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0. Summary. No matter which value t of a statistic T, has been observed 
the loss of information, in comparison with the original data, will asymp- 
totically (as n--, oo) always be the same: this statement is interpreted and 
proved in the framework of "comparison of experiments", under assump- 
tions commonly accepted in asymptotic statistics. The loss of information is 
described by the conditional experiments {So (data I T, = t): 0cO}. These are 
shown to be all of the same "type",  as n ~  oo. 

1. Introduction and Exposition of Results 

This paper extends results which have been used to compare statistics Sn, T,, 
with respect to the operating characteristics of related tests, estimation pro- 
cedures etc. In the case where the statistics under consideration are already 
estimators the most useful idea has been to compare their asymptotic va- 
riances. This requires regularity conditions to guarantee the existence of a 
normal approximation; even then the situation is much obscured by the 
occasional appearance of "superefficiency". The rather attractive idea which 
excludes this nuisance has been developed by Hfijek (1970), Inagaki (1970): it 
consists in showing that quite generally the limiting distributions of "regular" 
sequences of estimators can be represented as convolutions X(0 ,  F )*H where 
F is the inverse Fisher information matrix and H is some probability measure. 
Intuitively, the spread of H reflects the loss of information in comparison with 
asymptotically optimal estimators. As has been shown by geCam (1972), the 
existence of such representations follows easily in the common situation where 
the distributions of the estimators asymptotically form translation families: if 
T, is asymptotically less informative than Sn in the sense of LeCam (1964) its 
distribution family can be obtained approximately from that of S, by a random- 
ization; for translation families the randomizing kernel can be chosen to be 
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invariant, and thus as a convolution kernel. This approach is both very 
powerful - it requires few assumptions, and very general - it is not restricted to 
the case of asymptotic normality. On the other hand, it does not relate the 
concrete form of the convolution kernel to decision-theoretic concepts. 

The approach of the present paper goes back to the idea behind the 
classical definition of sufficiency, which, in the language of statistical decision 
theory, can be formulated thus: the conditional experiments given the value of 
a sufficient statistic do not contain any information (i.e. they consist of identi- 
cal measures). In principle, this is the idea of a two-stage experiment: first one 
observes T,=t; secondly, given T,=t, one samples from the conditional distri- 
butions ~0 (datal T,=t). Similar two-stage decompositions make sense also in 
certain cases when T, is far from being sufficient. The conditional experiments 
corresponding to the second stage then embody the information lost by using 
T n. The purpose of this paper is to show that under assumptions commonly 
accepted in asymptotic statistics, the limiting forms of the conditional experi- 
ments are, with high probability, all of the same "type", i.e. contain the same 
residual information. The assumptions essentially say that the basic experi- 
ments can be approximated in norm by linearly indexed exponential families of 
distributions, as proposed by LeCam (1960); in addition the family of distri- 
butions of Tn is assumed to behave asymptotically as a linearly indexed 
exponential family. Thus, no use is made of asymptotic normality, and the 
structure behind the Hgtjek-Inagaki theorem is revealed. 

In more detail, the contents of this paper are as follows. 
We consider experiments (that is, parametrized families of probability mea- 

sures) on measurable spaces (X~, d , )  which are such that all conditional distri- 
butions appearing below exist. This can be achieved by assumptions about d ,  
- for instance by choosing X, to be a Polish space (or, more generally, a Borel 
subset of some compact metric space), and d ,  the family of its Borel subsets. It 
could also be attained by using a generalized concept of "conditional distribu- 
tion"; in the sequel, however, we refrain from such abstractions, but rather 
refer to the Polish case. The sequence of experiments under study will be de- 
noted by •,=(X,, d,;Po,,: OeO) or, more simply, #~=(P0,,: 0~O) where Po,, are 
probability measures on d ,  indexed by elements 0 of the parameter set O, 
which is an open convex subset of I(  k containing the origin. The statistics of 
interest are denoted by T,; they are measurable maps from X, to some Polish 
space Y (which will usually be Euclidean). In standard applications the experi- 
ments g, consist of n-fold product measures with the parameter 0 and T, 
already renormalized. There is no loss of generality if one replaces C, by the 
equivalent experiment ( f , , d , ;  Po,,X Tn: 0~0) consisting of the joint distri- 
butions of the data X, and the statistics T,. This replacement will be assumed 
henceforth, even if not explicitly mentioned. By a disintegration one can 
represent Po,, x T, as B0, n X T, Po. ., with Markov transition kernels B0, . from Y- 
to X,, which are simply the conditional distributions (under P0,,) of X, given 
T,. Thus #n is decomposed into a two-stage experiment: at first, (r Po,,: 
0~O) is performed and the value t of T, is observed; then one samples from 
the conditional distribution Bto,, of X n given T,,=t; i.e. one performs the 
experiment r162 0~0). Although this decomposition appears somewhat 
artificial, the conditional experiments are an appropriate device for describing 
the residual information ,not yet exhausted by T,. 
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, t The experiments ~n and '~n can be treated neatly when E n is a linearly 
indexed exponential family, i.e. consists of distributions Qo,n such that 

Qo,n = exp(0'Sn-An(0))" Q0,n (1) 

where S, is a IRk-valued (sufficient) statistic and An(O ) a normalizing constant. 
Therefore, in the present paper, more general situations g,,=(Y~, sen; P0,n: 0cO) 
will be treated through approximation by exponential families 

(~n, W,; Q0,n: OEO). (2) 

For these, given the null-distribution of Sn, the joint distribution of Sn, T n is 
completely determined by the family (in O) of marginal distributions of Tn; this 
is because we have assumed 

O is an open convex subset of IR k containing the origin. (A0) 

This circumstance is responsible for the asymptotic uniqueness of the above- 
mentioned disintegrations, which is indispensible for our approach. Thus ex- 
periments which can be approximated by exponential families form the natural 
framework for this study. The idea of such an approximation goes back to 
LeCam (1960). He has shown that under rather general conditions one can 
approximate P0,n by a linearly indexed exponential family (1) in the sense that 
(11) (12) (13) hold: 

[[P0,n-Q0,,l] ~ 0  (0cO; n ~  o~): (A1) 

S, Po,n~ F o weakly, (A2) 

where F 0 is some probability distribution on IRk. Of course, in (A2), Po,, can be 
replaced by Qo,n without invalidating this statement. Since exp(An(0)) is the 
Laplace transform of Sn, one concludes that An(O ) converges to some function 
A(O) equal to the log Laplace transform of Fo-provided the latter exists; this we 
postulate: 

exp(0's) Fo(ds ) = exp(A(0)) (0EO). (13) 

Conditions (A0) (A1) (A2) (A3) are assumed throughout this paper. It is impor- 
tant, and easy to see, that these conditions imply contiguity for the measures 
P0.n as well as for Qo,n. 

As already mentioned, we do not describe "information" by a numerical 
quantity but rather as the "type" of an experiment. For comparing experi- 
ments we shall use the deficiency A, which was introduced by LeCam (1964). It 
is a pseudo-distance between experiments JH~=(~, ~ ;  Mo, i: 0~0)  which, in the 
dominated case, can be defined as follows (for the general case see LeCam 
(1964)). Let 

6(J{1, Jg2) = inf sup ][ LMo, 1 - Mo, 2 [1 (3) 
L 0 E O  
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where the inf is taken over all Markov transition kernels L from ~ to Y/2 
(these spaces are assumed to be Polish and endowed with the sigma-algebras 
Ni of Borel sets). From ~ one obtains the deficiency A by symmetrizing: 

A ( ,~1,  ~/g(2)= a( ,~l l ,  ,////'2) v ~5(~//~2, ~/t(1). (4) 

Experiments ~1 ,  J~2 with A(Jgl, J /~2)=0  are called "equivalent"; the equiva- 
lence class of an experiment is referred to as its "type". Frequently, the sup in 
(3) will be restricted to subsets D of O; the deficiency distance will then be 
called AD. Convergence of sequences of experiments in A will usually be 
established by first proving convergence in AD, for all finite subsets D of O, 
and then approximating. The first step is facilitated by considering the Hel- 
linger 1 transform of experiments: 

v)=I IF[ (dMor ~ 
OeD 

(e0>0 for OED, ~ %=1), 
O~D 

(5) 

where D is a finite subset of O. Pointwise convergence of rl is equivalent to 
convergence of the respective experiments in A D. In case of a linearly indexed 
exponential family (1) the Hellinger transform takes on the particularly simple 
form (6): 

exp(A,(~ % 0 ) -  ~ %A,(O)). (6) 
O~D O~D 

This applies in particular to the conditional distributions of X, given T,=t  
(under Qo,,), versions of which can be selected in essentially one way so as to 
form an exponential family. 

Let ~- be the exponential family consisting of the distributions Fo= exp (O's 
-A(O)).  F o. According to LeCam's "third lemma" these are the weak limits of 
F0,,=S,P0, . (forming the experiment 4).  By the above arguments one easily 
shows that AD(g,, ~ ) ~ 0  (n-+ oo) for all finite subsets D of O; it even follows 
that Ar~(g,,~)---,O (n--.oD) for all compact subsets K of O if condition (A1) 
holds uniformly on compacts. 

In our more general framework described by the assumptions (A0)...(A3) 
one obtains the following theorem which has the classical result of Hfijek- 
Inagaki as a corollary. Here L~(Fo) denotes the band of measures absolutely 
continuous with respect to F o. 

Theorem 1. Suppose the marginal distributions Go,,= T, Po, . converge weakly, say 
to G o (0~0). Then the joint distributions ~-cP(S,,Tn]P0,,) converge weakly. The 
limit distributions 5~(S, T I O) are of the form F o x R where R is a Markov kernel 
from N k to 3-- which does not depend on the parameter O. The kernel R, as an 
operator on LI(Fo), and hence the joint distributions of S and T, are uniquely 
determined by the relations Go=RF o (OsO). 

1 Ernst Hellinger was professor of mathematics at the university of Frankfurt from 1914 through 
1935 
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In the terminology of LeCam (1972) this means that the S~ are "distin- 
guished" statistics; moreover the theorem asserts the uniqueness of the ran- 
domizing kernel. 

When applied to situations where, for some positive definite symmetric 
linear operator F on IR k, the distributions F;:=FF o and G o both form trans- 
lation families theorem 1 reproduces the classical result of H~tjek-Inagaki. 
(Such situations occur in estimation problems under the assumptions of asymp- 
totic normality of S~ and "regularity" of T~). In this case the transformed 
kernel R'..=RF-~ satisfies (R'F~).6o=R'(F~.(5o) (0, ~ 0 ) ,  and R' can be select- 
ed in such a way that it commutes with shifts; it therefore reduces to a 
convolution kernel: R'F'=-F '*H for some probability measure H. Despite its 
general formulation this argument is confined to the case of asymptotic nor- 
mality within the present framework. For the family (F~: 0cO) is automatically 
Gaussian since it is a linearly indexed exponential family and translation- 
invariant at the same time. More precisely, we have F~=JV(O,F) as follows 
from the definition of F 0. Thus one arrives at the familiar form of the con- 
volution theorem Go= ~(0 ,  F)*H. 

Let N be the experiment (Go: 0~O); being less informative than ~ it 
consists of mutually absolutely continuous distributions. The densities dGo/dG o 
will be denoted by go. Clearly, ~(S,  T[O) has the correct marginals: S(S]0) 
=Fo, S(T]O)=G o. Theorem 1 holds in particular if P0,, is replaced throughout 
by Qo,n, the limit remaining unchanged. Let ~ be the experiment consisting of 
Ho,~= T~(2o,,. The joint distribution of X~, Tn under Qo,, will be disintegrated 
into Co, ~ x Ho, ~ with Markov kernels Co, ~ from ~-- to ~r representing the 
conditional distributions of X~ given T~, under Qo,~. Given re.J_ let qf, t denote 
the conditional experiment (C~.~: 0eO), which, as an exponential family, is 
well-defined with Ho.~-probability one. In the limit, a similar disintegration 
leads to 

~(S, TI O)= Co x G o (0cO); (7) 

the corresponding experiments (C~: 0cO) will be denoted by eft. 
The two main results can now be stated. The first one (Theorem 2), briefly, 

asserts that, once the total information converges, the information contained in 
a statistic converges if and only if the residual information converges. 

Theorem 2. Assume that condition (A1) holds uniformly on compact subsets of O. 
Let Go. ~ converge weakly to G o with continuous densities go (0~0). Then the 
following statements (i) (ii) (iii) are all equivalent. 

(i) AK(fq,,, .~)~0 for every compact subset K of O; 
(ii) supEo,nAD(.~r~ ~, ogre)--*0 (D finite, K compact subset of O)," 

OeK 

(iii) sup E0, n AK,(cg~ r~, (gr,)__+0 (K and K' compact subsets of 0). 
OeK 

The remarkable feature here is that conclusions about conditional, and 
hence joint, behavior of Sn and T, can be drawn from a statement about 
marginal distributions only. This is related to the phenomenon discussed 
above, following (2). The unpleasant necessity of distinguishing between N~ and 
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cgs cannot be avoided when dealing with uniformity in 0. The reason is 
that all that is known about their difference comes from the assertion that 

f alP0.-+0. I L B o , . -  (8) c o , . I k  . 

This obviously cannot exclude the possibility of a locally ill-behaved experi- 
ment O,~BT;,, no matter how regular 0,~ COT,", may be. 

An important special case, when the limit experiment ff is a linearly 
indexed exponential family, is treated by Theorem 3, our second main result. It 
shows that, no matter which value t of T, has been observed, the residual 
information is always the same: it can be described by the type of a single 
experiment cg replacing the bundle off. of Theorem 2. Convergence in distribu- 
tion of T= is not required here; hence, in this situation, the symbol ff does not 
refer to the above weak limit. 

Theorem 3. Assume that condition (A1) holds uniformly on compact subsets of 
O. Then the following statements (i) (ii) (iii) are all equivalent. 

(i) There is a linearly indexed exponential family q~ such that AK((r ~ )~0 ,  
for every compact subset K of O; 

(ii) there is an experiment c~=(Co: OeO) 
(D finite, K compact subset of 0); 

(iii) there is an experiment cg=(Co: OeO) 
(K and K' compact subsets of 0). 

such that supE0, . Ao(~,rn, cg)~0 
OeK 

such that sup Eo,,AK,(cg, r", cg)~O 
O~K 

The type of the experiment cg, a linearly indexed exponential family, is 
uniquely determined by ~" and (q through the expression 

A(~, cg|  (9) 

this means that ~" can be factored into a product of the limit experiment of T, 
and an experiment rg describing the information deficit. Although rg is not 
unique as an experiment, it can be selected in a natural way; with this choice 
of cg, the cases admitting a factorization (9) can be concisely characterized, 
moreover the relationship between cg and the bundle cg. of Theorem2 will 
become apparent. 

Proceeding to the construction of rg, let us start with an experiment if, 
assuming only that it is less informative than ~,, i.e. 6(~,(~)=0. The Markov 
kernel R transforming F o into Go=RF o is unique in the sense that any kernel 
with this property will define the same family of joint distributions #o:=Fo 
x R_=~(S, T]O) on IRk x 3- (compare Theorem 1). Having now a represen- 

tation of ~ and (~ by joint distributions, as in Theorem 2, one can characterize 
the situtation of Theorem 3 as follows: 

(~ is a linearly indexed exponential family if and only if for some function 
the statistics S-@(T) and T are independent under #o (equivalently: under #o). 
In this case ~(T) differs from Eo(S I T) by at most an additive constant. 

Our choice of cg=(C0: 0cO) will be 

C o = Y ( S  - O(T)] 0). (10) 
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The conditional experiments (gt appearing in Theorem 2 can then be obtained 
from (g by simply adding a constant ~(t) to each observation (thus preserving 
the type of ~): 

C~o = ~o(SI T= t) = S ( S  - ~/(Z)[ 0) �9 cSq,.) = C o �9 6o(~). (11) 

To prove the "only if"-part of the above criterion one writes down two 
different expressions for the densities dGo/dGo(t ). One is the assumed exponen- 
tial family form of the densities exp(O'~r(t)-B(O)) where o- is an IRk-valued 
function on J~ and B(O) are norming quantities; the other one is the marginal 
density representation E o(d#o/dt~ o [ T= t) = E o(exp(O' S - A(O))] T= t). Hence 

E0(ex p O'(S - o-(T))[ T)= exp(A(0)- B(0)), (12) 

and the independence of S - a ( T )  and T follows. It remains to show that 
E o ( S [ T ) - a ( T )  is constant, which can be done by differentiating (12) with 
respect to 0 at 0 = 0. 

The "if"-part of the criterion can be proved by reversing this argument. 
In standard situations, the criterion reduces to familiar independence re- 

lations. As an example, consider independent variables U~ having Gamma 
densities u ~ exp(-u)/F(Oi) respectively (i= 1,2). Let S,=(S 1,Sff=(log (/1, 
log Uz)' and T , = U ~ + U  2. The distributions of T under 0=(01,02)' form an 
exponential family with densities proportional to exp(O'a(T)) where ~(t)=(log t, 
log0'. Here our criterion asserts the well-known independence of S - a ( T )  
=(log U1/(U 1 + U2) , log U2/(U 1 + U2) )' and T= U 1 + U 2. Hence in this situation 
our experiment (r corresponds to the Gamma family with parameter 01+02, 
and our (g is equivalent to the Beta family with parameter (02,02). 

The situation becomes particularly simple in the case of asymptotic nor- 
mality: any nondegenerate factorization of a Gaussian experiment ~- 
=(X(0 ,  F): 0~O) (F nonsingular) consists of (X(0, F1): 0EO) and (~U(0, F2): 
0~O), up to equivalence, where F~-~ +F2 -~ = F  -1. This is because the canonical 
sufficient statistics S - E o ( S ] T  ) and Eo(SIT ) must be normally distributed as 
independent variables whose sum is Gaussian. 

Theorem 3 thus covers, in particular, the important case of asymptotic 
normality and statistics T n which are approximately linear functions of Sn. It is 
noteworthy, however, that there are situations occurring frequently in practice 
which admit no such simple answer. For instance, when T, is of quadratic type 
the experiment may consist of a noncentral chi-square-family, which is not an 
exponential family. 

2. Proof  of Theorem 1 

The first step consists in showing that the sequence of distributions 
5f(S,, T,[Qo,n ) converges weakly. Since this sequence is tight (note that its 
marginal distributions converge by assumption), it suffices to show that it has 
at most one limit point. Let /~o=2'(S, TI0) be a limit point. Then, for any 
bounded continuous function u, one gets 

~udGo=Eou(T) exp(O'S-A(O) ) (0~0)  (13) 
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where the expectation on the right is taken under /%. In deriving (13) con- 
tiguity is used. The parameter 0 being arbitrary this determines #0 uniquely. 

In the second step one obtains the existence and the particular form of the 
limits 5~(S, T[O) by LeCam's "third lemma" and by sufficiency. By LeCam's 
lemma, for every 0 there will be convergence of S(S.,T,,IQo,=) , say to 
5~(S, TI0); moreover, (14) holds: 

dLP(S, T[O) d~(SlO) 
d ~ ( S ,  TIO)-dS(SIO)"  

(14) 

This means that S is sufficient for the family ~(S,  T] 0), implying the existence 
of a universal conditional distribution R of T given S. Hence the desired 
disintegration holds. The uniqueness of R follows from the Laplace transform 
argument used in the first step. 

3. Auxiliary Technical Results 

In our context exponential families prove useful because of the special form of 
their densities and Hellinger transforms, and because of their regular analytic 
behavior. These properties are inherited by the conditional experiments cs 
provided these have been chosen properly. One possible construction of ~" is 
described below. 

First note that Ho,.-almost surely one has 

h t dH~ " 0, =( ) -= ~ (t) = E o,n (exp (0' S,, - A.(O))I T,, = t) (15) 

where Eo, . means expectation under Qo.=- Up to a set of Ho,.-probability zero 
the right hand side of (15) can be represented as 

exp(0' S= - A=(0)) d Cto,. (16) 

with a Markov kernel Co,= from Y to Y'. satisfying Co,=xHo,= 
=Sq(X.,  T.IQo,=). In the sequel we always select the version of ho,.(t ) given by 
(16). For each t, the experiment (C~,.: 0~O), up to technicalities, ought to be 
an exponential family; therefore, to avoid measure-theoretic difficulties, we 
start by defining 

exp(0'S,,) d C~,. (17) 
d C;,. - 5 exp(0' S.) d C~,.' 

which, after (16), is nothing but 

exp(0'S. -A.(O)) 
ho,.(t) dC~o,=. (1.8) 

This definition, however, makes sense only for those t for which ho, n(t)< + c~ 
simultaneously for all 0eO. But this happens with H0,.-probability one, due to 
the convexity of the log Laplace transform. Hence we take (18) as the de- 
finition of C~,. for those t which satisfy ho,.(t)< +oo (OEO), whereas, for the 
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remaining t, the measure C~,= may be defined as the point mass at zero. This 
definition makes ~=(C~,=:  0~O) an exponential family ( t~Y) whose members 
are versions of the conditional distributions in question. Moreover, cg~ is 
essentially unique in the sense that C~,==C~,= (0eO) for Ho,,-almost all t 
whenever -t (Co,=) is an exponential family with d'o.=• o. ") 
(0eO). In this sense the conditional experiments (g,t are uniquely defined, with 
Ho,=-probability one. The same applies to the limiting experiments cgt. Clearly, 
no technical problems arise when the parameter set is finite, as is the case in 
the statements (ii) of Theorem2 and 3. Thus the original conditional experi- 
ments ~= can be used there. 

The Hellinger transforms t/(e; (g,~, D) have an interesting form relating them 
to the densities ho,=: 

h (t) 

t/(c~; ~t, D) = 0~ r/(c~; ~ ,  D); (19) 

ho, . ( t )  =~ 
O~D 

(the same applies to the limiting experiment c~). This can be seen by consider- 
ing (6) in connection with the Laplace transform of Lf(S=l C~,,): 

2t=(0) =- ~ exp(0' S=) d C~,= = ho, =(t) exp(A=(0)), (20) 

which, in view of (18), is related to the Hellinger transform as follows: 

t/(c~; c~, D)=)o'=(~ ~oO)/[I 2t=(O) ~~ (21) 
O~D O~D 

Since Laplace transforms converge uniformly on compacts whenever they 
converge pointwise, the assumptions (A1) (A2) (A3) will imply that 

A=(0)--,A(0) uniformly on compact subsets of O. (22) 

The asymptotic behavior of the conditional experiments therefore depends 
solely on the densities ho, =. 

In the proofs of the main theorems one establishes: (a) the convergence in 
probability of the transforms q(e; cgr=, D) uniformly in c~; and (b) the uniform 
(norm-) precompactness in probability of the families r= (Co,=: OeK), K compact. 
To this end two auxiliary results are needed which mainly exploit the proper- 
ties of Laplace transforms. 

Lemma 1. Let  e > 0 and D a f inite subset o f  O. Then there exist numbers n o and 
b depending on D and ~ such that 

Qo,, [sup I~-ml-1 I~(c~; ~", D)-~(m; ~T. D)I <h i  > 1 - e  
cc 4- ~ '  

as soon as n > n o. 

The proof  relies on a well-known property of families of analytic functions: 
uniform boundedness implies a uniform Lipschitz condition. The function 0 
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-~Z.(0), as a Laplace transform, admits a unique analytic continuation to O 
+iIR k. By (20), for every finite subset D of O and every 0*Econv(D), the convex 
hull of D, one obtains 

[At.(O* § (v~IRk); 
O L D  

(23) 

here, the second inequality is a consequence of the convexity of the log 
Laplace transform. Another application of (20) then gives the boundedness in 
Qo,.-probability of the sequence Z.rn(0) since by contiguity ho,.(T.) is bounded in 
probability and A.(O)--*A(O) (OeD). One concludes that there is a number b 
such that for all n 

])~,, (01)-'~. (0a)l< b] > 1 - 5 .  Qo,,,[ sup 101_02L-1 rn r. = (24) 
01.02~conv(D) 

In view of (21) this implies an analogous bound for the Hellinger transforms if 
one can show that 2,r"(0), with high probability, is bounded away from zero 
and infinity (O~D). Boundedness from above has already been shown; boun- 
dedness from below follows by a standard contiguity argument. 

Similar arguments will yield the uniform precompactness, stated as 
Lemma 2. 

Lemma 2. Let 5>0 and K a compact subset of  O. Then there exist numbers n o 
and b depending on K and 5 such that 

c T ~  _ 7;,1 = Qo..[ sup 101-021 1/211 oa,~ C02,.H<b] > 1 - 8  
O I , 0 2 E K  
01 =/: 02 

as soon as n > no. 

The proof uses a well-known inequality relating the total-variation distance 
to the Hellinger distance: 

t Co~,,,I I ~ dC t ILCo,, _ t 2<4(1_$1 /dCol . "  o~,.). (25) 

By (17) and (20) the right-hand side of (25) is equal to 

In view of (24) it suffices to show that )~.r"(0) is bounded in probability away 
from zero and infinity, uniformly in OeK. Uniform boundedness from above 
has already been established in the proof of Lemma 1 for the sufficiently large 
class of compacts cony(D), D finite. Every family of distributions having locally 

Co.z) is "tight uniformly bounded Laplace transforms is tight. Similarly S(S.I r. 
in probability", in the strong sense that it has a universal compact epsilon- 
support; more precisely, for every 5>0 there is a compact subset L of IR k such 
that 

Qo,.ECor% {S.~L} > 1 -5 ]  > 1 - e .  (27) 

)~.r~(O) This in turn implies that inf is bounded away from zero, in probability. 
O e K  
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4. Proof of Theorem 2 

"(i) implies (ii)'" 

As a first step, pointwise convergence of the Hellinger transforms ~/(.; ~gr,, D) in 
Qo.n-probability will be shown. As in {19), in the limit, the Hellinger transforms 
are of the form 

gE~o0 (t) 
r/(c~; cg~, D)= o 

[I  go(O ~~ 
D 

tT{ct; ~ D), (28) 

G0-almost surely. In view of {19) it therefore suffices to prove that 

h 

D D 

D D 

(29) 

in Ho.,,-probability. Let D*=Du{O*}, with 0*=Vc~o0. If one denotes the 
D 

likelihood ratios h~,,,/~ ho,,, and g / ~ g o  by r~., and ~i respectively, (29) can be 
D* D* 

replaced by the equivalent assertion (30) that 

FI (to, ,,/ro.,y~ _ F[  {ro*/"o) ~~ -" 0 (30) 
O~D O~D 

in H0,n-probability , or - by contiguity - in H~.,-probability (reD*). Since, by 
contiguity, the ratios ~i,, are bounded away from zero and one (with high 
probability), for proving (30) it suffices to show that 

r0.,,--+r o in H~,,-probability (O, z6D*). (31) 

For this, the assumed weak convergence Ho,n~G o is not enough, since it only 
implies convergence of {31) in distribution. If, however, in addition to weak 
convergence one has convergence in A of the experiments (Ho,,: O~D*) to (Go: 
OaD*) and the densities go are continuous, (31) will indeed follow. This is a 
general proposition implicitly contained in LeCam (1979; Thm. 1, Sect. 3, 
Chap. 7). Since these conditions are fulfilled in our case, (31) and thus the 
pointwise convergence of the Hellinger transforms are established. 

In a second step, (iii) will be derived by approximation arguments using 
Lemma 1 and 2. By Lemma 1 we get uniform convergence of the Hellinger 
transforms, in Ho,n-probability. This immediately implies that 

AD(~T,, cgT,,)~ 0 in Q0.,-probability, for finite D. {32) 

By Lemma 2 this can be extended to 

A K(~fi, ' ~FT,)_~ 0 in Qo,,,-probability, for compact K. {33) 
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Finally, this convergence takes place also in P0,,-probability uniformly on 
compact subsets of O, by the assumed uniform validity of (A1) and by the 
uniform precompactness of (Qo,n: 0Ecompact). 

"(ii i)  implies ( i )"  

As in the preceding part of the proof it suffices to show pointwise convergence 
of the Hellinger transforms t/(-; :0~:~, D) to t/(. ; ~, D) for every finite subset D of 
O. These can be written in the form 

t/(c~; :~4:~, D) = S [ I  h;~ dHo*,~, (34) 
D 

,1(c~; N, D) = ~ 1-[ g;~ dOo* (35) 
D 

respectively (0" =~,  ~00). The integrands turn out to be the reciprocals of the 
D 

quantities occurring in (29), the difference of which tends to zero in Ho.~- 
probability, by (iii). By contiguity, the same holds for the integrands of (34) 
(35). Convergence of the integrals (34) (35) then follows from uniform in- 
tegrability of the integrands which is a consequence of the inequality 

[1 h~~ *, ~ < max ho, Jho. ' ~ (36) 
D D 

and of contiguity. 

"( i i )  and (iii) are equivalent" 

This is a consequence of a standard inequality (see, for instance, LeCam (1974)) 
relating the norm difference between probability measures to the corresponding 
norm differences of their conditional distributions. When applied to Bo, . x Go, n 
=P0,n x Tn and Co," x Ho,n=Qo,, x T~, this inequality reads as follows: 

S ][ B;,, - C~,, ]1 (Go, n(dt) + Ho, n(dt)) (37) 

<4 [IPo,~ x T , -Qo,  n x Z~ll. 

Since the right-hand side of (37) is nothing but 4 [IP0,n-Q0,~l[, this yields the 
desired result up to an approximation argument based on Lemma 2. 

5. Proof  of  Theorem 3 

"( i )  implies (ii i)" 

First we show that the (random) Hellinger transforms of the conditional 
experiments converge weakly in distribution to a constant random variable, for 
fixed argument c~; from this convergence in probability will follow, for each 
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separately. This degeneracy is decisive for the appearance of a limit experiment 
cg not depending on t, as asserted by (iii). 

Let f# consist of measures G o of the form 

Go=exp(O' U-B(O)) .  G O (0~0),  (38) 

with some IRk-valued statistic U. Let D be a finite subset of O and fix a; 
denote ~ c~oO~conv(D ) by 0". By (i) and (A1) one has AD(Jf ~, N)~0 ,  which can 

D 
be equivalently expressed by the convergence in distribution of the vectors of 
likelihood ratios: 

We now consider 

~P, ((ho,,/ho. ,.)o~DI Ho, ,,) ~ S((go/go,)o~ol Go,). (39) 

(~o)o~u,~(I~ ~.go)- i (40) 
OLD 

as a functional on the vector of likelihood ratios. By contiguity, this is con- 
tinuous in almost all points, with respect to the limit distribution of (39). 
Therefore, its distributions converge weakly: 

2'  ( ho, ' ,/~[ h~~ I Ho, ,.) ---, L# (go*/[-[ g;~ l G o*) . (41) 
D D 

The experiment fq being an exponential family of the form (38) the right-hand 
side of (41) turns out to be a point measure concentrated at 

exp( ~ aoB(O )-B(O*)), (42) 
OeD 

the reciprocal of the Hellinger transform of N (see (6)). Hence, by (19), 

t/(c~; cgr,, D ) ~  t/(e; ~,  D)/r/(c~; f#, D) (43) 

in Q0.,n-probability, this convergence being in fact uniform in c~ according to 
Lemma 1. The limit will therefore be the Hellinger transform of some experi- 
ment cgo. Taking the limit DTO (compare LeCam (1972; p. 251), LeCam (1979; 
Thin. 2, Chap. 3)) one finds an experiment cg=(C o" 0~0)  having Hellinger 
transform (43; right-hand side), for any finite subset D of O: 

r/(~; cg, D)= r/(c~; ~,  D)/tI(c~; N, D). (44) 

The remaining arguments concerning uniformity and approximation are as 
above and will be omitted. 

"(iii)  implies ( i )"  

As a A-limit of a sequence of exponential families whose canonical sufficient 
statistics S, have Laplace transforms that stay locally bounded, the experiment 
cg will itself be an exponential family. Following the corresponding part of the 
proof of Theorem 2 one shows that 
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rl(ct; g/Y,, D) = S I1 h;~ *, ndHo*,, ~ rl(a; "~, D)/rl(c~; ~, D). 
D 

(45) 

Therefore there is an experiment N = (Go: 0 ~ 0 )  such that 

t/(c~; N, D)=t/(~; ~,, D)/~/(~; <s D) (46) 

(D finite subset of O); from this the remark (9) in the introduction follows 
immediately. By uniform precompactness of .XF, we get AK(Nn,~q)~0 (K com- 
pact subset of O). 

It remains to conclude from (9) that N is an exponential family. By con- 
tiguity, N is a homogeneous experiment in the sense that all G o are mutually 
absolutely continuous. A homogeneous experiment f~=(G0: 0~O) is an expo- 
nential family of rank less than or equal to k if and only if the supports of the 
joint distributions of the log likelihood ratios (log dGo/dGo)o~ v under G o are at 
most k dimensional (D finite subset of O). This is because the process of log 
likelihood ratios (logdGo/dGo)o~ o can be represented as a linear, and hence 
continuous, image of some of its finite dimensional marginal vectors when this 
condition is satisfied (see LeCam (1974; p. 91)). By this criterion, since rg and cg 
|  are exponential families, the same will be true for ~. 

Acknowledgment. Thanks are due to L. LeCam for careful reading and helpful comments. 
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