On the Law of Iterated Logarithm for Occupation Measures of Empirical Processes

Gutti Jogesh Babu*

Indian Statistical Institute, 203 Barrackpore Trunk Road, Calcutta 700035, India

Summary. Let $\{K(s, t): 0 \leqq s \leqq 1, t \geqq 0\}$ be a Kiefer process. Let

$$
L_{t}(E)=\int_{0}^{1} I_{E}\left((t / \log \log t)^{-1 / 2} K(s, t)\right) d s
$$

denote the occupation distribution. Using the ideas of Mogul'skii, Donsker and Varadhan, the limit behavior of L_{t} is studied. These and strong approximation results are then used to derive LIL in Chung's form for various functions of empirical processes.

Introduction

Let $\left\{X_{n}\right\}$ be i.i.d. random variables with common distribution $F(x)=x$ for $0<x<1$. Let F_{n} denote the empirical distribution of X_{1}, \ldots, X_{n}. Recently Mogul'skii [4] proved that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sup _{0 \leqq s \leq 1}\left|F_{n}(s)-s\right| \sqrt{n \log \log n}=\frac{\pi}{\sqrt{8}} \text { a.e. } \tag{1}
\end{equation*}
$$

This result follows from strong approximations and a similar result for Kiefer process K, namely,

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \sup _{0 \leqq s \leqq 1}|K(s, t) a(t)|=\frac{\pi}{\sqrt{8}} \text { a.e. } \tag{2}
\end{equation*}
$$

where $a(t)=(t / \log \log t)^{-1 / 2}$. A Kiefer process $\{K(s, t): 0 \leqq s \leqq 1, t \geqq 0\}$ is a mean zero Gaussian process with continuous paths and satisfying

$$
E\left(K(s, t) K\left(s^{\prime}, t^{\prime}\right)\right)=\left\{\min \left(s, s^{\prime}\right)-s s^{\prime}\right\} \min \left(t, t^{\prime}\right)
$$

The strong approximation result mentioned here is stated below for easy reference.

[^0]Theorem A. (See Theorem 4.4.3 of [5]) $F_{n}, n \geqq 1$ and K can be defined on the same probability space such that a.e.

$$
\begin{equation*}
\sup _{0 \leqq s \leqq 1}\left|\left[n\left(F_{n}(s)-s\right)-K(s, n)\right]\right| \ll(\log n)^{2} \tag{3}
\end{equation*}
$$

In the case of Wiener process $\{W(s), s \geqq 0\}$, we have the following result due to Jain and Pruitt [3],

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \sup _{0 \leqq s \leqq t}|a(t) W(s)|=\frac{\pi}{\sqrt{8}} \text { a.e. } \tag{4}
\end{equation*}
$$

Using their powerful theory on Markov processes, Donsker and Varadhan [2] obtained results about the occupation distribution of $\{a(t) W(s): 0 \leqq s \leqq t\}$. One of the consequences of these results is (4). In the same way we shall generalize (2) by studying the occupation measures of $\{K(s, t) a(t): 0 \leqq s \leqq 1\}$.

As $\{K(s, 1), 0 \leqq s \leqq 1\}$ is not a Markov process one cannot use DonskarVaradhan theory directly. We use combination of several methods developed by Mogul'skii, Donsker and Vardhan, to study L_{t} defined by

$$
L_{t}(E)=\int_{0}^{1} I_{E}(a(t) K(s, t)) d s
$$

L_{t} can be viewed as an element in the space M of sub-probability measures λ on $R(\lambda(R) \leqq 1)$, with the topology of vague convergence. Let \mathscr{U} denote the class of infinitely differentiable functions u on R, which are constant outside a compact set and $0<a \leqq u \leqq b<\infty$, where a, b depend on u. For $\lambda \in M$, let

$$
I(\lambda)=-\inf _{u \in \mathscr{U}} \int \frac{u^{\prime \prime}}{2 u}(x) \lambda(d x)
$$

We shall show that the set of limit points of L_{t} is the set $C=\{\lambda \in M: I(\lambda) \leqq 1\}$. The I appearing here is the same I-function for the Brownian motion introduced by Donskar and Varadhan. It then follows for suitable functions Φ on M.

$$
\limsup _{t \rightarrow \infty} \Phi\left(L_{t}\right)=\sup _{\lambda \in C} \Phi(\lambda) . \quad \text { a.e. }
$$

By taking $\Phi(\lambda)=\inf \{a: \lambda(x:|x| \leqq a)=1\}$, we deduce (1) and (2). Several other consequences are given in the last section.

The Results

Theorem 1. For almost all ω, the set of limit points, as $t \rightarrow \infty$, of L_{t} is C $=\{\lambda \in M: I(\beta) \leqq 1\}$.

Proof of this theorem will be given later.
This has the following Corollary.
Corollary 2. If Φ is a functional on M which is lower semi-continuous on M, then $\limsup _{t \rightarrow \infty} \Phi\left(L_{t}\right) \geqq \sup _{\lambda \in C} \Phi(\lambda)$ a.s. The inequality gets reversed, if instead, Φ is upper semi-continuous. In particular, equality holds if Φ is continuous on M.

From Theorems A and 1 and Corollary 2, we have the following
Corollary 3. The limit results of Theorem 1 and Corollary 2 hold, as $n \rightarrow \infty$, if L_{t} is replaced by \bar{L}_{n}, where

$$
\bar{L}_{n}(E)=\int_{0}^{1} I_{E}\left(\sqrt{n \log \log n}\left(F_{n}(s)-s\right)\right) d s
$$

Theorem 4 (Upper bound). Let D be a closed set in M. Then

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \log P\left(A_{t} \in D\right) \leqq-\inf _{\lambda \in D} I(\hat{\lambda})
$$

where $A_{t}(E)=\int_{0}^{1} I_{E}(K(s, t)) d s$.
To prove Theorem 4, we require the following two lemmas. First some notation. Put $\lambda(f)=\int f(x) \lambda(d x)$, for $\lambda \in M$.
Lemma 5. Let $J(\lambda, x)=\inf _{u \in q u} \lambda\left(\frac{u^{\prime \prime}}{2 u}-x \frac{u^{\prime}}{u}\right)$. Then

$$
\begin{equation*}
J(\lambda, x) \leqq-I(\lambda)-\frac{1}{2} x^{2} \lambda(R), \tag{5}
\end{equation*}
$$

for all $x \in R$ and $\lambda \in M$.
Proof. If $\lambda(R)=0$, then the result is obvious. Suppose $\lambda(R)>0$ and λ has a density f, which is continuously differentiable and $f(y)>0$ for all $y \in R$. Now following the lines of proof of Lemma 2.2 of [1] (see Eqs. 2.33-2.35) we obtain

$$
\begin{equation*}
\int g(y)\left(f^{\prime}(y)-2 x f(y)\right) d y \leqq \sqrt{-8 J(\lambda, x)} \sqrt{g^{2}(y) f(y) d y} \tag{6}
\end{equation*}
$$

for all continuous functions g with compact support. Suppose ϕ has all derivatives, has compact support and $0 \leqq \phi(y) \leqq 1$ for all $y \in R$. By putting $g=\left(f^{\prime}\right.$ $-2 x f) \phi / f$, we conclude

$$
J(\lambda, x) \leqq-\frac{1}{8} \int\left(\frac{f^{\prime}-2 x f}{f}\right)^{2}(y) \phi(y) f(y) d y
$$

This holds for all such ϕ, so

$$
J(\lambda, x) \leqq-\frac{1}{8} \int \frac{\left(f^{\prime}\right)^{2}}{f}(y) d y-\frac{1}{2} x^{2} \lambda(R)=-I(\lambda)-\frac{1}{2} x^{2} \lambda(R)
$$

The last equality follows from Lemma 2.2 of [1]. Now suppose $\lambda \in M$ and $\lambda(R)>0$. For any $\varepsilon>0$, let Ψ_{ε} be the Gaussian distribution with mean 0 and variance ε. For our given λ, define $\lambda_{\varepsilon}=\lambda * \Psi_{\varepsilon}$. By concavity and the argument given above we have

$$
\begin{align*}
J(\lambda, x) & \leqq J\left(\lambda_{\varepsilon}, x\right) \leqq-I\left(\lambda_{\varepsilon}\right)-\frac{1}{2} x^{2} \lambda_{\varepsilon}(R) \\
& =-I\left(\lambda_{\varepsilon}\right)-\frac{1}{2} x^{2} \lambda(R) . \tag{7}
\end{align*}
$$

Since I is lower semicontinuous on M and since λ_{ε} converges vaguely, we have $\underset{\varepsilon \rightarrow 0}{\liminf } I\left(\lambda_{\varepsilon}\right) \geqq I(\lambda)$. The lemma now follows from (7).

Before stating the next lemma, we note that for any $t>0,\{K(s, t): 0 \leqq s \leqq 1\}$ and $\{W(s, t)-s W(t): 0 \leqq s \leqq 1\}$ have the same distribution. Define

$$
B_{t}(E)=\int_{0}^{1} I_{E}(W(s \cdot t)-s W(t)) d s
$$

and

$$
\mathscr{C}=\{f: f \text { is continuous on } R \text { and } f(x) \rightarrow 0 \text { as }|x| \rightarrow \infty\} .
$$

Lemma 6. Let $(a, b) \subset R, \lambda \in M$ and V a neighborhood of λ in M. Then there exists a open set N containing λ such that $N \subset V$ and

$$
\begin{aligned}
& \limsup _{t \rightarrow \infty}(1 / t) \log P\left(B_{t} \in N, a t<W(t)<b t\right) \\
& \quad \leqq \inf _{u \in \mathscr{D}}\left[\sup _{a \leqq y \leqq b}\left(\sup _{\beta \in V} G(\beta, y, u)\right)\right]
\end{aligned}
$$

where $G(\beta, y, u)=\beta\left(\frac{u^{\prime \prime}}{2 u}-y \frac{u^{\prime}}{u}\right)$.
Proof. Let $D(t, y)(E)=\frac{1}{t} \int_{0}^{t} I_{E}(W(s)-s y) d s$. First note that there exist $\varepsilon>0$,
$f_{1}, \ldots, f_{k} \in \mathscr{C}$ such that

$$
\left\{\beta \in M:\left|\beta\left(f_{i}\right)-\lambda\left(f_{i}\right)\right|<2 \varepsilon, 1 \leqq i \leqq k\right\} \subset V .
$$

Put $N=\left\{\beta \in M:\left|\beta\left(f_{i}\right)-\lambda\left(f_{i}\right)\right|<\varepsilon, 1 \leqq i \leqq k\right\}$. Since f_{i} are uniformly continuous, there exists a $\delta \in(0,1)$ such that

$$
\max _{1 \leqq i \leqq k}\left|f_{i}(x)-f_{i}(y)\right|<\varepsilon,
$$

whenever $|x-y|<\delta$. So

$$
\begin{aligned}
& \left(B_{t} \in N, a t<W(t)<b t\right) \\
& \quad \subset \bigcup_{a t \leq r \delta \leq b t}(D(t, r \delta / t) \in V) \cap(|W(t)-r \delta|<\delta) .
\end{aligned}
$$

Hence

$$
\begin{align*}
& \underset{t \rightarrow \infty}{\lim \sup } \frac{1}{t} \log P\left(B_{t} \in N, a t<W(t)<b t\right) \\
& \quad \leqq \limsup _{t \rightarrow \infty}\left(\sup _{a \leqq y \leqq b}\left(\frac{1}{t} \log [(2+|a|+|b|)(t / \delta) P(D(t, y) \in V)]\right)\right) \\
& \quad=\limsup _{t \rightarrow \infty}\left[\sup _{a \leqq y \leqq b}\left(\frac{1}{t} \log P(D(t, y) \in V)\right)\right] \tag{8}
\end{align*}
$$

Because $\{W(s)-s y: s \geq 0\}$ is a Markov process with generator $\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}-y \frac{\partial}{\partial x}$, we have using Feynman-Kac formula that for any $u \in \mathscr{U}$,

$$
E\left\{u(W(t)-t y) \exp \left[-\int_{0}^{t}\left(\frac{u^{\prime \prime}}{2 u}-y \frac{u^{\prime}}{u}\right)(W(s)-s y) d s\right]\right\}=u(o) .
$$

So

$$
P(D(t, y) \in V) \leqq\left[\sup _{x} u(x) / \inf _{x} u(x)\right] \exp \left(t \sup _{\beta \in V} \beta\left(\frac{u^{\prime \prime}}{2 u}-y \frac{u^{\prime}}{u}\right)\right)
$$

Thus

$$
\begin{align*}
& \limsup _{t \rightarrow \infty}\left[\sup _{a \leqq y \leqq b}\left(\frac{1}{t} \log P(D(t, y) \in V)\right)\right] \\
& \quad \leqq \inf _{u \subseteq O U}\left(\sup _{a \leqq y \leqq b}\left(\sup _{\beta \in V} G(\beta, y, u)\right)\right) . \tag{9}
\end{align*}
$$

The lemma follws now from (8) and (9)
Proof of Theorem 4. Let $d>0, \varepsilon>0$ and

$$
\sup _{|y| \leqq d} \sup _{\lambda \in D} \inf _{u \in \psi \psi} G(\lambda, y, u)=h<\infty
$$

(if $h=\infty$ there is nothing to prove.) Note that for each $u \in \mathscr{U}, G(\lambda, y, u)$ is continuous in (λ, y). So for each $y \in[-d, d]$ and $\lambda \in D$, there exist an open interval I_{y} containing y, a neighborhood V_{λ} of λ and $u_{\lambda, y} \in \mathscr{U}$ such that $G\left(\beta, x, u_{\lambda, y}\right)<h+\varepsilon$ for all $x \in I_{y}$ and $\beta \in V_{\lambda}$. Now by Lemma 6 , there exists a open set $N_{\lambda} \subset V_{\lambda}$ and $\lambda \in N_{\lambda}$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{1}{t} \log P\left(B_{t} \in N_{\lambda},(W(t) / t) \in I_{y}\right) \leqq h+\varepsilon . \tag{10}
\end{equation*}
$$

Since D is closed and M is compact, D is compact. As $D \times[-d, d]$ is compact for any $d>0$, we can choose $\lambda_{1}, \ldots, \lambda_{k} \in D$ and $y_{1}, \ldots, y_{k} \in[-d, d]$ such that

$$
\begin{equation*}
D \times[-d, d] \subset \bigcup_{i=1}^{k}\left(N_{\lambda_{2}} \times I_{y_{i}}\right) \tag{11}
\end{equation*}
$$

From (10) and (11) we obtain, for any $d>2$, that

$$
\begin{aligned}
& \limsup _{t \rightarrow \infty} \frac{1}{t} \log P\left(B_{t} \in D,|W(t)| \leqq t d\right)<h+\varepsilon \\
& \quad=\sup _{|y| \leqq d}\left[\sup _{\beta \in D} J(\beta, y)\right]+\varepsilon \\
& \quad \leqq-\inf _{\beta \in D} I(\beta)+\varepsilon
\end{aligned}
$$

the last inequality follows from Lemma 5 . Since $\varepsilon>0$ is arbitrary and for $d>2$,

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \log P(|W(t)| \geqq t d) \leqq-\frac{1}{2} d^{2}<-d
$$

we have

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \log P\left(B_{t} \in D\right) \leqq \max \left(-d,-\inf _{\beta \in D} I(\beta)\right) .
$$

The theorem now follows as $d>2$ is arbitrary and as A_{t} and B_{t} have the same distribution.

Theorem 7. (Lower bound) Let \mathscr{M} denote the space of probability measures on R with the topology of weak convergence. Let $\lambda \in \mathscr{M}$ with $\lambda(x:|x| \leqq a)=1$ and N be a weak neighborhood of λ in \mathscr{M}, then for any $d>a>0$

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{1}{t} \log P\left(A_{t} \in N,|K(s, t)| \leqq d ; 0 \leqq s \leqq 1\right) \geqq-I(\lambda) . \tag{12}
\end{equation*}
$$

Proof. Without loss of generality we may take $I(\lambda)<\infty$ and

$$
N=\left\{\beta \in \mathscr{M}:\left|\lambda\left(f_{i}\right)-\beta\left(f_{i}\right)\right|<\varepsilon, 1 \leqq i \leqq k\right\}
$$

where $\varepsilon>0$ and f_{i} are uniformly continuous and bounded functions on R. Let $\left|f_{i}(x)\right| \leqq H$ for all $x \in R, 1 \leqq i \leqq k$. By uniform continuity of f_{i} there exists $\delta>0$ such that $\left|f_{i}(x)-f_{i}(y)\right|<(\varepsilon / 4)$, whenever $|x-y|<\delta, 1 \leqq i \leqq k$. Since $\{K(s, t)$: $0 \leqq s \leqq 1\}$ has the same distribution as $\{W(s \cdot t)-s W(t): 0 \leqq s \leqq 1\}$, the probability in (12) dominates

$$
\begin{align*}
& P\left(\left|\frac{1}{t} \int_{0}^{t} f_{i}(W(s)) d s-\lambda\left(f_{i}\right)\right|<(3 \varepsilon / 4)\right. \\
& \quad 1 \leqq i \leqq k,|W(s)| \leqq d-\delta, 0 \leqq s<t,|W(t)|<\delta) \tag{13}
\end{align*}
$$

Let t_{0} be such that $8 H<\varepsilon\left(t_{0}-1\right), a<b<d$ and $0<\theta<\min (\delta, d-b) / 2$. Since W has independent increments and since for $t \geqq t_{0}$,

$$
\left|\frac{1}{t} \int_{0}^{t} f_{i}(W(s)) d s-\frac{1}{t-1} \int_{0}^{t-1} f_{i}(W(s)) d s\right| \leqq \frac{2 H}{t-1}<\frac{\varepsilon}{4}
$$

the probability in (13) dominates

$$
\begin{align*}
& P\left(\left|\frac{1}{t-1} \int_{0}^{t-1} f_{i}(W(s)) d s-\lambda\left(f_{i}\right)\right|<\frac{\varepsilon}{2} ; 1 \leqq i \leqq k,|W(s)|<b+\theta,\right. \\
& \quad 0 \leqq s<t,|W(t)| \leqq \theta) \\
& \quad \geqq P\left(\left|\frac{1}{t-1} \int_{0}^{t-1} f_{i}(W(s)) d s-\lambda\left(f_{i}\right)\right|<\frac{\varepsilon}{2} ; 1 \leqq i \leqq k,|W(s)|<b, 0 \leqq s \leqq t-1\right) \\
& \quad \times \inf _{|z| \leqq b} P(|W(s)+z|<b+\theta, 0 \leqq s<1,|W(1)+z| \leqq \theta) \\
& \quad=M_{t} \cdot J \quad \text { (say). } \tag{14}
\end{align*}
$$

Clearly

$$
J \geqq \inf _{|z| \leqq b} P(|W(s)+s z|<\theta, 0 \leqq s \leqq 1)>0
$$

and by Lemma 2.12 of [2],

$$
\liminf _{t \rightarrow \infty} \frac{1}{t} \log M_{t} \geqq-I(\lambda) .
$$

The theorem now follows from (14).

Theorem 8. Let $\lambda \in \mathscr{M}$ be such that $\lambda\{x:|x| \leqq a\}=1$ and $I(\lambda)<1$. Let N be a weak neighborhood of λ in \mathscr{M}. For $d>a$, let $E_{t}=\left(L_{t} \in N\right.$, $|a(t) K(s, t)| \leqq d$; $0 \leqq s \leqq 1$). Then, for almost all $\omega, \omega \in E_{t}$ for a sequence of times t increasing to infinity.
Proof. Let $p>1$ be such that $p I(\lambda)<1$ and let t_{n} denote the integral part of $\exp \left(n^{p}\right)$. We shall show that $P\left(E_{t_{n}}\right.$ i.o. $)=1$. Since $K(., t)$ has the same distribution as that of $\sqrt{t} K(., 1)$, we have for any $\eta>0$

$$
\begin{aligned}
& P\left(\sup _{0 \leqq s \leqq 1}\left|K\left(s, t_{n}\right)\right|>2 \eta \sqrt{t_{n} \log t_{n}}\right) \\
& \quad=P\left(\sup _{0 \leqq s \leqq 1}|K(s, 1)|>2 \eta \sqrt{\log t_{n}}\right) \\
& \quad \leqq 2 P\left(\sup _{0 \leqq s \leqq 1}|W(s)|>\eta \sqrt{\log t_{n}}\right) \ll n^{-2}
\end{aligned}
$$

So by Borel-Cantelli lemma,

$$
\begin{equation*}
\sup _{0 \leqq s \leqq 1}\left|K\left(s, t_{n}\right)\left(t_{n} \log t_{n}\right)^{-1 / 2}\right| \rightarrow 0 \quad \text { a.e. } \tag{15}
\end{equation*}
$$

Since $\left(\log t_{n}\right)^{2} t_{n-1} / t_{n} \rightarrow 0$ as $n \rightarrow \infty$, (15) implies that

$$
\begin{equation*}
\sup _{0 \leqq s \leq 1}\left|K\left(s, t_{n-1}\right)\right| s_{n} \rightarrow 0 \quad \text { a.e., } \tag{16}
\end{equation*}
$$

where $s_{n}=\left(\left(\log \log t_{n}\right) / t_{n}\right)^{1 / 2}$.
Let N be as in the proof of Theorem 7 and $a<b<d$. Define

$$
\begin{aligned}
H_{n}= & \left\{\left|\int_{0}^{1} f_{i}\left[s_{n}\left(K\left(s, t_{n}\right)-K\left(s, t_{n-1}\right)\right)\right] d s-\lambda\left(f_{i}\right)\right|<\frac{\varepsilon}{2}, 1 \leqq i \leqq k,\right. \\
& \left.s_{n}\left|K\left(s, t_{n}\right)-K\left(s, t_{n-1}\right)\right|<b \text { for } 0 \leqq s \leqq 1\right\} .
\end{aligned}
$$

By (16) for almost all ω, n sufficiently large, if H_{n} occurs, $E_{t_{n}}$ occurs. As $\left\{K\left(., t_{n}\right)-K\left(., t_{n-1}\right): n \geqq 1\right\}$ are independent $(K(., m)$ has the same distribution as the sum of m independent brownian bridges), the events H_{n} are independent. So by Borel-Cantelli it is enough to show that $\Sigma P\left(H_{n}\right)=\infty$. Now by Theorem 7

$$
\begin{aligned}
P\left(H_{n}\right)= & P\left(\left|\int_{0}^{1} f_{i}\left[K\left(s, s_{n}^{2}\left(t_{n}-t_{n-1}\right)\right)\right] d s-\lambda\left(f_{i}\right)\right|<\frac{\varepsilon}{2} ; 1 \leqq i \leqq k,\right. \\
& \left.\left|K\left(s, s_{n}^{2}\left(t_{n}-t_{n-1}\right)\right)\right|<b \text { for } 0 \leqq s \leqq 1\right) \\
\geqq & \exp \left[-I(\lambda) s_{n}^{2}\left(t_{n}-t_{n-1}\right)+o\left(s_{n}^{2}\left(t_{n}-t_{n-1}\right)\right)\right] .
\end{aligned}
$$

Since $s_{n}^{2}\left(t_{n}-t_{n-1}\right) \sim \log \log t_{n} \sim p \log n$, we have

$$
P\left(H_{n}\right) \geqq n^{-p I(\lambda)+o(1)}
$$

As $p I(\lambda)<1$, it follows that $\Sigma P\left(H_{n}\right)=\infty$. This completes the proof.
We are now ready to prove Theorem 1.

Proof of Theorem 1. Let N be an open set containing C. As N^{c} is compact θ $=\inf _{\beta \in N^{c}} I(\beta)>1$. Let $0<p<1$ be such that $\theta p>1$. Put $t_{n}=\left[e^{n^{p}}\right]$. Clearly for any $k \geqq 1,\left(t_{n}-t_{n-1}\right)\left(\log \log t_{n}\right)^{k} t_{n-1}^{-1} \rightarrow 0$ as $n \rightarrow \infty$. By a representation of Kiefer process (see Sect. 1.15 of [5]) and by the Corollaries 1.12 .4 and 1.15 .1 of [5], we have

$$
\begin{align*}
& \sup _{t_{n-1}}\left(\sup _{0 \leq t \leq t_{n}}\left|a(t) K(s, t)-a\left(t_{n}\right) K\left(s, t_{n}\right)\right|\right) \\
& \quad \leqq \sup _{0 \leqq 1}\left|a(t)-a\left(t_{n}\right)\right| \sup _{0 \leqq s \leqq 1}\left|K\left(s, t_{n}\right)\right| \\
& \quad+a\left(t_{n-1}\right) \sup _{t_{n}-1 \leqq t \leqq t_{n}}\left(\sup _{0 \leqq s \leqq 1}\left|K(s, t)-K\left(s, t_{n}\right)\right|\right) \\
& \quad \rightarrow 0 \quad \text { a.e. } \tag{17}
\end{align*}
$$

Now as in the proof of Theorem 2.8 of [2], it follows from (17) and Theorem 4, that

$$
\bigcap_{T} \bigcup_{t \leqq T} L_{t} \subset C \quad \text { a.e. }
$$

The converse follows from Lemma 2.16 of [2] and Theorem 8.

Applications

The following statements are immediate consequences of results in Sect. 4 of [2], Theorem 1 and Corollaries 2 and 3.
A.1. Let g be a continuous function on R such that $g(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Then

$$
\limsup _{t \rightarrow \infty} \int_{0}^{1} g(a(t) K(s, t)) d s=\sup _{\lambda \in C} \lambda(g) \quad \text { a.e. }
$$

and

$$
\limsup _{n \rightarrow \infty} \int_{0}^{1} g\left(\sqrt{n \log \log n}\left(F_{n}(s)-s\right)\right) d s=\sup _{\lambda \in C} \lambda(g) \quad \text { a.e. }
$$

A.2. Let g be a continuous function on R with $g(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. Define Φ on M as

$$
\begin{aligned}
\Phi(\lambda) & =\lambda(g) \quad \text { if } \lambda \in \mathscr{H} \text { and if } \int|g(x)| \lambda(d x)<\infty \\
& =\infty \quad \text { otherwise. }
\end{aligned}
$$

Then

$$
\liminf _{t \rightarrow \infty} \int_{0}^{1} g(a(t) K(s, t)) d s=\inf _{\lambda \in C \cap \mathcal{A} t} \lambda(g) \quad \text { a.e. }
$$

and

$$
\liminf _{n \rightarrow \infty} \int_{0}^{1} g\left(\sqrt{n \log \log n}\left(F_{n}(s)-s\right)\right) d s=\inf _{\lambda \in C \cap \mathscr{M}} \lambda(g) \quad \text { a.e. }
$$

Inparticular these results hold if $g(x)=|x|^{\theta}, \theta>0$. As in [2] if we take $g(x)=x^{2}$ we get

$$
\liminf _{t \rightarrow \infty} \int_{0}^{1}\left(\frac{\log \log t}{t}\right) K^{2}(s, t) d s=\frac{1}{8} \quad \text { a.e. }
$$

and

$$
\liminf _{n \rightarrow \infty}(n \log \log n) \int_{0}^{1}\left(F_{n}(s)-s\right)^{2} d s=\frac{1}{8} \quad \text { a.e. }
$$

A.3. For each $a>0$, there exists $k(a)$ such that

$$
\underset{t \rightarrow \infty}{\limsup } \operatorname{Leb} \text { meas }\{s: 0 \leqq s \leqq 1,|K(s, t)| a(t) \leqq a\}=k(a) \quad \text { a.e. }
$$

and

$$
\limsup _{n \rightarrow \infty} \operatorname{Leb} \operatorname{meas}\left\{s: 0 \leqq s \leqq 1, \sqrt{n \log \log n}\left(F_{n}(s)-s\right) \leqq a\right\}=k(a) \quad \text { a.e. }
$$

A.4. Using Theorem 8, we obtain

$$
\liminf _{t \rightarrow \infty} a(t) \sup _{0 \leqq s \leq 1}|K(s, t)|=\frac{\pi}{\sqrt{8}} \text { a.e. }
$$

and

$$
\liminf _{n \rightarrow \infty}(\sqrt{n \log \log n}) \sup _{0 \leqq s \leqq 1}\left|F_{n}(s)-s\right|=\frac{\pi}{\sqrt{8}} \text { a.e. }
$$

References

1. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Wiener integrals for large time. In Functional Integration and Its Applications. Proceedings of the International converence. London, 15-33. Oxford: Clarendon Press 1975
2. Donsker, M.D., Varadhan, S.R.S.: On laws of the iterated logarithm for local times. Comm. Pure Appl. Math. 30, 707-753 (1977)
3. Jain, N.C., Pruitt. W.E.: The other law of the iterated logarithm. Ann. Probability 3, 1046-1049 (1975)
4. Mogul'skii, A.A.: On the law of the iterated logarithm in Chung's form for functional spaces. Theory Probability Appl. 24, 405-413 (1980)
5. Révész, P., Csörgö, M.: Strong approximations in Probability and Statistics. New York: Academic Press 1981

Received January 26, 1983; in revised form June 3, 1983

[^0]: * This work was done while the author was visiting the Department of Mathematics, University of Ottawa, Ottawa, Canada

