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Summary. Let  {K(s, t): 0 < s _ < l ,  t > 0 }  be a Kiefer process. Let  

1 

Lt(E ) = ~ IE((t/log log t)- 1/2 K(s, t)) ds 
0 

denote  the occupa t ion  distribution. Using the ideas of Mogul 'ski i ,  Donske r  
and Varadhan ,  the limit behav ior  of L t is studied. These and s t rong approx-  
imat ion  results are then used to derive L I L  in Chung 's  form for var ious 
functions of empirical  processes. 

Introduction 

Let {X,} be i.i.d, r a n d o m  variables with c o m m o n  distr ibution F(x)--x for 
0 < x < l .  Let  F,,, denote  the empir ical  dis t r ibut ion of X 1 . . . .  , X  n. Recent ly  
Mogul ' ski i  [4] p roved  that  

lira inf sup IFn(s) - s] |/n log log n 7r 
. ~  0_~s_<t 1//~ a.e. (1) 

This result follows f rom strong approx ima t ions  and a similar result for Kiefer 
process K, namely,  7r 

= - -  a.e., (2) ~iminfoS~P 1 iK(s,t)a(t)l ~j~ 

where a(t) = (t/log log t)-  1/2. A Kiefer process {K(s, t): 0_< s < 1, t > 0} is a mean  
zero Gauss ian  process with cont inuous  paths and satisfying 

E(K(s, t) K(s', t ' ) )=  {rain(s, s ' ) -  ss'} rain(r, t'). 

The  s t rong app rox ima t ion  result ment ioned  here is stated below for easy 
reference. 

* This work was done while the author was visiting the Department of Mathematics, University 
of Ottawa, Ottawa, Canada 
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Theorem A. (See Theorem 4.4.3 of [53) F,, n ~  1 and K can be defined on the 
same probability space such that a.e. 

sup I[n(F,(s) - s) - K(s,  n)] I ~ (log n) 2. (3) 
O_<s<l 

In the case of Wiener process {W(s), s>__O}, we have the following result 
due to Jain and Pruitt [3], 

7C 
liminf sup t a ( t ) W ( s ) [ = :  a.e. (4) 

t ~  O<_s~_t ] / 8  

Using their powerful theory on Markov processes, Donsker and Varadhan 
[23 obtained results about the occupation distribution of {a(t) W(s): 0~  s _  t}. 
One of the consequences of these results is (4). In the same way we shall 
generalize (2) by studying the occupation measures of {K(s, t)a(t): 0_~ s ~ 1}. 

As {K(s, 1), 0_~s~_l} is not a Markov process one cannot use Donskar- 
Varadhan theory directly. We use combination of several methods developed 
by Mogul'skii, Donsker and Vardhan, to study L t defined by 

1 

Lt(E) = S I~(a(t) K(s,  t)) ds. 
0 

L, can be viewed as an element in the space M of sub-probability measures 2 
on R(2(R)_< 1), with the topology of vague convergence. Let ~//denote the class 
of infinitely differentiable functions u on R, which are constant outside a 
compact set and 0 < a  <_u_<b < 0% where a, b depend on u. For/1eM, let 

tt 
U 

1(2) = - inf S ~ -  (x) 2(dx). 
uE@ ZU 

We shall show that the set of limit points of L t is the set C={/1eM: 1(/l)__<1}. 
The I appearing here is the same /-function for the Brownian motion in- 
troduced by Donskar and Varadhan. It then follows for suitable functions 
on M. 

lim sup ~ ( L t )  = sup ~(2). a.e. 
t ~ eo 2 e C  

By taking ~(2)--inf(a:/1(x: Ixl ~ a ) = l ) ,  we deduce (1) and (2). Several other 
consequences are given in the last section. 

The Results 

Theorem 1. For almost all ~o, the set o f  limit points, as t ~ ,  o f  L t is C 
= {/1eM: I(fi)-< 1}. 

Proof of this theorem will be given later. 
This has the following Corollary. 

Corollary 2. I f  �9 is a functional on M which is lower semi-continuous on M,  
then lim sup ~(Lt)>=su p ~(/1) a.s. The inequality gets reversed, i f  instead, ~ is 

t ~ e~ ) , eC  

upper semi-continuous. In particular, equality holds if  c~ is continuous on M.  
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From Theorems A and 1 and Corollary 2, we have the following 

Corollary 3. The limit results o f  Theorem 1 and Corollary 2 hold, as n-+ 0% if  
L t is replaced by -L,, where 

1 

L,(E) = ~ IE(]/n log log n(F,(s) - s)) ds. 
0 

Theorem 4 (Upper bound). Let  D be a closed set in M.  Then 

1 
lira sup t log P(A teD  ) < - inf I()0, 

t ~ oo 2~D 

1 

where A d E  ) = ~ Ie(K(s,  t)) ds. 
0 

To prove Theorem 4, we require the following two lemmas. First some 
notation. Put 2 ( f ) = ~ f ( x ) 2 ( d x ) ,  for 2eM. 

Lemma 5. Let  J(2, x) = inf 2 - x Then 
uEq/ t ~  

a(2, x) <= - 1(2) - �89 22(R), (5) 

for  all x E R  and 2 6 M .  

Proof, If 2(R)=0, then the result is obvious. Suppose 2(R)>0 and 2 has a 
density f, which is continuously differentiable and f ( y ) > 0  for all y s R .  Now 
following the lines of proof of Lemma 2.2 of [1] (see Eqs. 2.33-2.35) we obtain 

~g(y) ( i f ( y ) -  2 x f ( y ) ) d y  < ] / -  8 J(2, x)] /gZ(y)f(y)dy,  (6) 

for all continuous functions g with compact support. Suppose q$ has all de- 
rivatives, has compact support and 0<q$(y)<l  for all y~R.  By putting g = ( f '  
- 2 x  f ) O / f ,  we conclude 

f ' - Z x f  2 

This holds for all such r so 

1" (f,)2 , 
J() ,  x) <= - g j ~ -  (y) dy - �89 2 2(R) = - 1(2) - �89 x 2 2(R). 

The last equality follows from Lemma 2.2 of [1]. Now suppose 2~M and 
2(R)>0. For any e>0,  let T~ be the Gaussian distribution with mean 0 and 
variance e. For our given 2, define 2~=2.  T~. By concavity and the argument 
given above we have 

J(;o, x) < a(2~, x) < - 1(2~) - �89 x 2 2~(R) 

= - I ( 2 ~ ) - � 8 9  (7) 

Since I is lower semicontinuous on M and since 2~ converges vaguely, we have 
lira inf I(2~)> 1(2). The lemma now follows from (7). 

e ~ O  



76 G.J. Babu 

Before stating the next lemma, we note that for any t > 0, {K(s, t): 0_< s_< 1} 
and {W(s, t ) - s  W(t)'O < s <_ 1} have the same distribution. Define 

and 

1 

Bt(E ) = ~ I~(W(s. t ) -  s W(t)) ds, 
0 

cg= {f: f is continuous on R and f ( x )~O as Ix[ ~ oQ}. 

Lemma 6. Let (a,b)cR, 2eM and V a neighborhood of 2 in M. Then there 
exists a open set N containing 2 such that N c V and 

lim sup (l/t) log P(B, eN, a t < W(t) < b t) 
t ~ o ~  

< inf [ sup (sup G(fl, y, u))], 
u~074 a<=y<=b 13EV 

[u" u'\ 
where G(fi, y, u)=fi ~uu- Y u  ). 

Proof. Let D(t,y)(E)= t I~(W(s)-sy)ds. First note that there exist e>0,  
f l  .. . .  ,fkscg such that o 

{fl~M: tfi(fi)-2(fi)l<2e, l < i < k } c V .  

Put N={f ieM: Ifi(f3-2(fi) I<e, 1 <i<k}. Since fi are uniformly continuous, 
there exists a be(O, 1) such that 

max Ifi(x) -f/(Y)l < e, 
l <_i~k 

whenever I x -  y] < 3. So 

(B~eN, at< W(t)<bt) 

Hence 

~) (D(t, r3/t)~V)~(IW(t)-r3[<3). 
at ~ r[~ <_bt 

Because { W(s)-s  y" s >>_ 0} is a Markov process with generator - - - -  
have using Feynman-Kac formula that for any ue~', 

1 
l imsup-- logP(BtsN, at< W(t)<bt) 

t ~ o o  t 

<l imsup  (aS~Pb (--It log[(2+lal+lbl)(t/b,P(D(t,y)eV,])) 

- - .m sup r sup 
t ~ e o  L a < y < b  

1 8 2 

2 8x 2 

(8) 

8 
Y~xx' we 



Law of Iterated Logarithm for Occupation Measures 77 

So 

Thus 

[u" u'\\ 
P(D(t, y)eV)< [sup u(x)/inf u(x)] exp t sup fi ~)~u- Y u  ] ] . 

x x f l s V  

lim sup [aS~Pb (~ l o g  r(D(t, y)E r) ) ] 

< inf ( sup (sup O(fi, y, u))). 
u~"?l a<y<=b fl~V 

(9) 

The lemma follws now from (8) and (9) 

Proof of  Theorem 4. Let d > 0, e > 0 and 

sup sup inf G(2, y, u) = h < oo 
]y] <d 2~D u~ql 

(if h=  zo there is nothing to prove.) Note that for each uE"g, G(2, y,u) is 
continuous in (2,3'). So for each y ~ [ - d , d ]  and 2ED, there exist an open 
interval Iy containing y, a neighborhood V~. of 2 and ux, y ~  such that 
G(p, x, u:.y)< h + ~ for all x~Iy and fie Va. Now by Lemma 6, there exists a open 
set N~c Vx and 2eNx such that 

1 
lim sup t log P(Bt~Nz, (W(t)/t)ely) < h + e. (lO) 

Since D is closed and M is compact, D is compact. As D x I - d ,  d] is compact 
for any d>0 ,  we can choose 21 . . . . .  2~ED and Yl . . . .  , ),kE[--d, d] such that 

k 

D x [ - d , d ] c  U (N~ x/y,). (11) 
i = 1  

From (10) and (11) we obtain, for any d>2 ,  that 

1 
lim sup )- logP(BtED, ] W(t)l < t d ) < h + e  

t~OO 

= sup [sup J(fi, y)] + 
lyl <=d f l~D 

< - inf I(fi) + e 
f l e D  

the last inequality follows from Lemma 5. Since e > 0 is arbitrary and for d > 2, 

we have 

lim sup ~ log P(I W(t)l ->_ t d) <= - �89 d 2 < - d, 

lim sup ~ log P(B teD) < m a x ( -  d, - inf I(fi)). 
t ~  o~ f l e D  

The theorem now follows as d > 2  is arbitrary and as A t and B t have the same 
distribution. 
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Theorem 7. (Lower bound) Let J/{ denote the space of probability measures on R 
with the topology of weak convergence. Let 2~J~ with 2(x: Ix[_<-a)=l and N be 
a weak neighborhood of 2 in .~l, then for any d > a > 0 

l iminf -1 logP(A,~N, IK(s, t)] <_d; O<_s< 1)> -1(2). (12) 

Proof. Without loss of generality we may take I(2)< ~ and 

/ = { f i E ~ / :  12(f~)-fi(f~)t<~, l < i < k } ,  

where e >0  and f~ are uniformly continuous and bounded functions on R. Let 
Jf~(x)l<H for all xeR, 1<_iNk. By uniform continuity of f~ there exists b > 0  
such that hf.(x)-f~(y)[<(e/4), whenever Ix-Yl<b, l<._i<_k. Since {K(s,t): 
0 <_ s <- 1} has the same distribution as { W(s. t ) -s  W(t): 0 <- s_< 1}, the probabili- 
ty in (12) dominates 

P ( ~ i fi(W(s))ds-2(fl) <(ge/4), 
\ 

IW(s)i<d-& O<s<t, Iw(t)t<~). l<-i<_k, (13) 

Let t o be such that 8H<~( to-1) ,  a<b<d and O<O<min(6, d-b)/2. Since W 
has independent increments and since for t ~ t o, 

~ t 1 ~ - 1  ds 2H e !L(W(s))ds-~_ 1 ~ L(W(s)) <=~_1<~, 
o 

the probability in (13) dominates 

i l  1 t 1 I e 
P (~-1 ! f~(W(s))ds-2(f3 <5;  l<i<k,  IW(s)l<b+O, 

O<s<t, Iw(t)l<O) 

>P ~-1 f~(W(s))ds- l<i<k,  IW(s)l<b, O < s < t - 1 )  

x inf P(lW(s)+zl<b+O,O<s<l, lW(1)+zl<O) 
Izl-<b 

= M t. J (say). (14) 

Clearly 
J >  inf P(IW(s)+szl<O, O=<s<-l)>O 

Izl<b 

and by Lemma 2.12 of [2], 

1 
lira inf L log m t >  - I(2). 

t ~ o ~  t 

The theorem now follows from (14). 
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Theorem 8. Let 2GoJf/ be such that 2{x: [ x l < a } = l  and I()~)<1. Let N be a 
weak neighborhood of 2 in ~#. For d>a, let Et=(L~GN, [a(t)K(s,t)l<d; 
0_<s_<l). Then, for almost all co, co~E t for a sequence of times t increasing to 
infinity. 

Proof Let p > l  be such that p i (2)<1 and let t, denote the integral part of 
exp(nP). We shall show that P(Et, ' i.o.)= 1. Since K(., t) has the same distribu- 
tion as that of | / tK(. ,  1), we have for any t />0 

P( sup IK(s,t.)l>2rll/tn~o~) 
0_<s_<l 

= P (  sup IK(s, 1)[>2r/ l / logt , )  
0_<s_<l 

< 2 P (  sup IW(s)[>rl]/logt~)~n -2. 
0_<s_<I 

So by Borel-Cantelli lemma, 

sup IK(s,t.)(t.logt.)-i/2l~O a.e. (15) 
0 _ < s ~ l  

Since (logtn) 2 t,, 1/tn~O as n ~  o% (15) implies that 

sup [K(s, tn_l)[sn-~O a.e., (16) 
O=<s<l  

where sn = ((log log t~)/t,) 1/2. 
Let N be as in the proof of Theorem 7 and a<b<d. Define 

H,= [s,(K(s, tn)-K(s,t ,_l))]ds-2(fi)  <2,1<i<=k, 

snlK(s,t,)-K(s,t,_l)[<b for 0<s_<l} .  

By (16) for almost all co, n sufficiently large, if H,  occurs, Et. occurs. As 
{K(., 6 ) - K ( . ,  6 -  z): n>  1} are independent (K(., m) has the same distribution 
as the sum of m independent brownian bridges), the events Hn are independent. 
So by Borel-Cantelli it is enough to show that XP(H,,)= c~. Now by Theorem 7 

p ( H . ) = p (  i 2 2(f)  f i[K(s's"(t"-t"-i))]ds- <2;  l<i<k,  

[K(s, s2(t ,- t ,  :))[<b for 0_<s_<l) 

> exp [ - 1(2) s2(t, - t,_ 1) + 0(s2(6 - 6-1))]. 

Since s 2 ( t - t , _ : ) ~ l o g l o g t ~ p  logn, we have 

P(H,) > n -PI(2}+~ 

As pI(2)< 1, it follows that ZP(Hn)= co. This completes the proof. 
We are now ready to prove Theorem 1. 
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Proof of Theorem I. Let N be an open set containing C. As N c is compact 0 
= inf I ( f l )>l .  Let 0 < p < l  be such that Op>l. Put t,=[en~]. Clearly for any 

f l eN  ~ 

k> 1, (t~-tn_ ~) (log logt~) k t~-_~l ~ 0  as n ~  oo. By a representation of Kiefer 
process (see Sect. 1.15 of [5]) and by the Corollaries 1.12.4 and 1.15.1 of [5], 
we have 

sup ( sup [a(t) K(s, t)-a(t,) K(s, t,)l) 
tn_t<_t<=tn 0 <-S_< 1 

< sup la(t)-a(t,)[ sup IK(s,t.)l 
t ~ -  1 < t  < t ~  0 < s <  1 

+a( t ,_ l )  sup ( sup IK(s,t)-K(s,t,)l) 
t n_ l< t< tn  0 < s _ < l  

~ 0  a.e. (17) 

Now as in the proof of Theorem 2.8 of [2], it follows from (17) and Theorem 
4, that 

(~ U L, c C  a.e. 
T t<=T 

The converse follows from Lemma 2.16 of [2] and Theorem 8. 

Applications 

The following statements are immediate consequences of results in Sect. 4 of 
[2], Theorem 1 and Corollaries 2 and 3. 

A.1. Let g be a continuous function on R such that g ( x ) ~ 0  as Ixl ~ oo. Then 

1 

l imsup ~ g(a(t) K(s, t))ds=sup 2(g) a.e. 
t ~ e o  0 .~EC 

and 
1 

lim sup 5 g(l/n log log n (F,(s) - s)) ds = sup 2(g) a.e. 
n ~  eo 0 . t eC  

A.2. Let g be a continuous function on R with g (x )~  oo as [xl ~ oo. Define 
on M as 

@(2)=2(g) if 2 e ~ /  and if ~Lg(x)12(dx)<oo 
= oo otherwise. 

Then 

and 

1 

l iminf5 g(a(t) K(s, t))ds= inf 2(g) 
t ~  co 0 .~e C c~ ~ 

a . e .  

1 

l imin f~g( ] /n log logn(F , ( s ) - s ) )ds=  inf L(g) a.e. 
n ~ o o  0 ~,eC c~ ~ '  

Inparticular these results hold if g(x)=lx[ ~ 0>0.  As in [2] if we take g (x)=x  2 
we get 

liminf~ KZ(s, t)ds=~ a.e. 
t ~ C r  0 
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and 1 

lim inf (n log log n) S (F,(s) - s) 2 ds = ~ a.e. 

A.3. For each a > 0, there exists k(a) such that  

lim sup Leb meas {s: 0_< s < 1, [K(s, t)l a(t) < a} = k(a) a.e. 

and 

lim sup Leb meas {s: 0 < s <_ 1,1/n log log n (F,(s) - s) <_<_ a} = k(a) 
n ~ o o  

A.4. Using Theorem 8, we obtain 

and 

rc 
liminfa(t)t~o o_<~<~sup IK(s, t)l = ~  a.e. 

l im i n f ( l / n  log  log  n) sup IF~(s)-sl  = 
n~oo o-<s-< l V~8 

a.e. 

a.e. 
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