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Summary. Let {K(s,t): 0<5<1, 20} be a Kiefer process. Let
1
= | L((t/loglog 1)~ "> K(s, 1)) ds
0

denote the occupation distribution. Using the ideas of Mogul’skii, Donsker
and Varadhan, the limit behavior of L, is studied. These and strong approx-
imation results are then used to derive LIL in Chung’s form for various
functions of empirical processes.

Introduction

Let {X,} be iid. random variables with common distribution F(x)=x for
0O<x<1. Let F, denote the empirical distribution of X,...,X,. Recently
Mogul’skii [4] proved that

liminf sup |F,(s)—s| 1/n loglogn*-% a.e. (1)

n—soo 0=s=1 ]/
This result follows from strong approximations and a similar result for Kiefer
process K, namely, T

liminf sup |K(s,t)a(t) =—= ae, (2)

1200 0sSs<1 V /8
where a(t)=(t/loglogt)~1/%. A Kiefer process {K(s,t): 0<s<1,t=0} is a mean
zero Gaussian process with continuous paths and satisfying

E(K(s,t) K(s', t')) = {min(s, s) —ss'} min(r, t").

The strong approximation result mentioned here is stated below for easy
reference.

* This work was done while the author was visiting the Department of Mathematics. University

of Ottawa, Ottawa, Canada
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Theorem A. (See Theorem 4.43 of [5]) E,n=1 and K can be defined on the
same probability space such that a.e.

sup |[n(E,(s) —s)—K(s,m)]| <(logn)*. &)

0=<s=1

In the case of Wiener process {W(s), s=0}, we have the following result
due to Jain and Pruitt [3],
liminf sup la() W(s)|=]% a.c. 4

t—oo O0=s=st

Using their powerful theory on Markov processes, Donsker and Varadhan
[2] obtained results about the occupation distribution of {a(t) W(s): 0<s<1).
One of the consequences of these results is (4). In the same way we shall
generalize (2) by studying the occupation measures of {K(s, 1) a(t): 0<s<13}.

As {K(s,1), 0<s<1} is not a Markov process one cannot use Donskar-
Varadhan theory directly. We use combination of several methods developed
by Mogul’skii, Donsker and Vardhan, to study L, defined by

L(E)=] I(alt) K, 0) ds.
0

L, can be viewed as an element in the space M of sub-probability measures A
on R(A(R)<1), with the topology of vague convergence. Let % denote the class
of infinitely differentiable functions u on R, which are constant outside a
compact set and 0 <aZu<b < oo, where a,b depend on u. For e M, let

1"

u
2u

I(A)= — inf | =—(x) A(dx).

usdY
We shall show that the set of limit points of L, is the set C={leM: I(})<1}.
The I appearing here is the same I-function for the Brownian motion in-

troduced by Donskar and Varadhan. It then follows for suitable functions @
on M.
limsup ¢(L,)=sup &(1). ae.
t~ 00 AeC
By taking ®#(1)=inf{a: A(x: |x|=a)=1}, we deduce (1) and (2). Several other
consequences are given in the last section.

The Results

Theorem 1. For almost all w, the set of limit points, as t— o0, of L, is C
={leM: I(f)=1}.

Proof of this theorem will be given later.

This has the following Corollary.

Corollary 2. If & is a functional on M which is lower semi-continuous on M,
then limsup @(L,)=sup ®(1) as. The inequality gets reversed, if instead, ¢ is
ieC

t— 00
upper semi-continuous. In particular, equality holds if @ is continuous on M.
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From Theorems A and 1 and Corollary 2, we have the following

Corollary 3. The limit results of Theorem 1 and Corollary 2 hold, as n— oo, if
L, is replaced by L,, where

1 —_—
L(E)={I,()/nloglogn(Es)—s))ds.
0
Theorem 4 (Upper bound). Let D be a closed set in M. Then

1 . ,
lim sup " log P(A,eD)=< —inf I(4),
ieD

1
where A(E)={ I5(K(s, 1)) ds.
0

To prove Theorem 4, we require the following two lemmas. First some
notation. Put A(f)=[f(x) A(dx), for le M.

Lemma 5. Let J(2,x)=inf 4 (u——xu—). Then
e 2“ u
J(2, x)£ —1(2)—3x* A(R), )
for all xeR and AeM.
Proof. If A(R)=0, then the result is obvious. Suppose A(R)>0 and A has a

density f, which is continuously differentiable and f(y)>0 for all yeR. Now
following the lines of proof of Lemma 2.2 of [1] (see Eqgs. 2.33-2.35) we obtain

fe (f'0) =2xf ) dy <Y/ —8J(4,x) V&1 f () dy, (6)

for all continuous functions g with compact support. Suppose ¢ has all de-
rivatives, has compact support and 0=<¢(y)<1 for all yeR. By putting g=(/f"
—2xf) ¢/f, we conclude

' 2 2
30,02 =41 (FL) 01601 s 010,
This holds for all such ¢, so
10,92 =311 () dy— 432 R = — 1) 452 1(R).

f

The last equality follows from Lemma 2.2 of [1]. Now suppose ieM and
A(R)>0. For any ¢>0, let ¥ be the Gaussian distribution with mean 0 and
variance & For our given A, define /1, =Ax¥. By concavity and the argument
given above we have

J()‘a X)éj(ls, x)é _I(;“a) _%XZAE(R)
=—I(1)—3x*A(R). (7

Since I is lower semicontinuous on M and since A, converges vaguely, we have

liminf I(2,) 2 I(4). The lemma now follows from (7).
£~ 0
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Before stating the next lemma, we note that for any r>0, {K(s,¢): 0<s<1}
and {W(s,t)—sW(t): 0=s=1} have the same distribution. Define

1
B(E)=[I(W(s-1)—sW(t))ds,
0

and
& ={f: f is continuous on R and f(x)—0 as |x| — o0}.

Lemma 6. Let (a,b)cR, AeM and V a neighborhood of A in M. Then there
exists a open set N containing A such that N<V and

limsup (1/t) log P(B,eN, at<W(t)<bt)

t— 00

<inf[ sup (sup G(B, y, w)],

uc¥ asy=b feV

u’l u/
where G(B,y,u)=p (Zu —y;).

t
Proof. Let D(I,)’)(E)=lfIE(W(S)—Sy)dS. First note that there exist >0,
fis., fr€%€ such that ~ °

{BeM: 1B(f)—Af) <2 1<iZkic V.

Put N={feM: |p(f)—A(f)l<e, 1ZiZk}. Since f; are uniformly continuous,
there exists a 6e(0, 1) such that
max |fix)—fl<e,

=15

whenever |x— y|<é. So
(B,eN, at<W(t)<bt)
c | D@rémeV)yn(Wty—ri| <o)

at<ré <bt
Hence

. 1
lim sup? log P(B,eN, at<W(t)<bt)

t— 00

<limsup ( sup (% log [(2-+1a| +1bl) (/8) P(D(, y)e V)]))

t— 00 a=y=bh

=limsup [ sup (% log P(D(t, y)e V))] (8)

t—= 0 asy=sb
1 0% 0

Because {W(s)—sy: s>0} is a Markov process with generator 332 Vo we
have using Feynman-Kac formula that for any ue#,

t ’r

E{u(W(t)—ty) exp[—(j) (;M—y%> (W(s)—sy) ds]}:u(o).
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SO " u/
] u
PD(t, y)eV) = [Slip u(X)/lilf u(x)] exp (t sup B (ﬂ—y g)) :
Thus
[im sup [ sup (% log P(D(t, y)e V))]
t— asy=<bh
<inf( sup (sup G(B,y, ). )

ue¥d a<y=b peV

The lemma follws now from (8) and (9)

Proof of Theorem 4. Let d>0, ¢>0 and

sup sup inf G{A, y,u)=h< o0

\y|=d AeD ue¥
(if h=co0 there is nothing to prove.) Note that for each ue#, G(/4,y,u) is
continuous in (4,3). So for each ye[—d,d] and AeD, there exist an open
interval I, containing y, a neighborhood V, of A and u, ,e# such that
G(B.x,u, ) <h+e for all xel and feV,. Now by Lemma 6, there exists a open
set N, V, and 1eN, such that

lim supllogP(BteNz,(W(t)/t)ely)gh—lre. (10)

t—->x t

Since D is closed and M is compact, D is compact. As D x [ —d,d] is compact
for any d >0, we can choose Ay, ..., 2, €D and y,, ..., y,e[ —d, d] such that

Dx[—d,d]co (N, x1,). (11)

=1

From (10) and (11) we obtain, for any d>2, that

lim sup l log P(B,eD, |W(t)|<td)<h+e

tmo0 L

= sup [sup J(B, y)]+¢

|yl £d BeD

< —infI(f)+¢
peD

the last inequality follows from Lemma 5. Since ¢>0 is arbitrary and for d>2,

1
limsup - log P(W(0)| = td) < —1d*< —d,

oo 1
we have

1
lim sup ?log P(B,eD)=max(—d, —inf I(f)).
feD

t— 00

The theorem now follows as d>2 is arbitrary and as A, and B, have the same
distribution.
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Theorem 7. (Lower bound) Let .# denote the space of probability measures on R
with the topology of weak convergence. Let Ac.# with J(x: |x|<a)=1 and N be
a weak neighborhood of 1 in ., then for any d>a>0

hmmf logP(A eN,|K(s, )| £d; 0<s= )= —I(A). (12)

t— 00
Proof. Without loss of generality we may take I(4)< oo and
N={ped: |Af)—B(fi<e 1=iZk},

where £>0 and f; are uniformly continuous and bounded functions on R. Let
[ i) =H for all xeR,1<i<k. By uniform continuity of f; there exists §>0
such that |fi(x)—fi(y)l<(e/4), whenever |x—yl<d, 1=Zi<k. Since {K(s,1):
0=<s<1} has the same distribution as {W(s-t)—sW(t): 0<s<1}, the probabili-
ty in (12) dominates

P (|7 LA ds 2| <o,
1Sigk, [W(s) £d—6, 0<s<t, lW(t)\<5>. (13)

Let t, be such that 8 H<e(t,—1), a<b<d and 0<6<min(d, d—b)/2. Since W
has independent increments and since for t=t,,

t—~1

1 2H
Nds— 5 [ AW s <

the probability in (13) dominates

=

A(f)( . 1<i<k, |W(s)| <b+0,

0<s<t, 1W(t)|§6)

t—1

>P(—— I AW (s)ds—A(f) <— 1Zigk, |W(s)<b, 0Ssst—1)
x inf P(]W(s)+z|<b+9,0§s<1,IW(I)—I—Z|§0)
|z| b
=M,-J (say). (14)

Clearly
Jz inf P(W(s)+sz|]<0, 05s=1)>0

lz| <b
and by Lemma 2.12 of [2],

lim 1nf1 logM,= —I(A).

t— o0

The theorem now follows from (14).
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Theorem 8. Let Ae.# be such that A{x: |x|<a}=1 and 1(J)<1. Let N be a
weak neighborhood of A in .#. For d>a, let E,=(LeN, la(t)K(s,t)<d;
0<s<1). Then, for almost all w, weE, for a sequence of times t increasing to
infinity.

Proof. Let p>1 be such that pI(4)<1 and let ¢, denote the integral part of
exp(n’). We shall show that P(E, i0.)=1. Since K(.,?) has the same distribu-

tion as that of 1/2 K{(.,1), we have for any n>0
P( sup |K(s,t,)|>2n)/t,logt,)
0ss<1

=P( sup |K(s,1)|>2n}/logt,)

0=ss1

<2P( sup |W(s)|>n/logt,)<n" >
0=s=1

So by Borel-Cantelli lemma,

sup [K(s,t,)(t,logt,)"?| =0 ae. (15)

0=<s=1
Since (logt,)*t, ,/t,—0 as n— oo, (15) implies that

sup [K(s, ¢, ,)s,—0 ae., (16)

0ss=1

where s, =((loglogt)/t,)!/2.
Let N be as in the proof of Theorem 7 and a <b <d. Define

1
Hn:{ i
0

sy K(s, t)—K(s, t,_ ) <b for 0<s< 1}.

s, t)—Ki(s, 1, N]ds—A(f)

&
<—,1<igk,
2} __l__.

By (16) for almost all w, n sufficiently large, if H, occurs, E, occurs. As
{K(.,t,)—K(.,1,_;): n=1} are independent (K(.,m) has the same distribution
as the sum of m independent brownian bridges), the events H, are independent.
So by Borel-Cantelli it is enough to show that X P(H,)= co. Now by Theorem 7

1
H%FP“ﬁmmﬂ%n D]ds— l<isk
0

|K(s,s2(t,—t, ;) <b for 0§S§1>
Zexp[_l(l) Sr%(tn—tn* 1)+0(Sr%(tn_tn—1))]'
Since s2(t,—t, ,)~loglogt, ~plogn, we have
P(Hn)gn*"“““(“.

As pI(2)<1, it follows that ¥ P(H,)= co. This completes the proof.
We are now ready to prove Theorem 1.
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Proof of Theorem 1. Let N be an open set containing C. As N° is compact
= inf I(f)>1. Let 0<p<1 be such that 8p>1. Put t,=[¢"]. Clearly for any

BeNc
k=1, (¢t,—t,_,) (loglogz,)* t; ;>0 as n—oo. By a representation of Kiefer

process (see Sect.1.15 of [5]) and by the Corollaries 1.12.4 and 1.15.1 of [5],
we have
sup ( sup la(r) K(s, 1) —a(t,) K(s,2,)])

th-ySr=t, 0=s=1

In-1St Sty

< sup a(t)—a(t,) ,up |K(s, 1)

+alt,_y) sup ( sup [K(s,t)—K(s,1,))

-1 St5t, 05s=1

-0 ae. (17)

Now as in the proof of Theorem 2.8 of [2], it follows from (17) and Theorem

4, that
U LcC ae.

T t£T

The converse follows from Lemma 2.16 of [2] and Theorem 8.

Applications

The following statements are immediate consequences of results in Sect. 4 of
[2], Theorem 1 and Corollaries 2 and 3.

A.l. Let g be a continuous function on R such that g(x)—0 as |x|— oo. Then

lim sup j g(a(t) K(s, 1)) ds=sup A(g) ae.
AeC

100

and

hmsupfg]/nloglogn(F(s —3)) ds—sup)( ) ae.

n— oo

A.2. Let g be a continuous function on R with g(x)— oo as |x|— co. Define @
on M as
D(W)=A(g) if e andif [|g(x)A(dx)<oo
=00 otherwise.
Then

1
lim inf jg (1) K(s,t))ds= inf A(g) a.e.

t- 00 reCn
and

hmlnfjg(]/nloglogn(F s)—s))ds= inf A(g) a.e.
n— oo reCon M
Inparticular these results hold if g(x)=|x|’, 0>0. As in [2] if we take g(x)=x?
we get
loglogt
lim in fj (og o8 )KZ(S, tyds=1 ae.

t—0 0
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and .

liminf(n loglogn) [ (F,(s)—s)*ds=3 a..

n— 00 0

A.3. For each a>0, there exists k(a) such that

limsup Leb meas{s: 0<s=<1,{K(s,t)|a(t)Sa}=k(a) ae.

and
lim sup Leb meas{s: Ogsgl,l/n loglogn(F(s)—s)<a}=k(a) aec.

n— 0Q

A.4. Using Theorem 8, we obtain

liminfa(t) sup |K{s, t)|:—n; a.

e.
t= 0 0gs<1 V8
and
liminf(]/n loglogn) sup [E(s)—s|= Z a.c.
n— 00 0gs<1 ]/,/8
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