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Summary. We consider the determination of the behavior of a distribution 
function F at its endpoints in terms of the behavior of its Laplace-Stieltjes 
transform co at the limits of its interval of convergence. The results extend 
various known strong and weak results to a larger class of distributions via 
a relatively straightforward technique based on the weak convergence of 
suitably normalized associated distributions. An application and examples 
are considered briefly. 

1. Introduction 

Consider a distribution function F on the real line IR and denote its two-sided 
Laplace-Stieltjes transform by co: 

co(r)= ~ e-rXF(dx); (1) 
- - o 0  

where we assume that the interval of convergence of co is (R, S), 

- o o  < R  <S <= oo. (2) 

We are interested in determining the behaviour of F at its left endpoint eL, 

eL=inf{x:  f (x )  >0} > - oo; (3) 

based on the behaviour of co at X, i.e., as r-~S. Such a result is called a Tau- 
berian theorem or an inverse Abelian theorem depending on whether some 
"extra"  condition is placed on F or on co respectively (see Lew (1973)). 
Karamata ' s  famous Tauberian theorem is an example and deals with the case 
of regular variation of co at o0 (see, for example, Feller (1971)). 

As pointed out in Remark 1 below the results are easily translated to the 
behaviour of 1 - F  at the right end point, e R say. 
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For the case that co is not regularly varying at oo but log co is (or has some 
other smooth behaviour at oo), the literature contains a series of so-called weak  

Tauberian theorems which relate the behaviour of log F at e L to that of log co 
at oo. See the papers by Bingham and Teugels (1975), Balkema et al. (1979), 
Wagner (1966, 1968), and Kohlbecker (1958). 

However, these weak results are often not satisfactory: for example, they do 
not provide sufficient conditions for the domain of attraction of the minimum 
W n =rain (X 1 . . . .  , X,), for {Xi}  independent and identically distributed with dis- 
tribution F, to be the Gumbel law A, 

A ( x ) = l - e x p ( - e ' ~ ) ,  - o o < x <  oo. (4) 

(See, for example, de Haan (1970) on the topic of weak convergence of sample 
extremes.) 

Here we provide a strong Tauberian theorem and a more useful (strong) in- 
verse Abelian theorem. The latter theorem generalizes one due to Berg (1960). 
We have simplified the assumptions, thereby extracting the essense of the 
proof, and have also extended the theorem's applicability. We show, in fact, 
that the result derives from the weak convergence of distributions associated 

with F (see Feller (1971, p. 549)) when this convergence is also local; that is, 
when the relevant densities converge. For the asymptotically normal case, this 
result may also be considered as a converse of the Abelian theorem of Bal- 
kema et al. (1979, pp. 408,9), viz. Remark 6 below. 

For the class of distribution functions F having a density f corresponding 
to a convolution kernel, that is for which 

- l o g  co(r) = - - c r 2 + b r + ~ { l o g ( 1 - - r / a k ) + r / a k } ,  ~a~-Z < oo, (5) 
k k 

Hirschman and Widder (1955) have provided much information on the be- 
haviour off ,  including asymptotic expansions at the endpoints. One may thus 
also regard the present work as an extension of their asymptotic results to a 
wider class of distributions, still using some of their basic methodology. 

In Sect. 2, after introducing some notation we present and prove the main 
results with some brief remarks at the end. In Sect. 3 we discuss applications 
and examples. 

2. Main Results 

In addition to the quantities defined in Eqs. (1), (2), and (3) we also consider 
the derivatives of log co(r) and denote them as follows: 

and 
(r) = -- (d/dr) log co (r), 

tl 2 (r) = - (d/dr) ~ (r), 

R < r  < S  (6) 

R < r  <S .  (7) 

Their properties of interest to us are summarized in the following lemma, the 
proof of which is straightforward and delegated to the Appendix. 
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Lemma 2.1. Under the assumption (2), the following hold ,for R < r <S:  

(i) co(~)(r)-(d~/dr=)(co(r))= ~ (-1)"x%-"~F(dx) exists, ~=0,  1 . . . .  ; 
- c o  

(ii) S x~e-~F(dx)=cS(oO-~ ~ x ~ - l e - ~ X p ( x ) d x + r  ~ x ~ e - ~ P ( x ) d x ,  
- o o  - o o  - o o  

c~=0, 1, ..., 

where 

~ r t x ) - i  x>O 
and 

~(c~)={10 ~ = 0  
otherwise; 

(iii) ~(r) and r/2(r) are finite al~d r/2(r)>0; 

(iv) ~(r)~e L (monotonically) as r~S.  [] 

We also record the following result, the essence of which is well known. An 
outline of the proof appears in the Appendix. 

Lemma 2.2. Suppose there exists a sequence of non-negative functions {u,} and 
constants {B,} such that 

(i) u,(x) is log-concave for x <B ; 
(ii) B.  7 oo ; 

b 

(iii) ~ u , ( x ) d x ~ M ( b ) - M ( a )  all - ~ < a < b < o o  where M is an absolutely 
a 

contimtous distribution fimction with density m. 
Then u,(x)---,m(x) at all continuity points x of m for which re(x)>0. [] 

We now introduce a slow variation condition which has also been used in 
Tauberian theorems of the Wiener type (see Bloom (1976)). We say that r/(r) 
satisfies Condition B if: 

~ h > 0  such that ~/(r+0/~/(r))/t/(r)-~l as r ~ S  for all ]0[<h. (8) 

For S =  o% this condition is virtually equivalent to requiring that 1/r/(r) be 
Beurling slowly varying. It has been investigated by Bloom (1976) and more re- 
cently by Bingham and Goldie (1982). The Condition B is also referred to by 
Balkema et al. (1979, p. 409) in the context of their Abelian counterpart of our 
Corollary 1. 

The following result, due to Bloom (1976), will be required in what follows. 

Lemma 2.3. For rl(r ) as defined in (7), if Condition B holds then 
(i) the convergence in (8) is uniform on O6(-h,  h); 

(ii) rr/(r)~oo as r~S ,  whenever S>0.  [] (9) 

The proof is again indicated in the Appendix. 
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Theorems 1 and 2 each involve two parts: the first is common to both and 
involves proving the weak convergence of the normalized associated distri- 
butions; the second part involves using either an extra condition on F (the 
Tauberian theorem) or an extra condition on co (the inverse Abelian theorem) 
to ensure that the densities converge as well. 

We precede the results and their proofs by defining some extra quantities. 
Consider the associated density, for R < r <S, 

re-rXF(x)/co(r), xelR 

which has expectation ~(r)+r -1 and variance t/2(r)+r -2 (see Lemma2.1(iii) 
and (iv)). We normalize this density and so define a sequence of distributions 
{Mr} with densities {mr} and Laplace-Stieltjes transforms {#r} given by: 

mr(x)=r.fl.[exp{-r(~+xfl)}].F(~+xtl)/co(r), R < r < S  (10) 

and 

#r(s)=[l + s/(rtl)]-l, exp {s~/fl}.co(r + s)l)/co(r), R <r(l + s/rfl), r<S.  

The argument, r, of r and r/has been omitted for typographical clarity. We 
also note that the characteristic functions of the distributions {Mr} are given 
by {#r(-  is)}. 

The key to the following results is the simple observation that if, as r--+S, 
mr(0 ) converges to a non-zero quantity then, from (10), we have established an 
asymptotic relationship between F(~(r)) and co(r) as r--+S. The results below are 
concerned with conditions on {/#(.)} and possibly on F itself which ensure this 
convergence of the sequence of densities {mr(')}. 

We first turn to the inverse Abelian results involving only conditions on 
co(r) and its derivatives. 

Theorem 1. Suppose # is the Laplace-Stieltjes transform of a distribution function 
M, and #(s) exists for s~[-h,h] ,  h>0.  I f  

(i) co(r) satisfies (2); 

(ii) #~(s)--+#(s) as r~S,  for s~[-h ,  hi; 

(iii) {#r(-is)} is dominated by gsLl(  - c~, oo) (11) 

then, as r~S,  

- - c o  

Proof. The continuity theorem for moment generating functions (see Billingsley 
(1979, p. 345)) ensures that (ii) implies 

M r ~ M ,  

which, with (ii), implies 

#~(--is)--+#(--is); s~IR. 
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The hypothesis (iii) and Lebesgue's dominated convergence result then give 

( 1 )  ~ ixs ( ~ )  ~ mr(x)= ~ e #r(-is)  ds~  e-i~s#(-is)ds 
- -  ~ 0  - - o 0  

so that (12) follows on substituting x = 0  in (10). [] 

One important special case of this result is when M corresponds to the 
standard normal distribution. The following corollary gives a sufficient con- 
dition for this case. 
Corollary 1. I f  (i) and (iii) of the theorem hold, S > 0  and (iiB) r/(r) satisifes Con- 
dition B ; 

then 

F(~(r)) ~ co(r) �9 exp {r~(r)}/{rtl(r ) ]/-~}, r-+S. (13) 

Proof From the uniform convergence result of Lemma 2.3, we see that (iiB) im- 
plies that for some Ro(h ) and all s<h, (r+s/tl(r))<S for r>R o. 

A Taylor expansion of log#,.(s) about s = 0  yields, for all s e [ - h ,  hi, 

log Pr (s) = - log (1 + s/(r q)) + (sZ/2) rlZ (r + Os/tl)/t 12 (1.), r > R o 

with O=O(r,s)E[O, 1]. Again, Condition B and the consequent uniformity of 
convergence ensures that 

#r(s)~exp(s2/2), r ~ S  

and so (ii) of the Theorem is established with M= N( 0 ,  1). The result (13) then 
follows on substituting exp(-s2/2)  for #( - i s )  in (12). [] 

Berg (1960) examined conditions which are sufficient to ensure that Con- 
dition B as well as (ii) hold. 

We now turn to a Tauberian counterpart to the above results. The hy- 
pothesis (iiia) may be considered as the Tauberian condition. 

Theorem 2. Suppose that # is the Laplace-Stieltjes transform of a distribution 
function M, that M has a density m positive and continuous at O, and that #(s) 
exists for s~[ -h ,h] ,  h>0.  I f  

(i) co(r) satisfies (2), 

(ii) g~(s)~#(s) as r~S,  for s~[ -h ,  hi, 
(ilia) F is log-concave in an interval [eL, A], A >eL; then (12) holds. 

Proof As for Theorem 1, (i) and (ii) imply that M~ ~ M. 

In order to show that the densities m~ also converge pointwise to the densi- 
ty m we first show that for each x~lR at which 0 < M ( x ) < l  

y=y(r)=~ + xtl-~e L as r--+S. 

Indeed, if y(r)>6>e L for r=t,--+S, then 
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1-Mt . (x)= ~ mt.(u)du< e-t"XF(x)dx 
X 

i e-~"XF(x)dx}~O as t,-+S 
- - 0 O  

which contradicts the weak convergence. Similarly, if y<cS<e L for r= t -~S  
then Mr,(x)=0 which again leads to a contradiction. Therefore, for each r 
there exists B(r), with B( r )Zm as r ~ S  such that m,.(x) is log-concave for 
x<B(r).  Now applying Lemma 2.2, we obtain the desired result: 

m,.(x)--+m(x) 

at all points, x, at which m is positive and continuous. Therefore (12) follows 
upon setting x = 0  in (10). [] 

Corollary 2. If (i) and (iiia) of Theorem 2 hold, S>0,  and also 
(iiB) t/if) satisfies Condition B; then (13) holds. 

Proof Just as for Corollary 1, since (iiB) again ensures that M= N( 0 ,  1). [] 

If F has a density we have the following result. 

Theorem 3. I f  F has density f and if 

(i) co(r) satisfies (2); 

(ii) ~/(r) satisfies Condition B; 

and either (iii) (11) holds 
or (iiia) f is log-concave in an interval [eL, A), A >e L 

then f(~(r))~ co(r) exp {r~(r)}/{~l(r ) l / ~ } ,  r~S .  (14) 

Proof The proof follows from those given for Corollaries 1 and 2 by setting 

m r (x) = t/. exp { - r [4 + x rl] } .f(~ + xtl)/co(r), 

and proceedings as in those proofs. [] 

Before turning to applications and examples, we record some remarks con- 
cerning the above results. 

Remark 1. Theorems 1, 2 and 3 can readily be rephrased in terms of asymptotic 
expansions at the right end-point, 

eR=SU p{x: f ( x ) < l } < o %  

by simply checking that the conditions (2) and B hold as r ~ R  and that either 
(11) holds as r ~ R  or that 1 -F (x )  is log-concave for xe(A, eR), A <e R. 
Remark 2. If t/(r) is regularly varying at S=  o% with parameter p > -  1, then 
Condition B follows immediately. 

Remark 3. A referee has pointed out the following sufficient condition for Con- 
dition B. Let 

v(r) = (d/dr) ~,l~ (r) - ( ~  (r))'. 
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Then a sufficient condition for (8), when S--o% is 

v(r)/tl3(r)~O as r~oo.  (15) 

Indeed (15) implies (1/~/)'~0 as r~oo  and writing ,t= 1 ) /we  have 

~(r+ O/~(r))/~{r) =,t(r)/[,t(rl + 0,t (r) 2(0*)] 

=[1+02'(0")]-1-~1 as r~oo ;  

where 0"=0"(0,  r) satisfies r<O* <r+O/rl(r ). 

Remark 4. One of the practical drawbacks of Theorems 1, 2, and 3 is that the 
asymptotic expansion is given in terms of F(~(r)) or f(~(r)) as r---,S. In some si- 
tuations it may be difficult to invert ~(r) in order to get the expansion for F(x) 
or f(x)  as x ~ e  f. 

Remark 5. For the case S = ~ ,  and f (a density of F) being a convolution kernel 
Hirschman and Widder (1955) give the expansion (14). They show, in fact, that 
the conditions (15), (p. 113) and (11) (p. 64) hold generally for co satisfying (5) as 
long as c + 0  or the infinite product does not reduce to a finite one. It is in- 
teresting to note that they also show that f must be log-concave if it is a con- 
volution kernel (viz. our Theorem 3). 

Remark 6. The Abelian theorem together with the remark on p. 409 of Bal- 
kema et al. (1979) provides an Abelian analogue of the relation (13). Their re- 
sult is that if 

x 

(i) F(x )~exp~s (y )dy  as x-+m, 
0 

(ii) s'(x) exists and is negative, and 

(iii) c2(x)=ls'(x)[ satisfies Condition B, 

then 

co(s(r)) ~ [-2~r s(r)] 1/2 e--rs(r), r ----> cO. (16) 

Relations, such as (16), but in terms of c(r), can also be determined (Bal- 
kema (1982, private communication)) quite straightforwardly. Note that (i) and 
(ii) imply that F is asymptotically equivalent to a log-concave function. 

3. Applications and Examples 

One of the problems that motivated the previous investigation was the deter- 
mination of the domain of attraction of the minimum of an independent and 
identically distributed sequence of variables with distribution F. We have the 
following result and a similar one can be derived for the maximum. 

Theorem 4. Suppose {Xi} is a sequence of independent random variables, identi- 
cally distributed with distribution F. Let 

W, = rain (X1, ..., X,). 
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/f 

(i) the conditions of Theorem 1 or of Theorem 2 hold, 
(ii) S>O and rtl(r)--,oe as r--,S, 

(iii) M has a density m positive and continuous at O; 

then 

( W.  - a . ) / b .  ~ A 

where a. and b. may be chosen as follows: 

and r. solves 

Proof. Let, for j > 0 

P.D. Feigin and E. Yashchin 

a. = ~(r), b . =  1/r. (18) 

Since S > O, we deduce 

c%(r)= S e-~XFj(dx)=r-Jco(r), 
--o0 

m(0)-co(r)- exp {r { (r) } / {rtl(r) } = 1/n. 

Fj(x)= i Fj-I(Y)dY, Fo=F" 
- - o o  

0 < r < S .  

Defining mj,~(x) in terms of Fj and % just as m r was defined in terms of F and 
co (see (10)), we have that the corresponding transform is given by 

#~, }s) = [1 + s/{r~l(r)}] - j  #r(S). 

By hypothesis (i) and (ii) above, #j,}r)~#(s) as r--*S. Moreover 

(a) {#j,~(-is)} is dominated if {#} - i s ) }  is - for the Theorem 1 conditions; 
or  

(b) Fj is log-concave on (eL, A) if Fj_ 1 is, j >  1 - for the Theorem 2 con- 
ditions. 

In either case we may therefore conclude that, for each integer j > 0 and as 
r--~S~ 

Fj(~ (r))~ m(0). r - j .  co(r) �9 exp {r~(r)}/{rq(r)}. (19) 

Thus we may show that 

F(x)Vz(x)/{Fl(x)}2~l as x-*e L. (20) 

By a by now well known result, (20) ensures the existence of {a.} and {b.} such 

(see (4)) (17) 
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that (17) holds (see de Haan (1970)). In fact, the form (18) for the sequence of 
normalizing constants also follows from de Haan's results (p. 90). [] 

Although Theorem 4 is not intended as a characterization of the A-domain 
of attraction of the minimum, we conjecture that the condition rt l(r)~o~ as 
r ~ S  is indeed necessary. The main use of the theorem will, of course, be for 
those circumstances in which o is known but F is not available in simple form. 

The obvious corollary to Theorem 4 follows. 

Corollary 4. I f  the conditions of  Corollary 1 or Corollary 2 hold, then F belongs 
to the A-domain of  attraction (with respect to the minimum). 

Proof  The conditions and results of Corollaries 1 and 2 together with Lemma 
2.3, ensure that all the conditions of Theorem 4 are met. [] 

Examples which are also convolution kernel transforms of course include 
the infinite convolution of exponentials discussed by Feigin and Yashchin 
(1982). Here 

- l o g o ( r ) =  ~ log( l+r /2j ) ,  Z2 7 1 <o 0  
j=l 

and since I#r(-is)1-2 has a positive coefficient Taylor expansion and converges 
to exp {s 2} we know that for some R o 

[#r( - - i s )[ i<( l+s4/4)  -1 r > R  o, 

and therefore (11) is satisfied. See Hirschman and Widder (1955) for further de- 
tails, 

Another example is the positive stable distributions F~ for 0 <  c~ < 1. Here 

- l o g o ~ ( r ) = r  ~ r>0 ,  0 < a < l ,  

and Condition B follows from the regular variation of t/2(r)=c~(1-c0r ~-2. In 
order to apply Theorem 1 we now proceed to check (11). 

Since 

we have 

#r( -- is) = [1 -- is/rtl] - 1 exp { -- r~([1 --is/rtl] ~ -- 1) -- is~/rl} 

where 
[#,.( - is)[ = [1 + s2/r 2 t/2] - ,/2 exp { - r~f(s, cQ}. 

f ( s ,  c~)= [ l  + s2/r 2 t]23 ~/2 COS 1-0{ artan (s/rtl)] - 1. 

By considering large and small values of Is/rtl[ separately it is not hard to 
determine positive constants V(cQ, B(cQ and W(c~) such that 

f ( s ,  ~) > V(a) (s2/r 2 r/2), Is/r*ll <=B(cO, 

f ( s ,  a) >= W(~)Is/rtll ~, Is/rtll > B(c O. 
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Thus we have 

[#r( - is)[ < exp { - EV/(2 + 1)] s 2 } + exp { - [W(2 + 1) -c~/2] ISl a} 

for [s[<oo and r > l ,  

where 2 = c ~ ( 1 - c  0. We therefore conclude that  (11) holds and hence 

F=(o:r~- l)~(2~2)- l/2r-~/a exp {-(1-o:)r~}, r--+oo 
or 

F~(t)~{2~(1-ct)cte+xt-t~}-l/2exp{-(1-~)a~t-~}, t~O, 

where f l = c t ( 1 - e ) .  This example  was also considered by Berg (1960) and the 
same result of course follows f rom the known  asympto t i c  formulae  for stable 
densities (see Skorohod  (1954)). 

An  illustrative example  to which Theo rems  2 and 4 are appl icable but  for 
which t/(r) does not  satisfy Condi t ion  B is given by the following. Taking,  for 
some 2 > 0, 

{?x 0 
F ( x ) =  x > O  

we see that  

and 

We first note that  

co(r)=)~_r - o o < r < 2 - S ,  

- 1  1 
(r) = , t _  r' ~l(r) = ~ _  r" 

~(r + O/~(r)) 1 
t/(r) 1 - 0 

so that  Condi t ion  B does not  hold. Howeve r  r ~ ( r ) ~ o o  as r-+2. Moreover ,  

ttr(s)= [1 ' s ( 2 - r ) ] - i  -t- r ] e - S ( 2 -  0 / ( 2 -  r -  s ( 2 -  r)) 

= [ 1  ' s ( 2 - r ) ] - ~  1 
r--+,~. 

Since F is log-concave (actually log-linear) on ( - o o ,  0] and the limit distri- 
bu t ion  has a density cont inuous at 0 (m(0)= e-1)  we m a y  apply Theo rem 4 to 
conclude that  F belongs to the G u m b e l  (A) doma in  of a t t rac t ion (in the sense 
of  minimum).  This result is of course directly available f rom F itself. 
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Appendix 

Proof of Lemma 2.1. (i) For R <r <S assume (2) holds and 

Then 

co(~)(r)= ~ (-1)=x~e-r~F(dx)< o9. 
- o o  

6-  * [co~)(r + a ) -  co(~)(r)] = y ( -  t y  x~e-'X a-  ~ [e-  ax_ 1] F(dx). 
oo 

Now a ~ ( e - a ~ - l ) ~ - x  as 6 ~ 0  and for any e>O 

Ix~ll,5-*[e-a~-l]l<lxl~+tela'4<e I~t for a<ao( l. 

So by dominated convergence we obtain 

co ~+ ll(r)= S ( -  l y  + lx~+ l e-rXF(dx) (A1) 
- o o  

and the result Lemma 2.1 (i) follows by induction. 
(ii) Follows from an application of integration by parts (see Feller (1971, 

p. 150)). 
Off) The existence of ~(r) and rl2(r) follows from (i). Moreover, 

rlZ(r)- o)(1") \ ~ !  =E(XZ)-(EX")Z=var(Xr) 

where 
P (X r e dx) = e -'x F (d x)/co (r). 

(iv) Suppose first that eL> --o0. Then S = ~ and by (i) and (ii) 

~(r)+--=S(X+eL)F(X+eL)e-'Xdx F(X+eL)e-'Xdx 
r o 

= S x f ( x + e L ) e - ' X d x  F(X+eL)e-~XdX+eL~eL as r ~ o o  
0 

by the result of Doetch (1970, p. 221). 
For the case eL=--oO note that for celR 

~(r)= _ +_~r (xe-"XF(dx)) ~ + (e-~XF(dx)). (A2) 
] L - - o O  

If S <  oo then the integrals on ( - c ,  oo) tend to constants as r ~ S  and therefore 
since for c > 0, 

- r  - - c  

x e - ~ F ( d x ) < - c  ~ e-~F(dx) 
- o o  - o o  
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we have for any c > 0, 

lim sup ~ (r) < - c. (A 3) 
r ~ S  

If S =  oe, then taking c = 0  in (A2) gives 

= l imsup  x e - "  F(x)dx e-~X F(x)dx 

o /o_, 1 < l i m s u p [  ~A(x+A)e-r~F(x)dx e - ~ F ( x ) d x  - A  

= - A  (14) 

for any A>0 ,  again by application of Doetch's result. Hence, via (A3) or (A4) 
we conclude 

( r ) - *  - o 0  

as required. 

Proof of 1emma 2.2. The proof is by contradiction. 
Suppose at xo~lR m is positive and continuous, and for some e > 0  

lim sup u,(Xo) > m(x o) (1 + 20. (A5) 

Then for a subsequence {k} 

Uk(Xo)>m(Xo)(l+e), all k. (A6) 
Let 

w k = sup {x < Xo: Uk(X) = m(x)} 

where sup ( 0 ) = -  oe by definition. 
(i) We show that Wk~X o. 
Suppose not. Then there exists 31 >0  and a sub-subsequence {/} such that 

wt<Xo-61,  all 1. (A7) 

Also there exists 32>0  such that m is continuous on [Xo-32,  x o] and 

too= max m(x)<m(Xo)(l+e/2). 
x~[xo-- 62, Xo] 

Let 3=m in (3  t, 32). Then we have, by log-concavity (for xo<Bl), 

x o x o  

u,(x)dx>u,(xo) ~ [u,(xo)/U,(Xo-3)]~x-x~ dx 
xo--6 xO --3 

= 3u,(Xo) [1 - u t (x o - 3)/ut(Xo)]" [ -  log {uz(x o - 3)/ut(Xo)}] 
l + e  

> 3u,(Xo) >= 3(1 + g) m(Xo) >= 3too 
8 

1 + -  
2 
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>_ 1 + ~ [ m  ( x o ) _  m (x ~ - c5)]. 

1+~  

The last inequality contradicts the hypothesis 

XO 

ul(x) d x  ~ M (xo) - M (x o - 6 )  >0. 
xo - 6  

(ii) Hence we assume that W k ~ X  o and consider the line joining 

(wk, lOgUk(Wk) ) and (Xo,IOgUk(XO)). 

The slope of this line is h k and 

h k > [ l o g m ( X o ) - - l o g m ( w k ) + l o g ( l  + e ) ] / ( X o - - W k ) ~ o 0 ,  k--*oo. 

Thus by the log-concav i ty  of u k (for k large enough, i.e., when Bk>xo) we have 
for X < Wk, 

log U k (X) < log U k (%)  -- (W k -- X) h k = log m (wk) - (w k - x)  h k. 

Since %--*x  o we conclude that for any - ~ < a < _ x < _ b < x  o 

uk(x)~O 

and so by dominated convergence, for all a < b <Xo, 

b 

j Uk(X) dx--,O 
a 

which contradicts the weak convergence assumption given the positivity and 
continuity of m at x o. Therefore 

lira sup u,(Xo) < m(Xo) 

and similarly we may show that 

lira inf G(Xo) _>_ m(Xo) 

and the proof is complete. [] 

P r o o f  o f  L e m m a  2.3. For the case S =  oo (i) and (ii) follows directly from Theo- 
rem 2 and Theorem 5 of Bloom (1976) on setting ~b(x) = 1/t/(x) (in his notation). 

Similarly for S < o% (i) follows from Bloom's Theorem 2 by using the same 
proof. As for (ii), since S<oo  implies % = - o 0  we have that ~ ( r ) ~ - o o  by 
Lemma 2.1 (iv). If t /(r)~r/(S)< oo as r--,S then for a < r < S  

s 
~ (r) > ~ ( a) - j tlz ( u) du = K ( a) > - oo 

a 

which contradicts ~(r)--*- oo as r--*S. Hence t/(r)--* oo as r ~ S .  [] 
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