] equilibrium states for Ruelle's multidimensional spin systems were obtained as limits of finite volume Gibbs measures. Specifications were employed in the investigation of interactions of the type considered here in [2, 3] and, for a special case, in [1].

In general there may be many DLR measures admitted by the specification described above (phase transition). For the one-dimensional harmonic (Gaussian) case with nearest neighbour interaction $(F(\zeta) = \alpha \zeta^2, J(\rho) = 0 \text{ for } \rho \ge 2, \alpha > J(1) > 0)$ the DLR measures were determined in [1], where it was also shown that only one of these DLR measures is translation invariant. (As mentioned in Part I, this is an instance of a universal property shared by all "irreducible" one-dimensional Markovian specifications, as shown in [7]).

In view of the possible occurrence of phase transition, attention was focussed on a class of DLR measures which Ruelle called tempered ([11, 5]) and on the problem of possible uniqueness within this class. These tempered measures are distributions on $\bigotimes_{i=-\infty}^{\infty} \mathbb{R}_i$ under which, with probability one, the sequence $\frac{1}{2n+1} \sum_{i=-n}^{n} X_i^2$, n=1,2,... is bounded. It will be shown below, in Theorem 2.5, that this requirement is equivalent to the condition $\sup_i E|X_i| < \infty$ used in [2] (and originating from [4]) and also to the condition of tameness employed in Part I. Some further equivalent conditions will be given in Theorem 2.5. DLR measures satisfying these conditions will be called *regular* here.

Uniqueness of tempered DLR measures was proved in [5] for ferromagnetic systems satisfying a special sufficient condition. A broader sufficient condition for uniqueness of regular DLR measures admitted by multi-dimensional spin systems was derived in [2] from Dobrushin's general uniqueness criterion ([4]). In our present context the result of [2] is this: if

$$\sup_{x,z} V(x,z) < \left(2\beta \sum_{\rho=1}^{\infty} |J(\rho)|\right)^{-1}$$
(4)

where V(x,z) is the variance of the distribution $Q_{-1,1}^{[0]}(x, \cdot, z)$ on \mathbb{R} , then exactly one random field ..., $X_{-1}, X_0, X_1, ...$ (up to equivalence in distribution) admitting the specification $\{Q\}$ satisfies $\sup_{z} E|X_i| < \infty$. (It is assumed in [2] that, for $\zeta > 0$, F is of the form $F(\zeta) = \int_{0}^{\zeta} G(t) dt$, where G is a C¹, convex, positive, increasing function, and analogously for $\zeta < 0$.) As will be shown below, condition (4) may be unnecessarily restrictive in the one-dimensional case. If for instance $F(\zeta) = \alpha |\zeta|^{2+\delta}$ ($\alpha > 0, \delta > 0$) then (4) is satisfied when the temperature $1/\beta$ is sufficiently high but will fail for low temperatures, although it is interesting that in the Gaussian case (4) reduces to (3) ([2]).

Our main result (Theorem 2.8) is that in the one-dimensional case superstability and (1) are sufficient to imply that the specification admits exactly one regular DLR measure, regardless of the value of the temperature $1/\beta$.

§2. The Results

In \vec{T}_0 and \tilde{T}_0 we introduce the norms $||z||_J = \sum_{\rho=1}^{\infty} |J(\rho)| \cdot |\zeta_{\rho}|$ and $||x||_J = \sum_{\rho=1}^{\infty} |J(\rho)| \cdot |\zeta_{-\rho}|$ respectively, where $z = \zeta_1 \zeta_2 \dots$ and $x = \dots \zeta_{-2} \zeta_{-1}$. (We assume for simplicity that $J(\rho) \neq 0$ for all ρ . If $J(\rho) = 0$ for large ρ , $||\cdot||_J$ will not be a norm, but it is obvious how the definition of $||\cdot||_J$ should be modified in this case). Ruelle's important estimates ([12]), which play a crucial role here, imply the following lemma.

2.1. Lemma. For every b>0 there are constants $\gamma>0$ and δ such that if $l \le i \le j \le m$, $||x||_J \le b$, $||z||_J \le b$ and $w = \zeta_i \zeta_{i+1} \dots \zeta_j \in \mathbb{R}^{j-i+1}$, then

$$q_{l,m}^{[i,j]}(x,w,z) \leq \exp\left\{\sum_{\rho=i}^{j} \left(-\gamma \zeta_{\rho}^{2} + \delta\right)\right\},\,$$

where $q_{l,m}^{[i,j]}(x,\cdot,z)$ denotes the density of $Q_{l,m}^{[i,j]}(x,\cdot,z)$ obtained as a marginal of $q_{l,m}^{[l+1,m-1]}(x,\cdot,z)$.

In fact, as pointed out in [3], if, given l < m, the self potential inside $\{l+1, l+2, ..., m-1\}$ is modified so as to include the interactions with all external spins ζ_{ρ} , $\rho \leq l$ or $\rho \geq m$, (see p. 48 of [3]), then Ruelle's estimates will hold uniformly in $||x||_{J} \leq b$, $||z||_{J} \leq b$.

For $v \ge 1$, $k \ge 1$ we now set

$$\begin{split} \vec{M}_{\nu}(k) &= \left\{ \zeta_{1} \zeta_{2} \dots \zeta_{k} \colon \frac{1}{n} \sum_{\rho=1}^{n} \zeta_{\rho}^{2} \leq \nu \text{ for } n = 1, 2, \dots, k \right\}, \\ \tilde{M}_{\nu}(k) &= \left\{ \zeta_{-k} \zeta_{-k+1} \dots \zeta_{-1} \colon \frac{1}{n} \sum_{\rho=1}^{n} \zeta_{-\rho}^{2} \leq \nu \text{ for } n = 1, 2, \dots, k \right\} \\ \vec{M}_{\nu} &= \left\{ \zeta_{1} \zeta_{2} \dots \colon \frac{1}{n} \sum_{\rho=1}^{n} \zeta_{\rho}^{2} \leq \nu \text{ for all } n \geq 1 \right\}, \\ \vec{M}_{\nu} &= \left\{ \dots \zeta_{-2} \zeta_{-1} \colon \frac{1}{n} \sum_{\rho=1}^{n} \zeta_{-\rho}^{2} \leq \nu \text{ for all } n \geq 1 \right\}, \\ M_{\nu}(k) &= \vec{M}_{\nu}(k) \cap \vec{M}_{\nu}(k). \end{split}$$

Then (cf. [5, Th. 1.1] or [3, p. 49]):

2.2. Corollary. Given b > 0 and $\varepsilon > 0$, there exists $v \ge 1$ such that

$$Q_{l,m}^{[i,j]}(x, M_{\nu}(j-i+1), z) > 1-\varepsilon$$

whenever $l < i \leq j < m$, $||x||_J \leq b$, $||z||_J \leq b$.

Let now $\Phi(i) = \sum_{\rho=i}^{\infty} |J(\rho)|, i = 1, 2, ...$ and set $K = \sum_{\rho=1}^{\infty} \rho |J(\rho)| = \sum_{i=1}^{\infty} \Phi(i)$. Clearly $\Phi(i) \ge \Phi(i+1), i = 1, 2, ...$

Absence of Phase Transition in One-Dimensional Spin Systems. II

2.3. Lemma. If $z = \zeta_1 \zeta_2 \dots \in \vec{M}_{\nu}$, then

$$\sum_{\rho=1}^{n} |J(\rho)| \cdot |\zeta_{\rho}|^{r} \leq v \sum_{\rho=1}^{n} |J(\rho)| \quad (r=1,2),$$
$$\sum_{\rho=1}^{n} \Phi(\rho) |\zeta_{\rho}|^{r} \leq v \sum_{\rho=1}^{n} \Phi(\rho) \quad (r=1,2)$$

for all $n \ge 1$.

In fact if we set $\alpha_0 = 0$, $\alpha_\rho = \sum_{i=1}^{\rho} \zeta_i^2$ ($\rho \ge 1$), so that $\alpha_\rho \le v\rho$, then an elementary calculation shows that

$$\sum_{\rho=1}^{n} |J(\rho)| \zeta_{\rho}^{2} = \sum_{\rho=1}^{n-1} (|J(\rho)| - |J(\rho+1)|) \alpha_{\rho} + |J(n)| \alpha_{n}$$
$$\leq \sum_{\rho=1}^{n-1} (|J(\rho)| - |J(\rho+1)|) \nu \rho + |J(n)| \nu n = \nu \sum_{\rho=1}^{n} |J(\rho)|$$

and similarly for the other inequalities. Note that

$$\frac{1}{n}\sum_{\rho=1}^{n}|\zeta_{\rho}| \leq \left(\frac{1}{n}\sum_{\rho=1}^{n}\zeta_{\rho}^{2}\right)^{\frac{1}{2}} \leq \sqrt{\nu} \quad \text{for } \zeta_{1}\zeta_{2}...\in \vec{M}_{\nu}.$$

A DLR measure Π admitted by the specification $\{Q\}$ is said to be weakly tame with respect to the norm $\|\cdot\|_{J}$ if for every $\varepsilon > 0$ there is a d > 0 such that $\tilde{\Pi}_i \{ x \in \tilde{T}_0 \colon \|x\|_J \leq d \} \geq 1 - \varepsilon \text{ and } \vec{\Pi}_i \{ z \in \tilde{T}_0 \colon \|z\|_J \leq d \} \geq 1 - \varepsilon \text{ for all } i. \text{ Corollary 2.2}$ above and Proposition 2.4 of Part I imply that if Π is weakly tame with respect to the norm $\|\cdot\|_{J}$, then for every $\varepsilon > 0$ there is $\nu \ge 1$ such that

$$\tilde{\Pi}_{i}(\tilde{M}_{v}) \ge 1 - \varepsilon \quad \text{and} \quad \tilde{\Pi}_{i}(\tilde{M}_{v}) \ge 1 - \varepsilon$$
 (5)

for all i. This, combined with Lemma 2.3 implies that it is sufficient to consider the kernels $Q_{l,m}^{[i,j]}(x,\cdot,z)$ defined for $x \in T$, $z \in T$, where

$$\vec{T} = \left\{ \zeta_1 \zeta_2 \dots : \sum_{\rho=1}^{\infty} \Phi(\rho) |\zeta_{\rho}| < \infty \right\},$$
$$\vec{T} = \left\{ \dots \zeta_{-2} \zeta_{-1} : \sum_{\rho=1}^{\infty} \Phi(\rho) |\zeta_{-\rho}| < \infty \right\}.$$

The metrics we introduce in \vec{T} and \hat{T} are the ones induced by the norms

$$||z||_{\Phi} = \sum_{\rho=1}^{\infty} \Phi(\rho) |\zeta_{\rho}| \quad \text{and} \quad ||x||_{\Phi} = \sum_{\rho=1}^{\infty} \Phi(\rho) |\zeta_{-\rho}|$$

respectively. Notice that if we regard $\Phi(\cdot)$ as a mass function on $\{1, 2, \ldots\}$, then it defines a finite measure on this space. The corresponding L_1 -space is \vec{T} and $\|\cdot\|_{\varphi}$ is its L_1 -norm. Norm convergence in \vec{T} is equivalent to $\sigma(L_1, L_{\infty})$ convergence and therefore ([6, Prop. IV-2-3]) a subset $C \subset \vec{T}$ is metrically relatively compact if and only if its elements are uniformly integrable (=uniformly Φ -summable), i.e. for every $\varepsilon > 0$ there is $\delta > 0$ such that $\sum \Phi(\rho) |\zeta_{\rho}| < \varepsilon$ for all $\zeta_1 \zeta_2 \dots \in C$ and all subsets I of $\{1, 2, \dots\}$ satisfying $\sum_{\rho \in I} \Phi(\rho) < \delta$.

2.4. Lemma. The sets \dot{M}_{v} and \vec{M}_{v} are compact subsets of \dot{T} and \vec{T} respectively, relative to the norms $\|\cdot\|_{\Phi}$.

In fact, \vec{M}_{y} is metrically closed and by Lemma 2.3

$$\vec{M}_{\nu} \subset \left\{ \zeta_1 \zeta_2 \dots; \sum_{\rho=1}^{\infty} \Phi(\rho) \zeta_{\rho}^2 \leq \nu K \right\},$$

where the set on the right is relatively compact, since its elements are uniformly Φ -summable.

Before proving the main result we link the condition of weak tameness with some other conditions that have been used in the literature ([2, 4, 5, 8, 11, 12]).

2.5. Theorem. If Π is a DLR measure admitted by the specification $\{Q\}$ and $\dots, X_{-1}, X_0, X_1, \dots$ is a random field with distribution Π , then the following conditions are equivalent.

- (i) Π is weakly tame with respect to the norm $\|\cdot\|_{I}$.
- (ii) For every $\varepsilon > 0$ there is $v \ge 1$ such that (5) holds for all i.

(iii) With probability one, the sequence $\frac{1}{2n+1} \sum_{i=-n}^{n} X_i^2$, n=1,2,... is bounded (i.e. Π is tempered).

(iv) There are constants $\gamma > 0$ and δ such that for every segment of integers Λ $=\{i, i+1, \ldots, j\}$

$$\Pi^{[i,j]}(d\zeta_i d\zeta_{i+1} \dots d\zeta_j) \leq \exp\left\{\sum_{\rho=i}^j \left(-\gamma \zeta_{\rho}^2 + \delta\right)\right\} d\zeta_i \dots d\zeta_j.$$

(v) sup E|X_i| < ∞, where E denotes expectation.
(vi) Π is tame with respect to the norm || • ||_Φ, in the sense of Definition 2.3 of Part I.

Proof. That (i) implies (ii) was shown above, when (5) was established. Trivially (ii) implies (iii). The deeper implication (iii) \Rightarrow (iv) was proved in [5]; a statement of this can also be found in [2]. It is obvious that (iv) implies (v).

We next prove that (v) implies (i). Suppose (v) holds and let $p = \sup E|X_i|$. Given $\varepsilon > 0$ let $d = \Phi(1) p \varepsilon^{-1}$ and note that, if (Ω, \mathcal{F}, P) is the probability space on which the random field $\dots, X_{-1}, X_0, X_1, \dots$ is defined then, for any *i*,

$$\begin{split} P\{\|X_{i+1}X_{i+2}...\|_{J} > d\} = P\left\{\sum_{\rho=1}^{\infty} |J(\rho)| \cdot |X_{i+\rho}| > d\right\} &\leq d^{-1}E\left(\sum_{\rho=1}^{\infty} |J(\rho)| \cdot |X_{i+\rho}|\right) \\ &\leq d^{-1}p\sum_{\rho=1}^{\infty} |J(\rho)| = d^{-1}p\Phi(1) = \varepsilon, \end{split}$$

establishing (i). To complete the proof of the theorem note that $(ii) \Rightarrow (vi) \Rightarrow (i)$.

Absence of Phase Transition in One-Dimensional Spin Systems. II

2.6. Corollary. If Π is translation invariant then it satisfies conditions (i)–(vi).

In fact if Π is translation invariant, then it satisfies (vi). Thus Theorem 2.5 provides an alternative proof of DeMasi's result in [3] that a translation invariant Π satisfies (iii) and hence also (iv). In connection with the equivalence of (i) and (vi) see also Corollary 2.5 of Part I.

2.7. Definition. A DLR measure Π admitted by the specification $\{Q\}$ will be called *regular* if it satisfies any (and hence all) of the conditions (i)-(vi) of Theorem 2.5.

We will now verify that hypotheses I-V of Part I hold with respect to the metric topology induced by $\|\cdot\|_{\Phi}$. The specification is trivially translation invariant and hence hypothesis I is true. If $\Lambda = \{i, i+1, ..., j\}$, then by (2)

$$f_{A}(x, w, z) \leq \prod_{\rho \in A} \exp\{\beta(-a\zeta_{\rho}^{2} + (\sum_{l \notin A} J(|\rho - l|)\zeta_{l})\zeta_{\rho} + c)\}$$
$$= \prod_{\rho \in A} \exp\{\beta(-a\zeta_{\rho}^{2} + b(x, z)\zeta_{\rho} + c)\}$$
$$\equiv g_{A}(x, w, z) \quad \text{say.}$$

Now if $x_n \to x$, $z_n \to z$ in the norms $\|\cdot\|_{\Phi}$ (or even the norms $\|\cdot\|_J$), then $f_A(x_n, w, z_n) \to f_A(x, w, z)$, $g_A(x_n, w, z_n) \to g(x, w, z)$ and $\int g_A(x_n, w, z_n) dw \to \int g_A(x, w, z) dw$ by an explicit calculation. This and the inequality

$$f_A(x_n, w, z_n) \leq \min\{f_A(x_n, w, z_n), g_A(x, w, z)\} + g_A(x_n, w, z_n) - \min\{g_A(x_n, w, z_n), g_A(x, w, z)\}$$

imply $\int f_A(x_n, w, z_n) dw \rightarrow \int f_A(x, w, z) dw$, i.e. $\sigma_A(x_n, z_n) \rightarrow \sigma_A(x, z)$, and hence $q_A(x_n, w, z_n) \rightarrow q_A(x, w, z)$ and $\int |q_A(x_n, w, z_n) - q_A(x, w, z)| dw \rightarrow 0$, since the q_A 's are probability densities. This establishes hypothesis II. The absolute continuity of $Q_{i-1,j+1}^{[i,j]}(x, \cdot, z)$ with respect to $Q_{i-1,j+1}^{[i,j]}(\bar{x}, \cdot, \bar{z})$ (hypothesis III) is trivially true. Hypothesis IV is an easy consequence of Corollary 2.2 and Lemma 2.3.

There only remains hypothesis V to verify. First note that if $f_1(w)$, $f_2(w)$ are positive measurable functions on a measure space M, such that $\sigma_1 = \int_M f_1(w) dw$, $\sigma_2 = \int_M f_2(w) dw$ are finite, then

$$\begin{split} \int_{M} |\sigma_{1}^{-1} f_{1}(w) - \sigma_{2}^{-1} f_{2}(w)| \, dw &\leq \sigma_{1}^{-1} \int_{M} |f_{1}(w) - f_{2}(w)| \, dw + |\sigma_{1}^{-1} - \sigma_{2}^{-1}| \int_{M} f_{2}(w) \, dw \\ &\leq 2\sigma_{1}^{-1} \int_{M} |f_{1}(w) - f_{2}(w)| \, dw \leq 2 \sup_{w \in M} \left| 1 - \frac{f_{2}(w)}{f_{1}(w)} \right|. \end{split}$$

If $A = \{1, 2, ..., i\}$ and we set $M = M_{\mu}(i)$, $f_1(w) = f_A(x, w, z)$, $f_2(w) = f_A(\overline{x}, w, \overline{z})$, then we obtain

$$\left\| \frac{Q_{0,i+1}^{[1,i]}(x,(\cdot) \cap M_{\mu}(i),z)}{Q_{0,i+1}^{[1,i]}(x,M_{\mu}(i),z)} - \frac{Q_{0,i+1}^{[1,i]}(\bar{x},(\cdot) \cap M_{\mu}(i),\bar{z})}{Q_{0,i+1}^{[1,i]}(\bar{x},M_{\mu}(i),\bar{z})} \right\| \\ \leq 2 \sup_{w \in M_{\mu}(i)} |1 - \exp\{\beta \sum_{\rho \in \Lambda, l \notin \Lambda} J(|\rho - l|)(\bar{\zeta}_{l} - \zeta_{l})\zeta_{\rho}\}| \tag{6}$$

where $w = \zeta_1 \zeta_2 \dots \zeta_i, \ x = \dots \zeta_{-2} \zeta_{-1}, \ \bar{x} = \dots \bar{\zeta}_{-2} \bar{\zeta}_{-1}, \ z = \zeta_{i+1} \zeta_{i+2} \dots, \ \bar{z} = \bar{\zeta}_{i+1} \bar{\zeta}_{i+2} \dots$

F. Papangelou

Now suppose A is a metrically compact subset of \tilde{T} . Given $\varepsilon > 0$ choose r so that $\sum_{j \ge r} \Phi(j)$ is sufficiently small to imply $\sum_{j \ge r} \Phi(j) |\eta_{-j}| < \frac{\varepsilon}{8\beta\nu}$ for arbitrary $\dots \eta_{-2}\eta_{-1} \in A$. Since there is $c_0 < \infty$ such that $|\eta_{-r+1}| \le c_0$, $|\eta_{-r+2}| \le c_0, \dots, |\eta_{-1}| \le c_0$ for arbitrary $\dots \eta_{-2}\eta_{-1} \in A$, it is clear that if k is sufficiently large then

$$\sum_{j\geq 1} \Phi(k+j)|\eta_{-j}| < \frac{\varepsilon}{4\beta\nu}$$
(7)

and in particular if w, x and \bar{x} above are such that $w \in M_{\mu}(i), \ldots \zeta_{-k-1} \zeta_{-k} \in A$, $\ldots \bar{\zeta}_{-k-1} \bar{\zeta}_{-k} \in A$ and $\zeta_{l} = \bar{\zeta}_{l}$ for $l = -k+1, -k+2, \ldots, 0$, then by Lemma 2.3

$$\begin{aligned} |\sum_{l \leq 0} \sum_{\rho \in A} J(|\rho - l|) \langle \bar{\zeta}_l - \zeta_l \rangle \zeta_\rho | &\leq \sum_{l \leq -k} \{ |\bar{\zeta}_l - \zeta_l| \cdot v \sum_{\rho > |l|} |J(\rho)| \} \\ &= v \sum_{l \leq -k} \Phi(|l| + 1) \langle |\bar{\zeta}_l| + |\zeta_l|) < \frac{\varepsilon}{2\beta} \end{aligned}$$

by (7). This, combined with a similar summation over $l \ge i+1$, shows that the right-hand side of (6) is less than or equal to $2(e^{\epsilon}-1)$. This implies the validity of hypothesis V. Note that there was no need here to impose a restriction on the coordinates ζ_i , $\overline{\zeta_i}$ for l = -k+1, -k+2, ..., 0, other than $\zeta_l = \overline{\zeta_l}$.

2.8. Theorem. If (1) holds, then the specification $\{Q\}$ admits exactly one regular DLR measure. This DLR measure is translation invariant.

The existence of such a DLR measure was established in [5]; see also [2]. Uniqueness follows from Theorem 5.1 of Part I and Theorem 2.5 above (cf. Definition 2.7). Translation invariance follows as in Theorem 5.1 of Part I: if Π is a regular DLR measure admitted by $\{Q\}$, then so is any translate of Π , which must therefore coincide with Π .

2.9. Corollary. If (1) holds, then the specification $\{Q\}$ admits exactly one translation invariant DLR measure.

This follows from the fact that every translation invariant DLR measure is regular (Corollary 2.6; see also [3]).

It is worth mentioning that in the present case an alternative approach is to verify hypotheses IV_1 , IV_2 and V_1 of Part I, instead of IV and V.

References

- Benfatto, G., Presutti, E., Pulvirenti, M.: DLR measures for one-dimensional harmonic systems. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 41, 305-312 (1978)
- Cassandro, M., Olivieri, E., Pellegrinotti, A., Presutti, E.: Existence and uniqueness of DLR measures for unbounded spin systems. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 41, 313-334 (1978)
- 3. DeMasi, A.: One-dimensional DLR invariant measures are regular. Comm. Math. Phys. 67, 43-50 (1979)
- Dobrushin, R.L.: Prescribing a system of random variables by conditional distributions (in Russian). Teor. Verojatnost. i Primenen. 15, 469-497 (1970). (English transl.: Theory Probab. Appl. 15, 458-486 (1970))

- 5. Lebowitz, J.L., Presutti, E.: Statistical mechanics of systems of unbounded spins. Comm. Math. Phys. 50, 195-218 (1976). Erratum: ibid. 78, 151 (1980)
- 6. Neveu, J.: Bases mathématiques du calcul des probabilités. Paris: Masson 1964
- Papangelou, F.: Stationary one-dimensional Markov random fields with a continuous state space. In "Probability, Statistics and Analysis" (ed. J.F.C. Kingman and G.E.H. Reuter), London Math. Soc. Lecture Note Series 79, 199–218. Cambridge: Cambridge University Press 1983
- Papangelou, F.: On the absence of phase transition in one-dimensional random fields. (I) Sufficient conditions. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 67, 239-254 (1984)
- Papangelou, F.: The uniqueness of regular DLR measures for certain one-dimensional spin systems. Proceedings of the Swansea Workshop on Stochastic Analysis and its Applications, April 1983 (ed. A. Truman and D. Williams), Lecture Notes in Mathematics. Berlin-Heidelberg-New York: Springer 1984
- Ruelle, D.: Statistical mechanics of a one-dimensional lattice gas. Comm. Math. Phys. 9, 267– 278 (1968)
- 11. Ruelle, D.: Superstable interactions in classical statistical mechanics. Comm. Math. Phys. 18, 127-159 (1970)
- 12. Ruelle, D.: Probability estimates for continuous spin systems. Comm. Math. Phys. 50, 189-194 (1976)

Received June 7, 1983; in final form April 12, 1984