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Summary. Two-sided bounds are derived for nonuniform rates of conver- 
gence in the central limit theorem, and are applied to solve several prob- 
lems on rates of convergence in nonuniform metrics. In particular, an ex- 
pression for the fastest rate of convergence is obtained, and rates of conver- 
gence using different norming constants are compared. A useful estimate of 
the rate of convergence in the (l + Ix[2+~)-metric is derived, which does not 
require the assumption of (2 + e)'th order moments. 

1. Introduction and Summary 

One of our purposes in this paper is to solve three problems concerning non- 
uniform rates of convergence in the central limit theorem: 

(i) What is the optimal rate of convergence in the central limit theorem in 
a nonuniform metric, and with what norming constants is this rate achieved? 

(ii) In what way does the rate of convergence depend on the norming con- 
stants? 

(iii) Is it possible to provide a useful estimate of the rate of convergence in 
the metric, I l f - g l l =  sup ( l+lx l2+~)l f (x) -g(x) l ,  without assuming the 

- - O 0  < x <  cO 

existence of (2 + e)'th order moments? 
We shall answer these questions by deriving two-sided bounds for nonuni- 

form rates of convergence. Before we consider the solutions, let us briefly de- 
scribe the motivation behind problems (i)-(iii). We shall assume that 
X, X 1, Xz , . . .  are independent and identically distributed random variables with 

zero mean and unit variance, and set S, = X X i. We let @ denote the standard 
normal distribution function. 1 

Many results on nonuniform rates of convergence consist of showing that 
descriptions of uniform rates may be applied directly to nonuniform rates. For  
example, Berry [2] and Ess6en [5] demonstrated that for an absolute constant 
C, 
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sup IP(S.<n~x)-~b(x)[<Cn-~ElXil 3, 
- - C o < X <  OO 

and Nagaev [17] derived the analogous nonuniform estimate, 

sup (l +[xt3)lp(S,<n~x)-q)(x)l< Cn-~ElXi] 3. 
- - O O < X < O O  

(See van Beek [1] and Michel [16] for values of the constants C.) As a second 
example, Heyde [11] proved that the two conditions, 

~ n -i+~/2 sup IP(S,~n~x)-q~(x)l<oo 
n =  1 - o o  < x <  oo 

and EIXI2§ are equivalent whenever 0 < b < l ,  while Maejima 
showed that they are also equivalent to the nonuniform constraint, 

[13] 

~ n -l+a/2 sup (l+x2)lP(S.<n}x)-~(x)l<ov. 
r l = l  - - O O <  X <  CX) 

By obtaining upper and lower bounds for nonuniform rates of convergence, we 
are able to predict conditions under which nonuniform rates differ from uni- 
form rates, as well as conditions under which they are the same. In particular, 
it is possible to compare optimal rates of convergence in uniform and nonuni- 
form metrics. Much of the literature on nonuniform rates of convergence con- 
centrates on upper bounds; see for example [3-6, 12-15, 18, 19]. 

Define the minimum distance in a nonuniform metric by 

A.~(a)= inf sup (l+lxl~)lP(S.<cx+d)-r 
c>O~d - - o o  < x <  o o  

where c~__>0. It is known that when e = 0  (the uniform case), this distance func- 
tion is of precise order 

6,1 =nP([Xl >n~)+n-l E{X4I(lXl <n~)} +n-~IE{X3I(IXI < n~)}l, 

- �89 - ~  up to terms of order n . That is, the ratio (A,1 +n )/(6,1 + n-~) is bounded 
away from zero and infinity as n ~ o o ;  see [8, 20, 21]. A corollary of Theo- 
rem 1 in the next section is that when c~>0, A,l(e ) is of precise order 

6. l(a) = n {sup x ~ P(I X l > n ~ x)} + n-  ~ E {X 4 I(I X l < n~)} 
x > l  

+ n-~ IE{X3I(IXI < n~)}l, 

up to terms of order n-~(logn) ~, where fl=max(0, e /2 -1 ) .  This rate of conver- 
gence is achieved with the norming constants c=n~a, and d=nv,,, where 

a2~ =E{X2I(IXI<n�89 and v,=E{XI(lXl<n~)}. 

These results provide an answer to the first question posed in the introductory 
paragraph. They substantially improve upon earlier results derived in [9], in 
which attention was confined entirely to the less interesting case c~<2, and 
where optimal rates of convergence in nonuniform metrics were not consid- 
ered. 
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We shall also investigate rates of convergence using the classical norming 
sequences, in which the scale and location constants are taken as c =n  ~ and d 
=0, respectively. This leads to an interesting and unexpected conclusion: If 
>2  then the rate of convergence of the nonuniform estimate, 

An(e;cn, d,)= sup (l +lxlDlP(Sn<cnx +d, ) -~(x ) l ,  (1.1) 
- o o < x <  oo 

is not improved by replacing the classical norming constants (cn, dn)=(n ~,0) by 
the "optimal" pair, (cn, dn)=(n-~an, v,), up to terms of order n-~(logn) '. On the 
other hand, in the case ~__< 2, an improvement can be achieved. In this way we 
may derive an answer to question (ii). The results of our main theorems can be 
applied to obtain characterisations of rates of convergence in nonuniform met- 
rics, for instance of the type derived by Heyde [11]. An example is given in 
Sect. 2. 

Note that c~l(c~ ) is finite and converges to zero for many distributions with 
infinite s  moments. In particular, if P(IX] >x)~const .  x ~ for large values of 
x, where 2 < c~< 3, then we may deduce from Theorems 1 and 2 below that 

C x nl-~/2 <=A~l(o:) <=An(~; n�89 0) <= C2n 1-~/2 

for positive constants C~ and C 2. Since the random variable [XI does not have 
finite s  moment, many classical estimates of the size of A,(~;n�89 (see for 
example Bikyalis [4]) provide only an infinite upper bound. Our bounds to 
rates of convergence allow us to give a positive answer to the third question 
posed in the introduction. 

The techniques used during our proofs involve two stages: we derive an 
estimate for one-sided large deviation probabilities (see Theorem 3), and then 
we apply a leading term approach to rates of convergence, developed in 
[9, 10]. We have tried to keep our notation close to that of [9]. It is possible 
to derive very similar results for rates of convergence in local limit theorems, 
and for rates of convergence in Chebyshev-Edgeworth-Cram6r expansions. 

2. Results 

The notation introduced in Sect. 1 will be assumed throughout. Note in partic- 
ular the definition of An(e; c,, d,) at (1.1). Our first result describes rates of 
convergence using "optimal" norming constants. 

Theorem 1. Let fl=max(0, c~/2-1). Then for all ~>0, 

as n~co,  and 
Z]n(~ ; n �89 nvn)  = O {(~n 1(00 Jr n- +(log n) p} 

lira inf{A, 1(c0 + n-  ~(log n)•}/6,1 (e) > 0, 
n~oo 

provided only that the ratio ~/oo is interpreted as unity. 

(2.1) 

(2.2) 
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The next result describes rates of convergence using the classical norming 
constants, c ,=n  ~ and d,=0.  We define 

6,(c~) = E {X2 I(I X I > n~)} + n -1E {X 41(t X[ < nr + n-  ~IE {X ~ I([X[ < n~)}[ 

for 0_<e_<2, and 6,(c0=6,1(e ) for e>2.  

Theorem 2. For all ~>0, the ratio 

{A,(e; n ~, 0) + n-  ~(log n)~}/{6,(c0 + n-  ~(log n) ~ } 

is bounded away from zero and infinity as n--* o% provided only that the ratio 
o~/oo is interpreted as unity. 

Remarks. (i) It is easily proved that for any c~ > 2, 

3,1 (~) = 6,(c 0__> {(c~ - 2)/c~} 3,(0). 

(ii) If X has a lattice distribution, or if the distribution of X satisfies 
Cram6r's condition, limsup [E(eit~)l < 1, then the constant/3 appearing in Theo- 

I t l~  
reins 1 and 2 can be replaced by zero. In this case, the ratios 

{A,l(e)+n-~}/{6,1(cO+n -§ and {A,(c~;n�89 -�89 

are both bounded away from zero and infinity as n--*~. This sharpening can 
be accomplished after relatively minor modifications to the proofs given in 
Sect. 3, and using Theorems 4.2 and 4.3, pages 162-164 of [9]. Distributions 
which are neither lattice nor satisfy Cram6r's condition are encountered very 
infrequently in practice. 

(iii) As an application of Theorem 2, let us derive necessary and sufficient 
conditions for convergence of the series, 

~ n -1+~/2 An(O:; (2.3) n -~, 0), 
n = l  

in which we take 6~(0, 1). It follows from results of Heyde [11] that a neces- 
sary condition for convergence is E IX[2+~ o% and that this constraint is suf- 
ficient when e=0.  Maejima [-13] showed that the condition is also sufficient in 
the case 0 < e < 2 .  Now suppose e>2 ,  and E tXI2+~< ~ .  We may deduce from 
Theorem 2 that the series in (2.3) will converge if and only if 

~ n ~/2 {sup x~P(lX] >n~x)} < 0% 
n = l  x > l  

and by making an integral approximation to the series we see that this con- 
dition is equivalent to 

~ u ~ {supx~P([Xl>x)}du< oo. (2.4) 
1 X>= u 
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If the function x~P(IXl>x) is finite and nonincreasing for X>Xo, or if c~<2 
+8,  then condition (2.4) is equivalent to ELXI2+~<~. However, if ~ = 2 + 3  
then there exist distributions for which EIXI2+~<oo but condition (2.4) fails. 
To see this, let Y be a discrete random variable with atoms at the points 2 "~, 
n>  1, and distribution given by 

P(Y>2~)=2~/2~"~n 2, n ~ l .  

Set cZ=E(y2),  let IXI have the distribution of Y/c, and let X be symmetric. 
Then EIX]~< m, and if 2n2<CX<2 (n+l)z, 

c~supu=P(lX[ >u)--  sup u=P(Y>u) 
u>=x u>=ex 

> 2~,+ ~) ~ p(g>2(,+~)~)=2~/( n + 1) z. 

Hence if 0 < u 0 < 2/c, 

oc 

c a ~ u ~+1-~ {supx~P(IXt>x)}du 
U0 N ~ U  

2(~ + l)Z/C 

>2  ~ ~ (n-Fl) --~ 5 u - l d u = o o .  
n= 1 2n~-/c 

In summary, the conditions 

~n-l+OP-A,(ccn~,O) and ElXl2+a<oo 
n = l  

are equivalent for 0<c~<2+8 ,  but not for c~>2+& Similar results may be 
obtained in the case 8=0,  and for alternative characterisations of rates of con- 
vergence. 

(iv) It was shown in [9, Examples 3.4.4 and 3.4.5, pages 134-142] that, even 
when c~ < 2, 8nl (0) can be negligible in comparison with 8nj (~), and 8,n (c~) can be 
negligible in comparison with 8,(~). 

We conclude with a new result on one-sided large deviation probabilities, 
which is used as a lemma in our proofs, but which seems to be of independent 
interest. This result is related to Theorem 2 of Michel [15]. 

Theorem 3. Suppose E(X+)2+O<oo for some 8>0.  Given k > l  we may choose 
constants C, e and 2 >0  such that 

P(S n > n~ x) < tz P(X  > n%x)  + C(n x)-k 

whenever x > (2 log n) ~. 

3. Proofs 

Throughout  the proofs the symbol C denotes a generic positive constant. 

Proof of Theorem 3. Observe that for any 0 < ~ < 11 < 1 and z > Jl- t, 



66 P. Hall 

Let Y,, 
with ess sup Y = y <  0% and finite variance. Then 

P (~ Y~ > n~ z) < ~ exp(-tn~ z) 

for any t>0 ,  where O = E  exp(tY). Now, 

exp(t Y)= l +t Y+1(t Y)2 +r(t, Y), 

P(S,>2n~z)<nP(X>nr Xi I(X~ =<~n- r 1 z) >2n~z} 

<nP(X>n~tlz)+P{~X~I(X~<~n4)>n}z} 

+P XiI(~n-~<Xi<n+rlz)>n~z . (3.1) 

Y1,-.-, Y, be independent and identically distributed random variables 

(3.2) 

where r(t, Y)<O if Y<0, and 0<r( t ,  Y)<~(ty)3exp(ty) almost surely if Y>0. 
Therefore 

tp < 1 + tiE YI +�89 t2 E(y2)+~ t3 E {Y3I(Y>O)} exp(ty) 

< exp It IE YI + �89 te E(Y2) + ~t3 E { y3 I(Y> 0)} exp(t y)]. (3.3) 

We first take Y=XI(X<=~n -~) and t=n--~O, where 0>0,  and observe that 

IE Y] = E {X I(X > ~ n~)} < ~- 1 n-  ~ E {X 2 I(X > ~ n~)}. 

Consequently 

q)~ < exp[0~ -1 E{X2I(X>~n~)} +102+03e~~ (3.4) 

where A=n-~E{X3I(O<X<~n~)}. Let p be a large positive constant. If 
l<__z<_2plogn then we take O=z. Since 

E{xZI(X>~n~)}+n--~E{X31(O<X<~n~)}=O(n -~/2) (3.5) 

under the condition E(X+)2+~<oG then provided ~ is so small that 2~p<6/2, 

04-1 E {X2I(X > ~ n�89 -]-102 ~- 03 er176 
< Iz2 +O {n-O/z + zcP(logn) 3} < �89 + C. 

We may now deduce from (3.2) and (3.4) that 

P{~Xil(Xi<=~n�89189 -z'-/2. 

If z >(2 log n) ~ and 2 is sufficiently large, this implies that 

p{~xiI(Xi<~n~)>n-~z}<C(nz) -k. (3.6) 

When z > 2p log n we take 0 = p(log z -  log A). Since - log A -<_�89 log n + C for 
large n then 
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- 1 E {X2I (X  > ~n~)} +�89 + 02e~~ 

< �89 log z + �88 log n + 2 p2 {(log z) z + (log A) 2} A 1 - ~p z ~p + C 

__<�89 

provided n is large and ~ is so small that ~p < 1. Therefore by (3.2) and (3.4), 

P{~Xil(Xi<~_n�89189176 -pz/2. 

Therefore (3.6) also holds in this case. 
Next we take Y=XI(~n-~<X<rln+z) and t=(n~z)-lO in (3.3), from which 

we deduce that 

~"~exp{ (~ -Zz - lO+ tz~-lz-ZOZ)z] +~z 303e"~ (3.7) 

where on this occasion, A =n--~E{X3I(?,n~<X<rln~z)}. Let O=p( logz - logA)  
and observe that for any r>0 ,  

z -r OrA < Cz-r  {(log z) r + Ilog A I ~} A 
and 

z -  303 e~O A < C z -  3 {(log z) 3 + Ilog At 3 } A 1 -,p z, O. 

Provided r/ is chosen so small that ~ p < l ,  both these quantities are bounded 
uniformly in z>( logn)  ~ and large n. In this case ~"<  C, and so by (3.2) and 
(3.7), 

P {~  XiI(~ n ~ < X i < r I n~z) > n�89 < Ce-~ = C(A/z)-P. 

Therefore if z>( logn)  ~ and p is sufficiently large, we may deduce via (3.5) that 

~t �9 t 1 
P{~lXiI(~n~<Xi<=rln~)>n~z}~C(nz) -k. 

Theorem 3 follows on combining this result with (3.1) and (3.6). 

Proof of Theorem i. In the case 0_<~<2, the upper bound (2.1) follows from 
Theorems 3.2 and 3.5, pages 89-90 and 121-122 of [9]. Therefore we may 
confine attention to the case c~>2. In this situation we may assume that 
EIX[2+O<oo for some c~>0, for otherwise both A,I(C~ ) and 6,1(c~ ) are infinite, 
and the result is trivial. When E IXI2+o< ~ ,  we have 

g {2  2 I(IXl > n~)} + n-  ~ E {IXI 3 I(IXl < n~)} = 0 (n-'5/2) (3.8) 

as n~oo .  We may deduce from Theorem 3 that for sufficiently large 2, 

sup (l + x~)lP(S~<n�89 +nv,)-qS(x)[ 
x > ( 2 2  l o g n ) ~ / 2  

< sup (l+x~)P(S~>n~a~x+nv~) 
x > (2  2 log  n) 1/2 

+ Cl(log n)(~ 1)/2 e x p ( -  2 log n) 

< C 2 n  { sup ( l + x ~ ) P ( X > n l x ) } + O ( n  -~) 
x > (e log  n) 1/2 
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for some e>0 ,  noting that  `7,---,1 and n~v,--,O. A similar result holds for nega- 
tive x, and so 

sup ( l+[xP') lP(S.<n~%x+nv.)-~(x) l=O{b. l (cO+n-~} (3.9) 
Ix[ > (2 2 logn) 1/z 

a s  /'/--+0(3. 

F r o m  Theorems 3.2 and 3.5 of [-9] we see that 

sup 
- o o < x <  oo 

(l+x2) lP(S,,<=n~%x+nv.)-~(x)-L.,l(X)l=O{`5.1(~) ̀5.+n-~}, 
(3.1o) 

where 
L,, ~ ~(x) = nE {~(x  - X/n~`7.) - ~(x)} + ~ ~'.`72 ~ - ~q~'(x) 

and 6, =`5,(0). It follows from Theorem 3.4, page 120 of [9] that 

sup IL,11(x)l =O{6,1(0)},  
- o o < x <  oo 

(3.11) 

and from (3.8) and (3.10) that 

sup (l +lxl~)lP(S.<n}%x +nv.)-@(x)-L.11(x)]  
Ixl 6 (2 z log.W = 

= O {`5,1(c~) + n -  ~(log n)-  1 +~/2}. (3.12) 

We shall prove next that  

sup (1 +lxl =) ]L, 11(x)1 = O {`5,1(~)}. (3.13) 
1~l>2 

The results (3.9), (3.12) and (3.13) combine to imply the first part  of Theorem 1. 
For  x > 2 we have 

Ign 1 l (X) l  ~ ; 2 E  [ - { ~ ( x )  - (I)(x - X / t ~  �89 f in)} I ( X  > n4)] 

+ n E [ { ~ ( x -  X / n ~ G . ) -  ~(x)} I ( X  < - n~)] 

X n-~`7._ j o-1) x "l +nE { #(x--X/n�89 / ,,)~b ( )/j. 

�9 I(IX[ <n~)} 

+n-~ I~"(x)L (n `Tn) ~ IE{X3I(IXI <n~)}l 

< n E [{ 42(x) - ~(x - X/n ~`7.)} I(1 < X/n ~ < �89 

+ n P (X > n~x/2) 
+ { 1 - , / , ( x )  + o-,7 4 sup 14/3)(x + y)l + , ; f  314/,(x)l} ,5. ~ (0) 

[yI=<l 

<=nP(X>n~x/2)+ C(l +x~) -1 6.1(0). (3.14) 

Therefore 

sup (1 + x ~) IL. 1 l(x)l < n {sup (1 + x ~) P(X > n-bx/2)} + C`5.1(0), 
x > 2  x > 2  

and a similar result holds for negative x. This proves (3.13). 
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We now turn to the p roof  of (2.2). Choose  constants  c, > 0  and d~ such that  

2A, 1(c0 = sup (l+lxlglP(S<=Gx+d,)-~(x)[. 
--oo < x <  oo 

(3.15) 

By the Convergence  of Types  T h e o r e m  (see T h e o r e m  2, page 42 of [7]) we 
necessarily have a,=_n}G/G-1 ~ 0  and b,,=-(nv,-d,)/c,~O as n ~  oo. Changing  
variable  f rom x to y=(Gx+d-nv,)/n-~G in (3.15), we obtain  

CA,~(c~)> sup (I +IYI~)JP(S <n}Gy+nv,)-~O,+a,y+b,,)[. (3.16) 
- - o o K y <  O0 

Since (1 + x =) { 1 - (b (x + G x + b,)} = O (n - 5) uniformly in x > (2 log n) +, 

sup (l+x~)lP(S <n~%x+nv,,)-~(x+a.x+b.)l 
x > ( 2  log n)l/2 

= sup (l+x~)P(S,>n~Gx+nv~J+O(n-~). (3.17) 
x > ( 2  logn)l/2 

For  any z >0 ,  

P(S.>n}z)>P_ {Xi<n~z for i<j-1;  Xj>n~z; ~ Xi>O} 
J l<_i<n, 

i * j  

> L {P(Xj>n~z; ~ Xi>O) 
j = l  l <i<_n, 

i * j  

-P(Xj>n~z; Xi>n~z for some l__< i< j -1 )}  

> L {P(X ~ = > n-z) P(S,_ 1 ~ O)  - -  P(X > nr (n - 1) P(X > n~z)} 
j = l  

>nP(X>nr {P(S, 1 >O)-nP(X>n-~z)}. (3.18) 

Since nP{X>n}(logn)~}~O as n ~ o o ,  and P(S,_ 1 >0)--*�89 we may  deduce f rom 
(3.18) that  for all large n, 

sup (1 +x~)P(Sn>n-~G,x+nvn) 
x > ( 2  logn) 1/2 

>�88 sup (l+x=)P(X>2n}x)}. 
x > (2 log n) 1/2 

Next  observe that  for x > 0, 

IL.11(x)-nEE{~(x -X/n~G)-~(x)} I(X>n�89 <= C(1 + x  ~) 1 ~n 1(0) ' 

using the a rgumen t  leading to (3.14). 
and (3.20) that  

(3.19) 

(3.20) 

If  0_<~_<2, we may deduce from (3.10) 

sup x~[P(S <nQq, x +n#,)--q~(x)--nE[{eb(x_X/n~%) 
1 < x < 1 2  logn)U2 

-,~(x)} I (x  > ng][ 

=o{a,,l(0)+n ~} +o{a~ (3.21) 
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while if e > 2, it follows from (3.8), (3.10) and (3.20) that  (3.21) continues to hold 
provided the term n -~ on the right hand side is replaced by n-+(logn) -~+~/2 
It was proved in [-8, 21] that 

6nl(O)=O {A.l(O) + n-~},  

and by combining the results (3.16), (3.21) and (3.22) we obtain, 

sup x ~ [nE [{~b(x - X / n + G ) -  ~b(x)} I ( X  > n+)] 
1 < x < ( 2  logn) 1/2 

+ eb(x) -  Cb(x + a . x  + b.)l 

= O {A.  1 (c~) + n -  ~( log n) ~} + o {6 .1  (~)}. 

(3.22) 

(3.23) 

Suppose n is so large that  [a.], ]b.[<�88 and that  x > l .  We may write ~b(x 
+ G x + b . ) - ~ b ( x ) = ( a . x + b . )  O(x.), where x.  lies between x and x + G x + b  . and 

> 1 ~>~ Therefore  so satisfies x . = x - ~ x - x = ~ x .  

I~(x + a .x  + b . ) -  ~(x)l < (]a.] + ]b.]) x e  -~/8,  

x~(nE [{~b(x) - ~ (x  - X / n  ~ G)} I ( X  > n~)] + cb(x + a . x  + b.) - ~b(x)) 

> n { 4 ( 1 ) -  4(0)} x ~ P ( X  > 2 n ~ x ) -  (IGI + Ib.[) x ~ + a e-~/8 ,  

and 

We may now deduce from (3.23) that  for any 2 > 1, 

C {A. 1(c~) + n-~(log n) ~} + o {6.1(~)} 

> n  {~b(1)- ~(0)} sup x ~ P ( X > 2 n + x ) - ( l a . l + ] b . I ) s u p x ~ + l e  -x2/8 . 
2 < x < 1 2  logn) 1/2 x >~  

Combining this estimate with (3.16), (3.17) and (3.19) we find that  

C {A. 1(c~) + n -  ~(log n) p } + o {6.1 (e)} 

> n {4(1) - 4(0)} sup x~P(X  > 2n+x) - (la.[ + Ib.l) sup x ~+ 1 e-X~/8 
x>.~ x > 2  

> n {rb(1) - rb(O)} 2 -= sup x=P(X > n i x )  
x>=l 

- (la.l + ]b.I) sup x ~ + 1 e-~2/s _ U P ( X  > n+). 
x > ~  

Using (3.22) again, we deduce that  

C(2) {A. 1(c~) + n - i ( l o g  n) a} + o {6. l(e)} 

_> 2 -~ {(b(1)-  4(0)} n {sup x~P(X  > n+x)} - (la.[ + Lb.[) sup x ~+ 1 e-X2/s 
- -  x > _ l  x > ,,i, 

The case of negative x may be treated in the same way, and so 

C(2) {A. 1(~) + n-+(log n) e} + o {6.1(~)} 

> 2-= {~b(1) - ~b(0)} n {sup x=P(lXl > n+x)} - 2(la,,[ + lb.[) sup x ~+ 1 e-X2/8. (3.24) 
x > l  x >~  
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If the result (2.2) is false, we may choose a sequence {nk} diverging to in- 
finity such that 

{A n 1(~) + n-  ~(log n)~}/5, l(c0-,0 (3.25) 

as n4oo  along this subsequence. In view of (3.22), this entails 

~. l (~)/n {sup x~P(IXl > n+ x)} --, 1 
x > l  

as n ~  along {nk}. Since (3.24) is true for all large values of 2, we must 
necessarily have 

(la.I + Ib.I)/6. & ) ~  oo (3.26) 

as n~oo  along {nk}. However, 

]a.l+lbn[<C sup Icl)(x +anx +b~)-4'(x)l 
- o o < x < :  oo 

< C {  sup IP(S,<n~cr, x+nv~)-q~(x+a,x+b,)l 
- o o K g <  oo 

+ sup IP(S.<n~a.x+nv.)-cb(x)l} 
--OQ<X<~ 

= 0 { A  n 1(00 q- a n 1(~) q- F / - -} ( log  n)'}, (3.27) 

using (2.1). Results (3.26) and (3.27) together imply that 

{A, 1(c0 + n-  }(log n)~}/6, l(ct)~ oo 
as n--,m along {nk}, contradicting (3.25) and completing the proof of Theo- 
rem 1. 

Theorem 2 in the case 0<c~<2 follows from Theorems 2.2, 2.3 and 2.4, 
pages 25, 44 and 46 of [9]. The proof in the case c~>2 is similar in many 
respects to that of Theorem 1, and so will not be given here. 
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