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Summary.  For a sequence of independent random variables {Xn} with zero 

means and finite variances, define S , =  ~ X j, s,2--E(S 2) and tn2 
j-1 

= 2 loglog s2; assume s, ~ 00. Kolmogorov 's  law of the iterated logarithm 
asserts that limsupSj(s~tn)=l a.s. if t.IX.l<=~.s~ for some real sequence 

n ~ o ( )  

e , ~ 0 .  This paper will show that, under the weaker condition t,X,/s,~O 
a.s., the a.s. limiting value of l imsup S,/(snt,) depends on the limiting be- 

t l~OO 

haviour of the modified Lindeberg functions 

s; 2 ~ g(x2I(lXjj~ssjtffl)), where e > 0 .  
j=l 

1. Introduction 

Consider a sequence X 1 , X  2 . . . .  of independent random variables (r.v.) with 

~L 2=E($2) and t~ E(Xn)=0 and E(X2)<oo for n > l .  Define Sn= X j, s, 
= (2 log log $2) 1/2. Assume s, --, oo. j= 1 

According to Kolmogorov 's  law of the iterated logarithm (LIL), if a posi- 
tive sequence e , ~ 0  exists such that 

t, IX,l<e,s, almost surely (a.s.) for all n > l ,  (1.1) 

then 

A - l i m s u p  Sn/12s ~ l og logs2) l /2= l  a.s.. (1.2) 
n ~ o o  

* This research was supported by grant A7588 from the Natural Sciences and Engineering Re- 
search Council of Canada. 



136 R.J. Tomkins 

This paper will investigate the value of A when (1.1) is replaced by the 
weaker condition: 

t ,X,/s ,~O a.s. (1.3) 

or, equivalently (by the Borel Zero-One Law), 

~PV_lX.l>es.t2x]<oo for every e>0 .  (1.4) 
n = l  

Under the less restrictive assumption (1.3), A need not be one. For example, 
suppose P[X, +_n]=(2n2) -1 and P [ X , = O ] = I - n  -2 for n > l .  Then z - =  S n - -  n 

and, for e > 0, 

P[IX.l>~s,t:a3~ ~ PKX.=I=OI= ~ n-2<oo, 
n = l  n = l  n = l  

establishing (1.4). But, since ~ P [ X , + 0 ] < o o ,  P[X,4:0 infinitely often (i.o.)] 
n = l  

--0 by the Borel-Cantelli lemma. Consequently, X, converges a.s. so that, 
trivially, S,/(s,t,)--*O a.s.; i.e. A=0.  ,=1 

Theorem 1 of Teicher [6] implicitly suggests a relationship between the 
value of A and the Lindeberg functions 

L,(x) = s: 2 ~ E(X ] I(IXjl > xsj)), 
j = l  

where I(A) denotes the indicator function of the event A. Teicher's LIL asserts 

that A = I  if, for some c5>0, ~ P[[X,l>cls, t,]<oo and, for every e>0,  
n = l  

and 

• (s,t,)- 2 E(XZ i(es, t# ~ < [X.I =< 6s, t,) < oo 
n = l  

lim L,(et 2 i )=0 .  (1.5) 
n ~ o o  

Since (1.4) implies Teicher's first two hypotheses, (1.2) must hold when (1.3) 
and (1.5) hold. 

Rather than deal with L,(x) or L,(xt 2 1), it will be more convenient in this 
paper to work with the functions 

H,(x)-  s# 2 ~ E(X 2 I(IXi[ < xsjt; 1)). (1.6) 
j = l  

Here is the main result of the paper. 

Theorem 1.1. Let X 1 , X  2 . . . .  be independent r.v. with E(X, )=0  and E(X2)<oo 

2=E(S~). Suppose s,--* oo and for all n>l. For n>=l, define S,= Xj and s, 
j = l  
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(log log sz)}IX,I/sn ~ 0 a.s. Then 

H <l imsupS, / (2s  2 log log sZ)} < H+ a.s., (1.7) 
t l ~ O O  

where H_ and H+ are numbers satisfying O<_H <_H+ <1 and (cf (1.6)) 

H a - - lim inf H,{x), H 2 =l im sup H,(x); (1.8) 
n ~ o o  n ~ o o  

the values H and H+ are independent of x. 

Theorem 1.1 will be proved in Sect. 3, following the establishment in Sect. 2 
of several lemmas, some of which may be of interest in themselves. Section 4 
will contain a number of examples which pertain to the main result. 

2. Some Preliminary Results 

The following lemma is known (cf. Egorov [2], p. 512). 

Lemma 2.1. Let {a,(e), n > l }  be a sequence of non-negative functions defined 
for all e > O. 

{i) I f  lira a,(e)= 0 for every e > O, then a sequence {e.} exists such that ~, $ 0 

and a,(e,) ---, 0 as n --* oo. 

(ii) I f  ~ a,(e)<oo for every e>0, then there exists a sequence {e,} such 
n ~  J. o o  

that e,+O and ~ a,(e,) < oo. 
n = l  

Lemma 2.2. Let {a,(8)} be a sequence of non-negative functions, defined for all 
e>0. Define a*= l imin f  liminfa,(e). Then there exists a sequence {e,} such that 

850 n ~ e o  

s,$O and l iminfa,(e ,)>a*.  Moreover, if a,(e) is a non-decreasing function of e 
n ~  o o  

for each n>= 1, then l iminfa , (6 , )<a* for every real sequence {3,} satisfying 3, 
~0. " ~  

Proof. Define f,(e)= inf am(e ) for n > l  and let a(e)=liminfa,(e) where e>0. 
m ~ n  n ~ o o  

Then a(e)-f,(e)$O as n ~ o o  for every e>0. By Lemma2.1 (i), a sequence {e,} 
exists such that e, + 0 and lira [a(e,)-f,(e,)] = 0. However, lira inf a(e,) > a*, 

n ~ o o  n ~ o o  

so lira f.(8.) > a*. However, a,(8,) >f,(e,) so lim inf a,(e,) > a*. 
t l ~ O O  n ~ O O  

If a,(e) is non-decreasing for each n > 1, then, for every e > 0, a,(6,)< a,(e) for 
all large n if 6,+0. Hence l iminfa, (6 , )<l iminfa, (e)  and the proof is completed 
by letting e$ 0. • . . . . . .  

Using Hartman's modificiation [3] of Kolmogorov's techniques, the final 
lemma will establish a refinement of Corollary 1 of Teicher [-8] and of Lem- 
ma 1 of Tomkins [9]. 
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Lemma 2.3. Let (M,, ~ ,  n> 1) be a submartingale and let {%}, {B,} and {c,} be 
positive real sequences. Suppose B, T ~ and define a=limsupc%, 7 

= l imsup (loglogB,2)~c,, and g(x)= x-  2(e - ~ -  1 - x). Assume c~ < 0o and 7 < ~ .  
n~  oo 

I f  positive numbers C, N and T exist such that 

E exp {tMJ(%B,)} < C exp {t 2 g(t c,)} (2.1) 

whenever n> N and O<tc,<T, then 

where 

lim sup 2 M n  .~o~ (B. loglogB2) ~<~K~ a.s. (2.2) 

Ko=2~ and K~,= min (b-X+bg(Tb)) for ?>0 .  (2.3) 
0 < b < T T - 1  

Proof Fix b such that 0<b__<T/~, (b>O if 7=0). Pick any , ' > ~  and let 6 
=a'(b-X+bg(?b)). Then choose c > l  so close to 1 that b' -bc-2>a'(b  -1 
+bg(Tb)); consequently bb'/a'-bZg(Tb)>l. Define % = 1  and, for k > l ,  n k 

M k -  max M, and m k=n k-1 .  Let b, = (log log B2) ~ =min{n[B,>cB.~_~}, * -  
for n>  1. "~-1--<"<"~ 

Choose any 7 '>7 so close to 7 that 2=-bb'/c(-bZg(y'b)> 1. Then, for all k so 
large that ink>N, a ~ < ~ '  and b,~cm<?', it follows from Markov's inequality, 
Doob's inequality ([-1], p. 314) and (2.1) that 

P [M* ~ 3' B,,,kb~J 

__< n [exp {b b,,~ M~/(am~S,,~)} >_ exp {b ~' b2ja'}] 

_-< C exp { - b3'b2 Jo: ' + b z b~,, g(b b,,~ %,,)} 

=<Cexp{-b3'b2J a'+b2b2m~ g(Y ' b)} 

= C exp{-2b2m~} = C(logS2~) z< C(logSZk_~)-~=O((k-1)-z). 

2 > 1 ,  P[M*>=3'Bmkbmk i.o.] =0 .  But Bnk_<=Bmk<CBnk_~, Since 
sob,,k~b,~ ,(i.e. b, ,Jb,~_~l)  as k ~ o o  and 

P1-M,,>=bB,,b,i.~ . . . .  i.o.] 

__< P [M* >= 3 c -  1 Bm ~ bn ~-~ i.o.] 

<n[M~>=b'Sm, b,,ki.o.]=O. 

Therefore, lira sup M,,/(B,b,) ~ b = o:'(b- 1 + bg(Tb)) for all ~'>c~ and 
n ~ o o  

0 <b < T/? (where T/7--~ when ? =0), proving (2.2). Note that, when V =0, K o 
= min (b- 1 + bg(0))-- 2 ~ as shown by Teicher [8]. 

b>O 

Remark. Lemma 2.3 remains valid under the less stringent hypothesis (cf. [1], 
p. 295) that (e ~M4, ~ ,  n >__ 1) is a submartingale for every t > 0. 

Corollary 2.4 (cf. Corollary 1 of I-8]). Let {Xn} be a sequence of independent r.v. 

with zero means and finite variances. Define Sn= ~ X~ and suppose 
j=l 
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2-E(S~) - - ,~ .  I f  X,<c,s ,  for some positive sequence {c,} and all n>_l and S n ~ 
a = lira sup c,(log log s2) -~ < 0% then lira sup S,/(s 2 log log s2) ~ < K a a.s. where Ka 

n~oo n~oo 

is defined by (2.3). 

Proof. By Lemma 1 (i) of Teicher [8], (2.1) holds with M,=S, ,  %=1,  B,=s., 
N = C = 1 and any T >  0. Since c~ = 1 and 7 = a in this case, the desired result is 
clear from Lemma2.3. [~ 

Remark. Corollary 2.4 shows that the hypothesis in Corollary 1(i) of [8] that 
E(X~)=o(s 2) is unnecessary. 

3. Proof  of  Theorem 1.1. 

First, it will be shown that, for any pair ~2~-E1>0, 

lira (H,(e2) - H,(el) ) = 0; (3.1) 
n~co 

this fact establishes the independence of H and H+ from the value of x in 
(1.8). For n > l ,  define the event A,=[~lS,<tnlX,[<=ezS,] and the r.v. Y, 
=X,I(A,). Using (1.4), 

t, E( Y, )/s, Go, 
n = l  n = l  

so (t,/s,) 2 ~ E(yj2)~0 by Kronecker's lemma. (3.1) is now clear because 
j = l  

H.(ei)_H.(~l)=s22 ~, ~(r2). 
j = l  

Turn now to the proof of (1.7). Let e>0. For j > l ,  define 
=P[IXjl > e sjt i l] .  Then, using the Cauchy-Schwarz inequality twice, 

E(IXjl I(IXjl> gsj t~  1 ) ) ~  ~ (E(Xf))~ P9 
j = l  j = l  

(( ( 
J J J 

Pj 

Therefore, in view of (1.4), 

(s, t,)- 1 ~ E(IXj] I([Xfl > e sj t j- 1))~ 0 (3.2) 
j = l  

for every e > 0. 
Since (1.4) and (3.2) hold, Lemmas 2.1 and 2.2 ensure the existence of a 

sequence e, $ 0 satisfying 

~PEIX,  I > e, s, t 21] < ~ ,  (3.3) 
n = l  
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and 

(s.t.) -~ ~ E(IXjl I(IXjl >~jsjtj-1))-->O, 
j = l  

(3.4) 

lim inf H,(e.) = H2.  (3.5) 
n ~ o o  

(Actually, these lemmas yield possibly distinct sequences e',, e~' and e"' in (3.3), 
(3.4) and (3.5) respectively, but all three statements remain true using e. 
= max(e',, e~,', G").) 

Now, for n > 1, define X', = X, I(IX, I < G s, t 21), 

S~, ~ X j ,  (s'.) 2=Var(S;) and ' ' + = ' t. = (2 log log s.) . 
j = l  

Using (3.3) and the Borel-Cantelli lemma, P[X,+X' ,  i .o.]=0, so l im(S,-S' , )  is 
n ~ o o  

finite a.s. and, hence, (S,-S',)/(s,t,)~O a.s. Furthermore, E(S,-S',)/(s,t ,)~O by 
virtue of (3.4). Thus it will suffice to prove that 

- - l m  ' ' H <_A'= 1 sup(S.-E(S.))/(s.t.)<H+ a.s. (3.6) 

Because E(Xj)=0,  

j = l  j = ,  j = l  

so s ;  2 i (E(Xj)) 2 ~ 0  by (3.4). This means that 
j = l  

n 

(s,/s,)2 = s2 2 ~ E(X 2 I(IX~l < %. s~ t f  1) + o(1). 
j = l  

For e>0,  choose N such that e .<e  when n>N.  If n>N,  

H,(e.) < s2 2 ~ E(X~ I(IXjI _-< ej s; t~- 1)) 
j = l  

N 

< s2 2 ~ E(X 2 I(e < tj IXjl/s; < ~j) + H,(e), 
j = l  

so (3.5) and (3.7) yield 

lim inf s'./s. > H_ 
n ~ c ~  

Letting e $ 0, 

H 

and limsup(s',/s,)a<limsupH,(e) for all e. 
n ~ o o  n ~ o o  

< lim infs',/s, < lira sup s',/s, < H+. 
n ~ o o  n ~ o o  

(3.7) 

(3.8) 

If s', converges then S'.-E(S',) converges a.s. by the Kolmogorov Conver- 
gence Theorem (Lo6ve [4], p. 248) so A ' = 0 = H  a.s. trivially, since s,---,oe. So 
it may be assumed hereinafter that s ' ,~ oe. 
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Let m > l  and 2 > H + .  Define Y,,=X', for n > m  and Y~=X.I(IXnl~snt2 ~1 

for n < m ,  and then let Rn= ~ (Yj-E(Yj)) and /*n =2 E(R2).  Since S~,- ~ Y~ de- 
j = l  j = l  

pends only on X~, X 2 . . . . .  Xm, clearly 

(S' n - E (S',) - R,) / (s  n tn) ~ 0 a.s., (3.9) 

and rn/s'n---,1. In view of (3.8), then, and integer N exists such that r ,< 2 s ,  for 
n>_N. 

Now, I Y n - E ( Y , ) [ < 2 e m s ,  t2 I, n > l .  Since % s ,  t21 is non-decreasing as 
n--, 0% Lemma 1 (i) of Teicher [8] implies 

E exp {t Rn/rn} < exp {t 2 g(2 t  e~ sn/(r . tn)) } 

for every t > 0  and n > l ,  where g ( x ) = x - Z ( e  - x -  l - x ) .  Replacing t by trn/(2sn) 
yields (2.1) for n > N ,  with M n = R  .,  C = I ,  %=2,  B, ,=s , ,c ,=2em/( ; t tn )  and any 
T > 0. Since 7 = 7m = lira sup t n c,, = 2era/2 < o% Lemma 2.3 implies 

n ~ o o  

lira sup R, / ( s  n tn) < 2 -  ~ 2 K.~m a.s. 
n ~ o o  

for every m > 1 and 2 > H+. In view of (3.9), then, 

lim sup (S' n - E (S'n))/(s . tn) < 2 -  -~ H+ K ~ a.s. 
n ~ o o  

for every m> 1. The right-hand side of (3.6) now obtains by letting m~c~,  
which implies 7m-,0 and K~m--,2~. 

By 0ebygev's inequality and (3.8), P [IS' n - E (S'n) [ > ~ s~ t~] < (s',/(e s, t~)) 2 ~ 0 as 
n~oo  for every e>0. Hence (S ' , -E(S'n)) /(Sntn)- ,O in probability, so A'>0.  
Therefore, (3.6) is true when H_ = 0, so suppose/-/_ >0. Since 

]X'~ - E(X'n)l/s'n ~ 2~, Sn/(S' n t,) = a, and a, t'n = 0(~,  t', t ;  1 H E  1) = O(en), 

Kolmogorov's LIL implies l imsup(S 'n-E(S 'n) ) / ( s ' , t ' , )=l  a.s. Noting that 
n ~ o o  

s ~ H / 2 < s ' n < 2 s n H  + for all large n when H_ >0  (cf. (3.8)), clearly t 'n~t  n. Since 
l i m i n f s ' , / s n > H ,  the left side of (3.6) follows. 

4. Some Illustrative Examples 

The three examples to follow emphasize the importance of (1.3) in Theorem 
1.1. 

Example  4.1. Consider any numbers a, b such that O<_a<_b<l.  An example 
will be constructed in which Theorem 1.1 applies with H = a  and H+ =b. To 

this end, let {6n} be a sequence with 3n=0 or 1, a2= l imin f  ~ 6 i n  and b 2 
n n ~ ( y ~  j =  1 

=lira sup ~ 6 /n .  Let {Y,}, {Zn} be independent sequences, independent of each 
n ~ o o  j = l  
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other, such that  P[Y,=+_I]=I/2, P[Z,=+_nJ=l/(2n 2) and P [ Z , , = 0 ] = I  
2 - n  2. Then let X,=6,  Y,,+(1-g,)Z,. Clearly E ( X , ) = 0 ,  E ( X 2 ) = I  so s,=n. 

Moreover ,  for e > 0 ,  X,I(lX, l<es, t21)=6, Y, for all n so large that  
t,<es,,<nt,, so E(X2I(lX,]<_es, t21))= 2_ -- 3 n -  6n for all such n. Hence  

n 

lim H,,(e)-j~g);/n_l = 0 ,  so H = a ,  H+ = b .  

Note  that  (1.3) holds in this example,  but  (1.1) does not  if a < l .  Indeed, if 
a < 1, then there is a subsequence {~k} such that  3 n =  0 for all k > 1. But then 

_ � 8 9  �89 I X . k l / s . ~ -  IZ.~l/nk - nk 

on the event [ Z ~ # 0 ] ,  so (1.1) is false. But, for e > 0 ,  

P[IX.l~es.t[1]<= ~ P[Z,=#O] < o %  
n = N  n = N  

where N = min {hie s, > t,}, so (1.3) holds. 

Example 4.2. It  will be shown that  (3.1) may  fail when (1.3) doesn ' t  hold by 
means  of a wel l -known example  (see Marcinkiewicz  and Z y g m u n d  [5] or 
T h e o r e m  5 of Teicher  [6]). Let  I11, Y;, .-- be independent  r.v. with PLY,= _+1] 
= 1 / 2  for all n > l .  For  2 > 1 ,  let aZ-(logn)-1exp(22n/logn) and X n = G Y  .. 
Since 2 2 s,~(logn)G/(22 ) and, hence, t ~ 2 1 o g n  (cf. [5] p. 219) in this case, the 
(constant) sequence 2 2 2 t, Xn/S,~42. Hence  (1.3) is false, Hn(e)--,1 if e2>42 ,  and 
H , ( e ) ~ 0  if e2<42 .  

Example 4.3. Suppose  X 1, X 2, ... are independent  r.v. such that  X n is no rma l  
with mean  zero and variance n n. Then  H a r t m a n ' s  L I L  [3] implies (1.2). But 

2 n s, ~ n  so, for every e > 0 ,  

P[IX~] > e s ,  t 21] =p[Z>es j ( t  n nn/2)7 ~ PI-Z > 0] = 1/2, 

where Z is a s tandard  no rma l  r.v. Hence  (1.4) fails in this case. This shows that  
(1.4) is not  necessary for (1.2). 

Teicher  [7] showed that  (1.2) always implies l im sup X,/(s, t , )<  1 a.s. In fact, 
n ~ o o  

the example  above  shows that  Teicher 's  necessary condit ion is the best possi- 
ble, in the sense that  lira sup XJ(s, t , ) =  1 a.s. above. It  follows f rom the well- 

known  fact that  P [ Z > x ]  ~e-~/2/(27cxZ) ~ as x ~ o e  that, for e > 0 ,  

2 / / 7  n / �9 e l o g l o g G /  y, P[IX, I > e s, t,] ~ Oz e z t2 /2) ~ exp { -  e2 s, 

it follows readily that  ~ P[IX, I > e s, tn] converges if e > 1 and diverges if e < 1. 
n = l  
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