Zeitschrift für
Wahrscheinlichkeitstheorie
und verwandte Gebiete
(C) Springer-Verlag 1983

Lindeberg Functions and the Law of the Iterated Logarithm*

R.J. Tomkins

Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan S4S0A2, Canada

Summary. For a sequence of independent random variables $\left\{X_{n}\right\}$ with zero means and finite variances, define $S_{n}=\sum_{j=1}^{n} X_{j}, s_{n}^{2}=E\left(S_{n}^{2}\right)$ and t_{n}^{2} $=2 \log \log s_{n}^{2}$; assume $s_{n} \rightarrow \infty$. Kolmogorov's law of the iterated logarithm asserts that $\limsup S_{n} /\left(s_{n} t_{n}\right)=1$ a.s. if $t_{n}\left|X_{n}\right| \leqq \varepsilon_{n} s_{n}$ for some real sequence $\varepsilon_{n} \rightarrow 0$. This paper will show that, under the weaker condition $t_{n} X_{n} / s_{n} \rightarrow 0$ a.s., the a.s. limiting value of $\lim \sup S_{n} /\left(s_{n} t_{n}\right)$ depends on the limiting behaviour of the modified Lindeberg functions

$$
s_{n}^{-2} \sum_{j=1}^{n} E\left(X_{j}^{2} I\left(\left|X_{j}\right| \leqq \varepsilon s_{j} t_{j}^{-1}\right)\right), \quad \text { where } \varepsilon>0 .
$$

1. Introduction

Consider a sequence X_{1}, X_{2}, \ldots of independent random variables (r.v.) with $E\left(X_{n}\right)=0$ and $E\left(X_{n}^{2}\right)<\infty$ for $n \geqq 1$. Define $S_{n}=\sum_{j=1}^{n} X_{j}, s_{n}^{2}=E\left(S_{n}^{2}\right)$ and t_{n} $=\left(2 \log \log s_{n}^{2}\right)^{1 / 2}$. Assume $s_{n} \rightarrow \infty$.

According to Kolmogorov's law of the iterated logarithm (LIL), if a positive sequence $\varepsilon_{n} \rightarrow 0$ exists such that

$$
\begin{equation*}
t_{n}\left|X_{n}\right| \leqq \varepsilon_{n} s_{n} \text { almost surely (a.s.) for all } n \geqq 1, \tag{1.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\Lambda \equiv \limsup _{n \rightarrow \infty} S_{n}\left(2 s_{n}^{2} \log \log s_{n}^{2}\right)^{1 / 2}=1 \quad \text { a.s. } \tag{1.2}
\end{equation*}
$$

[^0]This paper will investigate the value of Λ when (1.1) is replaced by the weaker condition:

$$
\begin{equation*}
t_{n} X_{n} / s_{n} \rightarrow 0 \quad \text { a.s. } \tag{1.3}
\end{equation*}
$$

or, equivalently (by the Borel Zero-One Law),

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left[\left|X_{n}\right|>\varepsilon S_{n} t_{n}^{-1}\right]<\infty \quad \text { for every } \varepsilon>0 \tag{1.4}
\end{equation*}
$$

Under the less restrictive assumption (1.3), Λ need not be one. For example, suppose $P\left[X_{n}= \pm n\right]=\left(2 n^{2}\right)^{-1}$ and $P\left[X_{n}=0\right]=1-n^{-2}$ for $n \geqq 1$. Then $s_{n}^{2}=n$ and, for $\varepsilon>0$,

$$
\sum_{n=1}^{\infty} P\left[\left|X_{n}\right|>\varepsilon S_{n} t_{n}^{-1}\right] \leqq \sum_{n=1}^{\infty} P\left[X_{n} \neq 0\right]=\sum_{n=1}^{\infty} n^{-2}<\infty
$$

establishing (1.4). But, since $\sum_{n=1}^{\infty} P\left[X_{n} \neq 0\right]<\infty, P\left[X_{n} \neq 0\right.$ infinitely often (i.o.) $]$ $=0$ by the Borel-Cantelli lemma. Consequently, $\sum_{n=1}^{\infty} X_{n}$ converges a.s. so that,
trivially, $S_{n} /\left(s_{n} t_{n}\right) \rightarrow 0$ a.s.; i.e. $\Lambda=0$.

Theorem 1 of Teicher [6] implicitly suggests a relationship between the value of A and the Lindeberg functions

$$
L_{n}(x)=s_{n}^{-2} \sum_{j=1}^{n} E\left(X_{j}^{2} I\left(\left|X_{j}\right|>x s_{j}\right)\right)
$$

where $I(A)$ denotes the indicator function of the event A. Teicher's LIL asserts that $A=1$ if, for some $\delta>0, \sum_{n=1}^{\infty} P\left[\left|X_{n}\right|>\delta s_{n} t_{n}\right]<\infty$ and, for every $\varepsilon>0$,

$$
\sum_{n=1}^{\infty}\left(s_{n} t_{n}\right)^{-2} E\left(X_{n}^{2} I\left(\varepsilon s_{n} t_{n}^{-1}<\left|X_{n}\right| \leqq \delta s_{n} t_{n}\right)<\infty\right.
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}\left(\varepsilon t_{n}^{-1}\right)=0 \tag{1.5}
\end{equation*}
$$

Since (1.4) implies Teicher's first two hypotheses, (1.2) must hold when (1.3) and (1.5) hold.

Rather than deal with $L_{n}(x)$ or $L_{n}\left(x t_{n}^{-1}\right)$, it will be more convenient in this paper to work with the functions

$$
\begin{equation*}
H_{n}(x) \equiv s_{n}^{-2} \sum_{j=1}^{n} E\left(X_{j}^{2} I\left(\left|X_{j}\right| \leqq x s_{j} t_{j}^{-1}\right)\right) \tag{1.6}
\end{equation*}
$$

Here is the main result of the paper.
Theorem 1.1. Let X_{1}, X_{2}, \ldots be independent r.v. with $E\left(X_{n}\right)=0$ and $E\left(X_{n}^{2}\right)<\infty$ for all $n \geqq 1$. For $n \geqq 1$, define $S_{n}=\sum_{j=1}^{n} X_{j}$ and $s_{n}^{2}=E\left(S_{n}^{2}\right)$. Suppose $s_{n} \rightarrow \infty$ and
$\left(\log \log s_{n}^{2}\right)^{\frac{1}{2}}\left|X_{n}\right| / s_{n} \rightarrow 0$ a.s. Then

$$
\begin{equation*}
H_{-} \leqq \limsup _{n \rightarrow \infty} S_{n} /\left(2 s_{n}^{2} \log \log s_{n}^{2}\right)^{\frac{1}{2}} \leqq H_{+} \quad \text { a.S. } \tag{1.7}
\end{equation*}
$$

where H_{-}and H_{+}are numbers satisfying $0 \leqq H_{-} \leqq H_{+} \leqq 1$ and (cf. (1.6))

$$
\begin{equation*}
H_{-}^{2} \equiv \liminf _{n \rightarrow \infty} H_{n}(x), \quad H_{+}^{2}=\limsup _{n \rightarrow \infty} H_{n}(x) \tag{1.8}
\end{equation*}
$$

the values H_{-}and H_{+}are independent of x.
Theorem 1.1 will be proved in Sect. 3, following the establishment in Sect. 2 of several lemmas, some of which may be of interest in themselves. Section 4 will contain a number of examples which pertain to the main result.

2. Some Preliminary Results

The following lemma is known (cf. Egorov [2], p. 512).
Lemma 2.1. Let $\left\{a_{n}(\varepsilon), n \geqq 1\right\}$ be a sequence of non-negative functions defined for all $\varepsilon>0$.
(i) If lim $a_{n}(\varepsilon)=0$ for every $\varepsilon>0$, then a sequence $\left\{\varepsilon_{n}\right\}$ exists such that $\varepsilon_{n} \downarrow 0$ and $a_{n}\left(\varepsilon_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
(ii) If $\sum_{n=1}^{\infty} a_{n}(\varepsilon)<\infty$ for every $\varepsilon>0$, then there exists a sequence $\left\{\varepsilon_{n}\right\}$ such that $\varepsilon_{n} \downarrow 0$ and $\sum_{n=1}^{n=1} a_{n}\left(\varepsilon_{n}\right)<\infty$.

Lemma 2.2. Let $\left\{a_{n}(\varepsilon)\right\}$ be a sequence of non-negative functions, defined for all $\varepsilon>0$. Define $a^{*}=\liminf _{\varepsilon \neq 0} \liminf _{n \rightarrow \infty} a_{n}(\varepsilon)$. Then there exists a sequence $\left\{\varepsilon_{n}\right\}$ such that $\varepsilon_{n} \downarrow 0$ and $\liminf a_{n}\left(\varepsilon_{n}\right) \geqq a^{*}$. Moreover, if $a_{n}(\varepsilon)$ is a non-decreasing function of ε for each $n \geqq 1$, then $\liminf _{n \rightarrow \infty} a_{n}\left(\delta_{n}\right) \leqq a^{*}$ for every real sequence $\left\{\delta_{n}\right\}$ satisfying δ_{n} $\downarrow 0$.

Proof. Define $f_{n}(\varepsilon)=\inf _{m \geqq n} a_{m}(\varepsilon)$ for $n \geqq 1$ and let $a(\varepsilon)=\liminf _{n \rightarrow \infty} a_{n}(\varepsilon)$ where $\varepsilon>0$. Then $a(\varepsilon)-f_{n}(\varepsilon) \downarrow 0$ as $n \rightarrow \infty$ for every $\varepsilon>0$. By Lemma 2.1 (i), a sequence $\left\{\varepsilon_{n}\right\}$ exists such that $\varepsilon_{n} \downarrow 0$ and $\lim _{n \rightarrow \infty}\left[a\left(\varepsilon_{n}\right)-f_{n}\left(\varepsilon_{n}\right)\right]=0$. However, $\liminf _{n \rightarrow \infty} a\left(\varepsilon_{n}\right) \geqq a^{*}$, so $\lim _{n \rightarrow \infty} f_{n}\left(\varepsilon_{n}\right) \geqq a^{*}$. However, $a_{n}\left(\varepsilon_{n}\right) \geqq f_{n}\left(\varepsilon_{n}\right)$ so $\liminf _{n \rightarrow \infty} a_{n}\left(\varepsilon_{n}\right) \geqq a^{*}$.

If $a_{n}(\varepsilon)$ is non-decreasing for each $n \geqq 1$, then, for every $\varepsilon>0, a_{n}\left(\delta_{n}\right) \leqq a_{n}(\varepsilon)$ for all large n if $\delta_{n} \downarrow 0$. Hence $\liminf a_{n}\left(\delta_{n}\right) \leqq \liminf a_{n}(\varepsilon)$ and the proof is completed by letting $\varepsilon \downarrow 0$.

Using Hartman's modificiation [3] of Kolmogorov's techniques, the final lemma will establish a refinement of Corollary 1 of Teicher [8] and of Lemma 1 of Tomkins [9].

Lemma 2.3. Let $\left(M_{n}, \mathscr{F}_{n}, n \geqq 1\right)$ be a submartingale and let $\left\{\alpha_{n}\right\},\left\{B_{n}\right\}$ and $\left\{c_{n}\right\}$ be positive real sequences. Suppose $B_{n} \uparrow \infty$ and define $\alpha=\limsup _{n \rightarrow \infty} \alpha_{n}$, γ $=\limsup \left(\log \log B_{n}^{2}\right)^{\frac{1}{2}} c_{n}$, and $g(x)=x^{-2}\left(e^{-x}-1-x\right)$. Assume $\alpha<\infty$ and $\gamma<\infty$.
$\stackrel{n \rightarrow \infty}{ }$ If positive numbers C, N and T exist such that

$$
\begin{equation*}
E \exp \left\{t M_{n} /\left(\alpha_{n} B_{n}\right)\right\} \leqq C \exp \left\{t^{2} g\left(t c_{n}\right)\right\} \tag{2.1}
\end{equation*}
$$

whenever $n \geqq N$ and $0 \leqq t c_{n}<T$, then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{M_{n}}{\left(B_{n}^{2} \log \log B_{n}^{2} \frac{\frac{1}{2}}{2}\right.} \leqq \alpha K_{\gamma} \quad \text { a.s. } \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{0}=2^{\frac{1}{2}} \quad \text { and } \quad K_{\gamma}=\min _{0<b \leqq T \gamma^{-1}}\left(b^{-1}+b g(\gamma b)\right) \text { for } \quad \gamma>0 \tag{2.3}
\end{equation*}
$$

Proof. Fix b such that $0<b \leqq T / \gamma \quad(b>0$ if $\gamma=0)$. Pick any $\alpha^{\prime}>\alpha$ and let δ $=\alpha^{\prime}\left(b^{-1}+b g(\gamma b)\right)$. Then choose $c>1$ so close to 1 that $\delta^{\prime} \equiv \delta c^{-2}>\alpha^{\prime}\left(b^{-1}\right.$ $+b g(\gamma b)$); consequently $b \delta^{\prime} / \alpha^{\prime}-b^{2} g(\gamma b)>1$. Define $n_{0}=1$ and, for $k \geqq 1, n_{k}$ $=\min \left\{n \mid B_{n} \geqq c B_{n_{k}-1}\right\}, M_{k}^{*}=\max _{n_{k-1} \leq n<n_{k}} M_{n}$ and $m_{k}=n_{k}-1$. Let $b_{n}=\left(\log \log B_{n}^{2}\right)^{\frac{1}{2}}$ for $n \geqq 1$.

Choose any $\gamma^{\prime}>\gamma$ so close to γ that $\lambda \equiv b \delta^{\prime} / \alpha^{\prime}-b^{2} g\left(\gamma^{\prime} b\right)>1$. Then, for all k so large that $m_{k}>N, \alpha_{m_{k}}<\alpha^{\prime}$ and $b_{m_{k}} c_{m_{k}}<\gamma^{\prime}$, it follows from Markov's inequality, Doob's inequality ([1], p. 314) and (2.1) that

$$
\begin{aligned}
P[& \left.M_{k}^{*} \geqq \delta^{\prime} B_{m_{k}} b_{m_{k}}\right] \\
& \leqq P\left[\exp \left\{b b_{m_{k}} M_{k}^{*} /\left(\alpha_{m_{k}} B_{m_{k}}\right)\right\} \geqq \exp \left\{b \delta^{\prime} b_{m_{k}}^{2} / \alpha^{\prime}\right\}\right] \\
& \leqq C \exp \left\{-b \delta^{\prime} b_{m_{k}}^{2} / \alpha^{\prime}+b^{2} b_{m_{k}}^{2} g\left(b b_{m_{k}} c_{m_{k}}\right)\right\} \\
& \leqq C \exp \left\{-b \delta^{\prime} b_{m_{k}}^{2} / \alpha^{\prime}+b^{2} b_{m_{k}}^{2} g\left(\gamma^{\prime} b\right)\right\} \\
& =C \exp \left\{-\lambda b_{m_{k}}^{2}\right\}=C\left(\log B_{m_{k}}^{2}\right)^{-\lambda} \leqq C\left(\log B_{n_{k}-1}^{2}\right)^{-\lambda}=O\left((k-1)^{-\lambda}\right)
\end{aligned}
$$

Since $\quad \lambda>1, \quad P\left[M_{k}^{*} \geqq \delta^{\prime} B_{m_{k}} b_{m_{k}} \quad\right.$ i.o. $]=0$. But $\quad B_{n_{k-1}} \leqq B_{m_{k}}<c B_{n_{k-1}}$, so $b_{m_{k}} \sim b_{n_{k-1}}\left(\right.$ i.e. $\left.b_{m_{k}} / b_{n_{k-1}} \rightarrow 1\right)$ as $k \rightarrow \infty$ and

$$
\begin{aligned}
P\left[M_{n}\right. & \left.\geqq \delta B_{n} b_{n} \text { i.o. }\right] \leqq P\left[M_{k}^{*} \geqq \delta B_{n_{k}-1} b_{n_{k-1}} \text { i.o. }\right] \\
& \leqq P\left[M_{k}^{*} \geqq \delta c^{-1} B_{m_{k}} b_{n_{k-1}} \text { i.o. }\right] \\
& \leqq P\left[M_{k}^{*} \geqq \delta^{\prime} B_{m_{k}} b_{m_{k}} \text { i.o. }\right]=0 .
\end{aligned}
$$

Therefore, $\lim \sup M_{n} /\left(B_{n} b_{n}\right) \leqq \delta=\alpha^{\prime}\left(b^{-1}+b g(\gamma b)\right)$ for all $\alpha^{\prime}>\alpha$ and $0<b \leqq T / \gamma$ (where $\stackrel{n \rightarrow \infty}{T} / \gamma \equiv \infty$ when $\gamma=0$), proving (2.2). Note that, when $\gamma=0, K_{0}$ $=\min _{b>0}\left(b^{-1}+b g(0)\right)=2^{\frac{1}{2}}$ as shown by Teicher [8].
Remark. Lemma 2.3 remains valid under the less stringent hypothesis (cf. [1], p. 295) that ($e^{t M_{4}}, \mathscr{F}_{n}, n \geqq 1$) is a submartingale for every $t>0$.

Corollary 2.4 (cf. Corollary 1 of [8]). Let $\left\{X_{n}\right\}$ be a sequence of independent r.v. with zero means and finite variances. Define $S_{n}=\sum_{j=1}^{n} X_{j}$ and suppose
$s_{n}^{2} \equiv E\left(S_{n}^{2}\right) \rightarrow \infty$. If $X_{n} \leqq c_{n} s_{n}$ for some positive sequence $\left\{c_{n}\right\}$ and all $n \geqq 1$ and $a \equiv \limsup c_{n}\left(\log \log s_{n}^{2}\right)^{\frac{1}{2}}<\infty$, then $\limsup S_{n} /\left(s_{n}^{2} \log \log s_{n}^{2}\right)^{\frac{n}{2}} \leqq K_{a}$ a.s. where K_{a} is defined by (2.3).
Proof. By Lemma 1 (i) of Teicher [8], (2.1) holds with $M_{n}=S_{n}, \alpha_{n}=1, B_{n}=s_{n}$, $N=C=1$ and any $T>0$. Since $\alpha=1$ and $\gamma=a$ in this case, the desired result is clear from Lemma 2.3. \quad]
Remark. Corollary 2.4 shows that the hypothesis in Corollary 1 (i) of [8] that $E\left(X_{n}^{2}\right)=o\left(s_{n}^{2}\right)$ is unnecessary.

3. Proof of Theorem 1.1.

First, it will be shown that, for any pair $\varepsilon_{2}>\varepsilon_{1}>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(H_{n}\left(\varepsilon_{2}\right)-H_{n}\left(\varepsilon_{1}\right)\right)=0 \tag{3.1}
\end{equation*}
$$

this fact establishes the independence of H_{-}and H_{+}from the value of x in (1.8). For $n \geqq 1$, define the event $A_{n}=\left[\varepsilon_{1} s_{n}<t_{n}\left|X_{n}\right| \leqq \varepsilon_{2} s_{n}\right]$ and the r.v. Y_{n} $=X_{n} I\left(A_{n}\right)$. Using (1.4),

$$
\sum_{n=1}^{\infty} t_{n}^{2} E\left(Y_{n}^{2}\right) / s_{n}^{2} \leqq \varepsilon_{2}^{2} \sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty
$$

so $\left(t_{n} / s_{n}\right)^{2} \sum_{j=1}^{n} E\left(Y_{j}^{2}\right) \rightarrow 0$ by Kronecker's lemma. (3.1) is now clear because

$$
H_{n}\left(\varepsilon_{2}\right)-H_{n}\left(\varepsilon_{1}\right)=s_{n}^{-2} \sum_{j=1}^{n} E\left(Y_{j}^{2}\right) .
$$

Turn now to the proof of (1.7). Let $\varepsilon>0$. For $j \geqq 1$, define P_{j} $=P\left[\left|X_{j}\right|>\varepsilon s_{j} t_{j}^{-1}\right]$. Then, using the Cauchy-Schwarz inequality twice,

$$
\begin{array}{r}
\sum_{j=1}^{n} E\left(\left|X_{j}\right| I\left(\left|X_{j}\right|>\varepsilon S_{j} t_{j}^{-1}\right)\right) \leqq \sum_{j=1}^{n}\left(E\left(X_{j}^{2}\right)\right)^{\frac{1}{2}} P_{j}^{\frac{1}{2}} \\
\quad \leqq\left(\left(\sum_{j=1}^{n} E\left(X_{j}^{2}\right)\right)^{\frac{1}{2}}\left(\sum_{j=1}^{n} P_{j}\right)\right)^{\frac{1}{2}} \leqq s_{n}\left(\sum_{j=1}^{\infty} P_{j}\right)^{\frac{1}{2}}
\end{array}
$$

Therefore, in view of (1.4),

$$
\begin{equation*}
\left(s_{n} t_{n}\right)^{-1} \sum_{j=1}^{n} E\left(\left|X_{j}\right| I\left(\left|X_{j}\right|>\varepsilon s_{j} t_{j}^{-1}\right)\right) \rightarrow 0 \tag{3.2}
\end{equation*}
$$

for every $\varepsilon>0$.
Since (1.4) and (3.2) hold, Lemmas 2.1 and 2.2 ensure the existence of a sequence $\varepsilon_{n} \downarrow 0$ satisfying

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left[\left|X_{n}\right|>\varepsilon_{n} s_{n} t_{n}^{-1}\right]<\infty \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\left(s_{n} t_{n}\right)^{-1} \sum_{j=1}^{n} E\left(\left|X_{j}\right| I\left(\left|X_{j}\right|>\varepsilon_{j} s_{j} t_{j}^{-1}\right)\right) \rightarrow 0 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} H_{n}\left(\varepsilon_{n}\right)=H_{-}^{2} \tag{3.5}
\end{equation*}
$$

(Actually, these lemmas yield possibly distinct sequences $\varepsilon_{n}^{\prime}, \varepsilon_{n}^{\prime \prime}$ and $\varepsilon_{n}^{\prime \prime \prime}$ in (3.3), (3.4) and (3.5) respectively, but all three statements remain true using ε_{n} $\left.=\max \left(\varepsilon_{n}^{\prime}, \varepsilon_{n}^{\prime \prime}, \varepsilon_{n}^{\prime \prime \prime}\right).\right)$

Now, for $n \geqq 1$, define $X_{n}^{\prime}=X_{n} I\left(\left|X_{n}\right| \leqq \varepsilon_{n} s_{n} t_{n}^{-1}\right)$,

$$
S_{n}^{\prime}=\sum_{j=1}^{n} X_{j}^{\prime}, \quad\left(s_{n}^{\prime}\right)^{2}=\operatorname{Var}\left(S_{n}^{\prime}\right) \quad \text { and } \quad t_{n}^{\prime}=\left(2 \log \log s_{n}^{\prime}\right)^{\frac{1}{2}}
$$

Using (3.3) and the Borel-Cantelli lemma, $P\left[X_{n} \neq X_{n}^{\prime}\right.$ i.o. $]=0$, so $\lim _{n \rightarrow \infty}\left(S_{n}-S_{n}^{\prime}\right)$ is finite a.s. and, hence, $\left(S_{n}-S_{n}^{\prime}\right) /\left(s_{n} t_{n}\right) \rightarrow 0$ a.s. Furthermore, $E\left(S_{n}-S_{n}^{\prime}\right) /\left(s_{n} t_{n}\right) \rightarrow 0$ by virtue of (3.4). Thus it will suffice to prove that

$$
\begin{equation*}
H_{-} \leqq A^{\prime} \equiv \limsup _{n \rightarrow \infty}\left(S_{n}^{\prime}-E\left(S_{n}^{\prime}\right)\right) /\left(s_{n} t_{n}\right) \leqq H_{+} \text {a.s. } \tag{3.6}
\end{equation*}
$$

Because $E\left(X_{j}\right)=0$,

$$
\sum_{j=1}^{n}\left(E\left(X_{j}^{\prime}\right)\right)^{2} \leqq \sum_{j=1}^{n}\left(\varepsilon_{j} s_{j} t_{j}^{-1}\right)\left|E\left(X_{j}-X_{j}^{\prime}\right)\right| \leqq \varepsilon_{1} s_{n} t_{n}^{-1} \sum_{j=1}^{n} E\left|X_{j}-X_{j}^{\prime}\right|
$$

so $s_{n}^{-2} \sum_{j=1}^{n}\left(E\left(X_{j}^{\prime}\right)\right)^{2} \rightarrow 0$ by (3.4). This means that

$$
\begin{equation*}
\left(s_{n}^{\prime} / s_{n}\right)^{2}=s_{n}^{-2} \sum_{j=1}^{n} E\left(X_{j}^{2} I\left(\left|X_{j}\right| \leqq \varepsilon_{j} s_{j} t_{j}^{-1}\right)+o(1)\right. \tag{3.7}
\end{equation*}
$$

For $\varepsilon>0$, choose N such that $\varepsilon_{n}<\varepsilon$ when $n \geqq N$. If $n \geqq N$,

$$
\begin{aligned}
H_{n}\left(\varepsilon_{n}\right) & \leqq s_{n}^{-2} \sum_{j=1}^{n} E\left(X_{j}^{2} I\left(\left|X_{j}\right| \leqq \varepsilon_{j} s_{j} t_{j}^{-1}\right)\right) \\
& \leqq s_{n}^{-2} \sum_{j=1}^{N} E\left(X_{j}^{2} I\left(\varepsilon<t_{j}\left|X_{j}\right| / s_{j} \leqq \varepsilon_{j}\right)+H_{n}(\varepsilon)\right.
\end{aligned}
$$

so (3.5) and (3.7) yield

$$
\underset{n \rightarrow \infty}{\liminf } s_{n}^{\prime} / s_{n} \geqq H_{-} \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left(s_{n}^{\prime} / s_{n}\right)^{2} \leqq \limsup _{n \rightarrow \infty} H_{n}(\varepsilon) \quad \text { for all } \varepsilon .
$$

Letting $\varepsilon \downarrow 0$,

$$
\begin{equation*}
H_{-} \leqq \liminf _{n \rightarrow \infty} s_{n}^{\prime} / s_{n} \leqq \limsup _{n \rightarrow \infty} s_{n}^{\prime} / s_{n} \leqq H_{+} . \tag{3.8}
\end{equation*}
$$

If s_{n}^{\prime} converges then $S_{n}^{\prime}-E\left(S_{n}^{\prime}\right)$ converges a.s. by the Kolmogorov Convergence Theorem (Loève [4], p. 248) so $\Lambda^{\prime}=0=H_{-}$a.s. trivially, since $s_{n} \rightarrow \infty$. So it may be assumed hereinafter that $s_{n}^{\prime} \rightarrow \infty$.

Let $m>1$ and $\lambda>H_{+}$. Define $Y_{n}=X_{n}^{\prime}$ for $n \geqq m$ and $Y_{n}=X_{n} I\left(\left|X_{n}\right| \leqq \varepsilon_{m} s_{n} t_{n}^{-1}\right)$ for $n<m$, and then let $R_{n}=\sum_{j=1}^{n}\left(Y_{j}-E\left(Y_{j}\right)\right)$ and $r_{n}^{2}=E\left(R_{n}^{2}\right)$. Since $S_{n}^{\prime}-\sum_{j=1}^{n} Y_{j}$ depends only on $X_{1}, X_{2}, \ldots, X_{m}$, clearly

$$
\begin{equation*}
\left(S_{n}^{\prime}-E\left(S_{n}^{\prime}\right)-R_{n}\right) /\left(s_{n} t_{n}\right) \rightarrow 0 \text { a.s. } \tag{3.9}
\end{equation*}
$$

and $r_{n} / s_{n}^{\prime} \rightarrow 1$. In view of (3.8), then, and integer N exists such that $r_{n} \leqq \lambda s_{n}$ for $n \geqq N$.

Now, $\left|Y_{n}-E\left(Y_{n}\right)\right| \leqq 2 \varepsilon_{m} s_{n} t_{n}^{-1}, n \geqq 1$. Since $\varepsilon_{m} s_{n} t_{n}^{-1}$ is non-decreasing as $n \rightarrow \infty$, Lemma 1 (i) of Teicher [8] implies

$$
E \exp \left\{t R_{n} / r_{n}\right\} \leqq \exp \left\{t^{2} g\left(2 t \varepsilon_{m} s_{n} /\left(r_{n} t_{n}\right)\right)\right\}
$$

for every $t>0$ and $n \geqq 1$, where $g(x)=x^{-2}\left(e^{-x}-1-x\right)$. Replacing t by $t r_{n} /\left(\lambda s_{n}\right)$ yields (2.1) for $n \geqq N$, with $M_{n}=R_{n}, C=1, \alpha_{n}=\lambda, B_{n}=s_{n}, c_{n}=2 \varepsilon_{m} /\left(\lambda t_{n}\right)$ and any $T>0$. Since $\gamma=\gamma_{m}=\limsup _{n \rightarrow \infty} t_{n} c_{n}=2 \varepsilon_{m} / \lambda<\infty$, Lemma 2.3 implies

$$
\limsup _{n \rightarrow \infty} R_{n} /\left(s_{n} t_{n}\right) \leqq 2^{-\frac{1}{2}} \lambda K_{\gamma_{m}} \text { a.s. }
$$

for every $m>1$ and $\lambda>H_{+}$. In view of (3.9), then,

$$
\limsup _{n \rightarrow \infty}\left(S_{n}^{\prime}-E\left(S_{n}^{\prime}\right)\right) /\left(s_{n} t_{n}\right) \leqq 2^{-\frac{1}{2}} H_{+} K_{\gamma_{m}} \text { a.s. }
$$

for every $m>1$. The right-hand side of (3.6) now obtains by letting $m \rightarrow \infty$, which implies $\gamma_{m} \rightarrow 0$ and $K_{\gamma_{m}} \rightarrow 2^{\frac{1}{2}}$.

By Čebyšev's inequality and (3.8), $P\left[\left|S_{n}^{\prime}-E\left(S_{n}^{\prime}\right)\right| \geqq \varepsilon s_{n} t_{n}\right] \leqq\left(s_{n}^{\prime} /\left(\varepsilon s_{n} t_{n}\right)\right)^{2} \rightarrow 0$ as $n \rightarrow \infty$ for every $\varepsilon>0$. Hence $\left(S_{n}^{\prime}-E\left(S_{n}^{\prime}\right)\right) /\left(s_{n} t_{n}\right) \rightarrow 0$ in probability, so $\Lambda^{\prime} \geqq 0$. Therefore, (3.6) is true when $H_{-}=0$, so suppose $H_{-}>0$. Since

$$
\left|X_{n}^{\prime}-E\left(X_{n}^{\prime}\right)\right| / s_{n}^{\prime} \leqq 2 \varepsilon_{n} s_{n} /\left(s_{n}^{\prime} t_{n}\right) \equiv a_{n} \quad \text { and } \quad a_{n} t_{n}^{\prime}=O\left(\varepsilon_{n} t_{n}^{\prime} t_{n}^{-1} H_{-}^{-1}\right)=O\left(\varepsilon_{n}\right)
$$

Kolmogorov's LIL implies $\limsup _{n \rightarrow \infty}\left(S_{n}^{\prime}-E\left(S_{n}^{\prime}\right)\right) /\left(s_{n}^{\prime} t_{n}^{\prime}\right)=1$ a.s. Noting that $s_{n} H_{-} / 2<s_{n}^{\prime}<2 s_{n} H_{+}$for all large n when $H_{-}>0$ (cf. (3.8)), clearly $t_{n}^{\prime} \sim t_{n}$. Since $\underset{n \rightarrow \infty}{\liminf } s_{n}^{\prime} / s_{n} \geqq H_{-}$, the left side of (3.6) follows. $]$

4. Some Illustrative Examples

The three examples to follow emphasize the importance of (1.3) in Theorem 1.1.

Example 4.1. Consider any numbers a, b such that $0 \leqq a \leqq b \leqq 1$. An example will be constructed in which Theorem 1.1 applies with $H_{-}=a$ and $H_{+}=b$. To this end, let $\left\{\delta_{n}\right\}$ be a sequence with $\delta_{n}=0$ or $1, a^{2}=\liminf _{n \rightarrow \infty} \sum_{j=1}^{n} \delta_{j} / n$ and b^{2} $=\underset{n \rightarrow \infty}{\limsup } \sum_{j=1}^{n} \delta_{j} / n$. Let $\left\{Y_{n}\right\},\left\{Z_{n}\right\}$ be independent sequences, independent of each
other, such that $P\left[Y_{n}= \pm 1\right]=1 / 2, P\left[Z_{n}= \pm n\right]=1 /\left(2 n^{2}\right)$ and $P\left[Z_{n}=0\right]=1$ $-n^{-2}$. Then let $X_{n}=\delta_{n} Y_{n}+\left(1-\delta_{n}\right) Z_{n}$. Clearly $E\left(X_{n}\right)=0, E\left(X_{n}^{2}\right)=1$ so $s_{n}^{2}=n$. Moreover, for $\varepsilon>0, \quad X_{n} I\left(\left|X_{n}\right| \leqq \varepsilon s_{n} t_{n}^{-1}\right)=\delta_{n} Y_{n}$ for all n so large that $t_{n}<\varepsilon s_{n}<n t_{n}$, so $E\left(X_{n}^{2} I\left(\left|X_{n}\right| \leqq \varepsilon s_{n} t_{n}^{-1}\right)\right)=\delta_{n}^{2}=\delta_{n}$ for all such n. Hence

$$
\lim _{n \rightarrow \infty}\left|H_{n}(\varepsilon)-\sum_{j=1}^{n} \delta_{j} / n\right|=0, \quad \text { so } H_{-}=a, H_{+}=b
$$

Note that (1.3) holds in this example, but (1.1) does not if $a<1$. Indeed, if $a<1$, then there is a subsequence $\left\{\delta_{n_{k}}\right\}$ such that $\delta_{n_{k}}=0$ for all $k \geqq 1$. But then

$$
\left|X_{n_{k}}\right| / s_{n_{k}}=\left|Z_{n_{k}}\right| / n_{k}^{\frac{1}{2}}=n_{k}^{\frac{1}{2}}
$$

on the event $\left[Z_{n_{k}} \neq 0\right]$, so (1.1) is false. But, for $\varepsilon>0$,

$$
\sum_{n=N}^{\infty} P\left[\left|X_{n}\right| \geqq \varepsilon S_{n} t_{n}^{-1}\right] \leqq \sum_{n=N}^{\infty} P\left[Z_{n} \neq 0\right]<\infty
$$

where $N=\min \left\{n \mid \varepsilon s_{n}>t_{n}\right\}$, so (1.3) holds.
Example 4.2. It will be shown that (3.1) may fail when (1.3) doesn't hold by means of a well-known example (see Marcinkiewicz and Zygmund [5] or Theorem 5 of Teicher [6]). Let Y_{1}, Y_{2}, \ldots be independent r.v. with $P\left[Y_{n}= \pm 1\right]$ $=1 / 2$ for all $n \geqq 1$. For $\lambda>1$, let $\sigma_{n}^{2} \equiv(\log n)^{-1} \exp (2 \lambda n / \log n)$ and $X_{n}=\sigma_{n} Y_{n}$. Since $s_{n}^{2} \sim(\log n) \sigma_{n}^{2} /(2 \lambda)$ and, hence, $t_{n}^{2} \sim 2 \log n$ (cf. [5] p. 219) in this case, the (constant) sequence $t_{n}^{2} X_{n}^{2} / s_{n}^{2} \rightarrow 4 \lambda$. Hence (1.3) is false, $H_{n}(\varepsilon) \rightarrow 1$ if $\varepsilon^{2}>4 \lambda$, and $H_{n}(\varepsilon) \rightarrow 0$ if $\varepsilon^{2}<4 \lambda$.

Example 4.3. Suppose X_{1}, X_{2}, \ldots are independent r.v. such that X_{n} is normal with mean zero and variance n^{n}. Then Hartman's LIL [3] implies (1.2). But $s_{n}^{2} \sim n^{n}$ so, for every $\varepsilon>0$,

$$
P\left[\left|X_{n}\right|>\varepsilon s_{n} t_{n}^{-1}\right]=P\left[Z>\varepsilon s_{n} /\left(t_{n} n^{n / 2}\right)\right] \rightarrow P[Z>0]=1 / 2,
$$

where Z is a standard normal r.v. Hence (1.4) fails in this case. This shows that (1.4) is not necessary for (1.2).

Teicher [7] showed that (1.2) always implies $\limsup _{n \rightarrow \infty} X_{n} /\left(s_{n} t_{n}\right) \leqq 1$ a.s. In fact, the example above shows that Teicher's necessary condition is the best possible, in the sense that $\lim \sup X_{n} /\left(s_{n} t_{n}\right)=1$ a.s. above. It follows from the wellknown fact that $P[Z>x] \sim e^{-x^{2} / 2} /\left(2 \pi x^{2}\right)^{\frac{1}{2}}$ as $x \rightarrow \infty$ that, for $\varepsilon>0$,

$$
P\left[\left|X_{n}\right|>\varepsilon s_{n} t_{n}\right] \sim\left(\pi \varepsilon^{2} t_{n}^{2} / 2\right)^{\frac{1}{2}} \exp \left\{-\varepsilon^{2} s_{n}^{2} \log \log s_{n}^{2} / n^{n}\right\}
$$

it follows readily that $\sum_{n=1}^{\infty} P\left[\left|X_{n}\right|>\varepsilon s_{n} t_{n}\right]$ converges if $\varepsilon>1$ and diverges if $\varepsilon<1$.

Acknowledgements. The author is grateful to the referee for having detected some errors in the first draft of this work, and to Michael Klass for his helpful comments.

References

1. Doob, J.L.: Stochastic Processes. New York: Wiley 1953
2. Egorov, V.A.: On the strong law of large numbers and the law of the iterated logarithm for sequences of independent random variables. Theory Probability Appl. 15, 509-514 (1970)
3. Hartman, P.: Normal distributions and the law of the iterated logarithm. Amer. J. Math. 63, 584-588 (1941)
4. Loève, M.: Probability Theory I (4th ed.). Berlin Heidelberg New York: Springer 1977
5. Marcinkiewicz, J., Zygmund, A.: Remarque sur la loi du logarithme itéré. Fund. Math. 29, 214 222 (1937)
6. Teicher, Henry: On the law of the iterated logarithm. Ann. Probability 2, 714-728 (1974)
7. Teicher, Henry: A necessary condition for the iterated logarithm law. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 343-349 (1975)
8. Teicher, Henry: Generalized exponential bounds, iterated logarithm and strong laws. Z. Wahrscheinlichkeitstheorie verw. Gebiete 48, 293-307 (1979)
9. Tomkins, R.J.: Iterated logarithm results for weighted averages of martingale difference sequences. Ann. Probability 3, 307-314 (1975)

Received April 25, 1980; in revised form May 25, 1983

[^0]: * This research was supported by grant A7588 from the Natural Sciences and Engineering Research Council of Canada.

