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1. Introduction 

In this paper we show that Brownian h-paths, h > 0  harmonic, have finite life- 
times in plane domains of finite area. The analogous result for bounded do- 
mains in higher dimensions is false - we give an example of a bounded domain 
in IR 3 and a positive harmonic function for which the h-paths have infinite 
lifetime almost surely. This difference in behavior is related to the scaling prop- 
erty of Brownian motion. 

In what follows, D will be a domain in IR" which has a Green function G. 
Denote by A the minimal Martin boundary of D [7]. Let f2 be the space of all 
continuous (in Martin topology) functions co: [0, oo)~Dw A with the property 
that co(s)eA implies co(t)EA for t>s.  Let X(t, co)=co(t) be the coordinate pro- 
cess. Denote by (f2, J~, ~ ,  X(t), 0~, P~) the standard Brownian motion started at 
x~D. If p(t, x, y) is the transition density of Brownian motion killed on exiting 
D and h > 0 is harmonic in D, define 

ph(t, X, y) = h(x)- a p(t, x, y) h(y) 

and let P2 denote the measure on ~2 induced by ph. These are the h-paths of 
Doob [3J. 

Theorem l. I f  D is a domain in IR 2, h > 0  is harmonic in D, and rv 
= i n f { t > 0 :  X(t)q~O}, then 

(1.1) E~(~ D) __< c In[ 

where c is an absolute constant and ]D I is the area of D. 

Statement (1.1) implies that if h is positive and harmonic on D, a plane 
domain of finite area, then 

(1.2) lim E x [h(X(0); t < rD] = 0. 

* Supported in part by NSF grant MCS 82-03602 
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The difficulty in proving this directly is that the supermartingale 
h(X(t))I(t <zD) need not be uniformly integrable. If it were, then the constant 
times, t, could be replaced by any sequence T, of stopping times increasing to 
infinity. However, consider the following example: Let D be the unit disc in IR 2 
and h the Poisson kernel with pole at (1, 0). Let D,={z~D:  h(z)>n}. (D n is the 
interior of a circle tangent to D at (1, 0).) Let T n be the hitting time of D, by 
X(t). Then h(X(t A T, A ZD) ) is a uniformly integrable martingale, hence 

h(O) =Eo(h(X(T . A %))) = Eo(h(Xr.); T, < zo). 

Thus (1.2) does not hold with t replaced by T,. 
Another instructive example to consider is Littlewood's crocodile [5, 

p.268]. The lifetimes of h-paths are finite even when conditioned to go to the 
bad end of the crocodile. Nothing is gained in terms of delaying the process by 
throwing up obstacles; that is, in IR 2. 

Finally, let us mention some alternative formulations and consequences of 
our result. The well-known relationship between Green functions and occu- 
pation times yields: 

Corollary 1. Let DGIR 2 be a domain having a Green function G(x, y). Then there 
is an absolute constant c such that, for any function h>O harmonic on D, 

G(x, y) h(y) dy <= c [DI h(x). 
D 

In particular, if h = 1, 

S G(x, y )dy<c  IDI. 
D 

Doob [3] shows that if Brownian motion is conditioned using the Green 
function of D with pole inside D then the conditioned paths have finite life- 
times. Combining this with Theorem 1 and the Riesz decomposition theorem 
produces: 

Corollary2. I f  h > 0  is superharmonic on D then Ph(ZD<OO)=I for any xeD,  
whenever D is a plane domain of finite area. 

Our result also gives a refinement of a result of Lamb [6]. He shows that if 
h > 0 is harmonic on a domain D then h may be decomposed uniquely as h = h 1 
+ h 2 + h a where h a (X(t A ZD) ) is a nonnegative uniformly integrable martingale, 
h2(X(tAZD) ) is a nonnegative martingale with limit 0, and ha(X(tAZo) ) is a 
nonnegative supermartingale whose expectation approaches 0; moreover h 2- 
paths have infinite lifetimes. Thus our result shows that h 2 vanishes for plane 
domains of finite area. 

In Sect. 2 we give the proof of Theorem 1. In Sect. 3 we construct a bound- 
ed region D in •3 and a positive harmonic function h such that p h(%= OO)= 1 
for all x in D. 

We wish to thank Kai Lai Chung for introducing us to this problem as 
well as for his suggestions on the presentation of the manuscript. 
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2. Proof of Theorem 1 

We begin by establishing two lemmas. 

Lemma 2.l. Let D be an open subset of IR 2. There exists an absolute constant c 
such that Ex('CD)<=C IDI, for all x6D. 

Proof. Fix x in D. We may assume IDI=I since if a > 0  and aD={ay: y~D} 
then [aDl=a2D and E~x(r~D)=a2E~(rD). Thus it suffices to show that E~(rD) is 
less than a constant independent of D. Setting B=B(x,  1)={y: I x - y l < l } ,  we 
have 

Ex(vz)=Ex(Z~; ~D<ZB)+E:,(VD; ~B<VD) 

< E:,~B + E:, (Ex(~B) (ZD) ; VB < ZD) 

----< Ex ~B + Px (VB < VD) sup Ey (ZD). 
yED 

Once we have established Px(% < ZT)--<P < 1 with p independent of D and x, we 
will have 

c 
Ex (~D) < with c = E x ~B = 1/2 

= l - - p '  

as desired. Take r < l ,  put K=DC~B(x,  r) and observe that I K [ > n r 2 - 1 .  Then 
if 2 is the restriction of Lebesgue measure to K and G is the Green function for 
B(x, 1) set Ga(z)=S G(z, y)2(dy). Then 

G~(x)=SG(x,y)2(dy)<2~!log r d r = ~ .  

If %(K) is the harmonic measure of K relative to B(x, 1) then co_~(K)> 2- G~(z). 
Hence n 

Choosing any value of r < 1 such that the last expression is positive completes 
the proof. (For a different proof see [2, p. 148].) 

Lemma 2.2. Let h be a nonzero minimal harmonic function on D. Then for any 
x ~ D, P~(h(X(~ v - )  = co)= 1. 

Proof. We show first that h(X(rv-)=O,  P~ - a.s. If this were not the case then 
it is not difficult to show, using the fact that two-dimensional Brownian mo- 
tion does not hit points, that there exist disjoint Borel subsets A~ and A 2 of 
the boundary of D, such that 

Px(h(X(ZD--))I(X(ZD)eAO>O)>O, i=1,  2 

Let gi(x)=E~(h(X(z,-)); X(~D)EAi). Then gi(x)<h(x), X~D;  but since h is 
minimal, we then must have gi(x)=qh(x), for constants cl, which is clearly 
impossible. 
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Next let D(n) be a sequence of open subsets of D, whose interiors increase 
to D, and whose closures are compact subsets of D. For  M > 0  put T M 
= i n f { t > 0 :  h(X(t))>M}. Then h(X(TMA~D(.))) is a uniformly integrable mar- 
tingale in n. Letting n approach infinity we obtain 

h(x) =Exh(X(T M/~ zD) ) =Ex(h(X(TM)); T~t<zD). 

This means that ph(T M < zD)--1, and h(X(t/x zD) ) is unbounded with Px h - prob- 
ability 1. 1 

Finally, h(X(tArD) ) has an infinite limit at r o -  since - - I ( t < ~ D )  ) is a 
nonnegative h-supermartingale, h(X(t)) 

Let us now return to the proof of Theorem 1. 
We assume without loss of generality that h is minimal. Define 

D.={x~D: 2 " - l < h ( x ) < 2 " + l } ,  n=0 ,  +1,  _+2 . . . .  

C.={xsD: h(x)=2"}, n=0 ,  +1,  _+2 . . . .  

so that D =  ~) D. and ~ ID.[<2[Ol. Consider the stopping times 
n =  - o o  n =  - o o  

R(n)=zv =inf{t>O: X(t)r 

S(n, 0 ) = i n f { t > 0 :  X(t)e C,,} 

r (n, 1) = R (n) o 0 s (n. o) + S (n, O) 

and if S(n, O) .... , S(n, k -  1), T(n, 1) . . . . .  T(n, k -  1) have been defined, set 

T(n,k)=~R(n)oOs~,.k_t)+S(n,k-1), S(n,k-1)<oe, 
(o0, S(n, k -  1) = 0o. 

S(n,k) ~ S(n'O)~ r(n,k)<o0 
= ( o 0 ,  ' T (n, k)  = o0, 

Finally set 

and 

N(n)=inf{k>O: S(n, k)= o0} = i n f { k > 0 :  T(n, k+ 1)= o0}, 

L(n, k)= T(n, k)-S(n, k -  1) = R(n) o Os(,.k_ 1)" 

In order to estimate E~(L(n,k-i); N(n)=k), i=1 ,2 ,  . . . , k - l ,  we establish 
the following observations, each for n = 0, 1, 2, ..." 

(2.1) ph(S(n, 0)< oo)=1/2, x s  C.+ 1, 

(2.2) P2(S(n,O)<o0)=l, xeC._ 1, 

(2.3) P2(X(R(n)) ~ C._ 1)= 1/3, x ~ C., 

(2.4) Pxh(X(R(n)) E C.+ 1) = 2/3, x ~ C., 

(2.5) Eh~(R(n)IX(R(n))a C._I)<=3Eh(R(n)), for x e  C., 
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and 

~Ex(R(n)), x e  C.. (2.6) Eh(R(n)JX(R(n))E C,+ 1)< 3 h 

For (2.1) we have 

2" 1 
Pf(S(n,O)<oO)=h(x)=~ for x e C , +  I. 

Statement (2.2) follows at once from Lemma 2.2. For (2.3) we have 

2"+1 (~_x 1 ) ~ =  Ph(X(R(n))e C"- O= , ) 2 "+1 

for x e C,. Of course (2.4) follows from (2.3). 
Turning to (2.5), we have 

Ehx(R(n) lX (R(n)) e C._ 1) 

= ~  P~(R(n)> ),IX (R,) e C,_ ~)d2 
o 

oo 

=P~(X(R(n))E C._ ,)-~ y P2(R(n)>2, X(R(n))~ C. ~)d2 
o 

o o  

<3 y P~(R(n)>2)d2 (by (2.3)) 
0 

= 3 Eh(R(n)). 

Similarly (2.6) follows from (2.4). Now, for i=  1, 2 . . . . .  k - 1  we have 

E~(L(n, k -  i); N(n) = k) 
h h �9 . = Ex(Ex(L(n, k - t ) ,  N (n)= kl X ( T(n, k - i))) I ( T(n, k - i ) <  oo )) 
h h �9 . = Ex(Ex(L(n, k - O ,  N (n)> k - i l X  (T(n, k - i ) )  ph(N (n) 

=k lX(T(n ,  k - i ) ) ) I (T (n ,  k - i ) <  co)) 

by the strong Markov property. Using (2.1)-(2.4) 

P_h(U(n)=k]X (T(n, k - i ) ) )  I(T(n, k - i ) <  or) 
(• (2~i =jzt3~,  X ( T ( n , k - i ) ) ~ C , - 1 ,  

L4~s~Ia--tZ~i, X(T(n,  k - i))) e C.+ 1 

Also, 

h h E x (E~ (L(n, k - i), N (n) > k - i[ X (T(n, k - i))) 

. I (X(T(n ,  k - i ) ) e  C._~, T(n, k - i ) <  oo)) 
h h =Ex(Ex(L(n , k - i ) ;  g (n )>=k- i lX(T(n ,  k - i ) ) ~  C,_ 1 ,  r(n, k - i ) <  oo) 

�9 I (X(T(n ,  k - i) ~ C,_ 1, T(n, k - i) < oo)) 
h h = Ex (E x (R (n) o S (n, k - i - 1 )1X (T(n, k - i)) ~ C, _ 1, T(n, k - i) < co) 
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�9 I(X(T(n,  k - i ) ) e  C._ a, N (n )>k- i ) )  

h h h 1))(R(n))IX(R(n)~C._I) I =Ex(E~(Ex(sc.,k_i_ 

�9 x ( r ( n ,  k - i)) ~ C ._  ~, r (n ,  k - i) < oo) 

�9 I ( X ( T ( n ,  k-i))e C._ ~, g ( n ) > k - i ) )  

< s u p  E~(R(n)IX(R(n))e C. 1)Pf(N(n)>k-i, x(r(n, k-i)e C._ 1) 
xECn 

< 3 (sup E h (R (n))) (_~)k ~ - ~  5, by (2.5), 
xeCn  

= (_~)k-i- 1 sup E~(R(n)). 
x~Cn 

In an entirely similar manner we obtain 

h h n E~(E~,(L( , k - i ) ;  N ( n ) ~ k - i I X ( T ( n ,  k- i)))  

�9 I(X(T(n, k - i)) ~ C.+ 1, T(n, k - i) < oo)) 

< (2)k-, sup Eh(R(n)). 
x~Cn 

Since 

(2.7) 

Finally, tbr x e C. 

Thus, 

N(n) 

n=-oo  k= l  
N(n) 

e~(ZD)< e~ ~ L(n, k) 
n = - o e  k ~ l  

- = _ ~ k ~ = l E  h = L ( n , i ) ; N ( n ) = k  

< k(-~) k-1 supE  R(n)) 
k - 1  n = - o o  x~Cn 

= 9  ~ supE~R(n). 
?l~ -- (Y3 X~Cn 

oo 

E~(R(n)) = ~ ph(R(n)) > )0 d)~ 
0 

~X3 

= h ( x )  1 S E x ( h (  X ( 2 ) ) ;  R ( n ) > 2 ) d 2  

0 

<2~P:,(R(n)>2)d2 
0 

=2ExR(n)<=2clD.I by Lemma 2.1. 

Eh(rD)<=18C ~ [D.I~36clDI 
n ~ --(3o 

and the proof is complete. 
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3. An Example 

The purpose of this section is to construct an example of a bounded domain D 
in 11l 3 and a harmonic function h such that zD= oo with Pf-probability 1 for 
any x in D. It is necessary to recall some facts concerning the last exit decom- 
position of Brownian motion (see [-4, 8, or 9].) Let K be a Borel subset of D 
and /~ the last exit time from K of Brownian motion X(t) conditioned with 
some harmonic function h. Then the process X(g + t) has continuous paths on 
[0, oo) and is strong Markov on (0, oo) with respect to an appropriate sequence 
of a-fields; moreover, the semigroup on (0, oo) is that of X(t) conditioned not 
to hit K. 

We will also need the following simple result. 

Lemma 3.1. Let B denote the ball in ]R 3 centered at 0 with radius 1, and let 
0 < 3 < � 8 8  be given. There exist absolute constants c 1 and c 2 such that 

P2(zR>cl)>c2, Ixl<6, 

for any positive harmonic function g. 

g(y) > 
Proof. By Harnack's inequality we may choose c 2, so small t ha t  ~ x ) = 2 C 2  for 

t 2 ~ k  / 

ly[<2~, ]x l<2& Define ~'26 by r26=inf{t :  Ix(t)-x(O)l>2c3}. We may choose 
c 1 so small that Px(z2o<Cx)>�89 for Ixl<~, Then for all x 

Pf(z~>ca)=g(x) - l  Ex(g(X(cx)); zB>cl)  

> g(x)- 1 Ex(g(X(cl)); z2 ~ > cl ) 

>2c2Px(z2o>Cl), >c2, 

and the proof is complete. 
Note that the result holds for B a ball of radius I? if c5 is replaced by ~ t /and 

c a by t/2cl. 
Consider for D the following region in IR3: For n=2 ,  3 . . . .  place n 6 nonin- 

tersecting balls of radius �89 -3 in a square array with centers on {(x, y, n -Z ) ;  
0 < x < 3 ,  0 < y < 3 } .  Thus we have infinitely many levels with balls on level n 
arranged in n 3 rows (of n 3 balls each) parallel to the 3' axis. Order the balls on 
the n-th level lexicographically according to the (x, y) coordinates of their cen- 
ters and denote them by B k, k=  1, 2, ..., n 6. Now on each level connect each 
ball to the next in order by a thin cylindrical tube. On all levels but the first 
connect similarly the first ball to the last ball on the level directly above and 
on all levels connect the last ball to the first ball on the level directly below. 
Use smooth tubes of finite total volume. For definiteness let us make the fol- 
lowing additional assumptions about the connecting tubes: each tube intersects 
its balls in circular caps subtending solid angle e < 5, and the two caps in each 
ball (except the first) are antipodal. That completes the description of D. 

Some subsequence of the sequence of centers of the balls comprising D is 
fundamental in the sense of Martin, and hence converges to a certain Martin 
boundary point ~. The corresponding harmonic function K( . ,  ~) may or may 
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not be minimal, but in any case there is some minimal function h correspond- 
ing to a point in the support of the canonical representing measure of K( . ,  0. 
The function h vanishes identically on the Euclidean boundary of D. Therefore, 
by Lemma 2.2, the h-paths must thread their way through the entire maze of D. 
Fix x o in B~. Since h is minimal Pho(ZD-----OO) must be either 0 or 1. We show it 
is 1. 

Define T(n, k) to be the time between the last exit, #(n, k), from the tube 
joining Bk, - 1 t o  Bkn and the first exit from B~. Let L(n) be the total time spent 
in the layer determined by z = n-2. We need only show that there are constants 
21 and 22 such that 

(3.1) P~o(r(n) > 21) > 2 2. 

Indeed it then follows that 

Pho(L(n ) > 21 infinitely often) > 0 

and hence P2o(%= oo)>0, which implies the desired conclusion. 
Fix n and let V denote the random vector of last exit positions X(#(n, k)), k 

=1, 2 . . . .  , n 6. Choose 0 < 6 < � 8 8  and let flk denote the ball of radius �89 con- 
centric with Bk,. We will show that there is an absolute constant c 3 such that 

(3.2) Pho(X(#(n,k)+tAT(n,k)) hits fik, lV)>c3,  a.s. 

However, let us first show how (3.1) follows. Conditioned on V the T(n, k) are 
independent random variables. (This follows from the conditional indepen- 
dence of past and future at a last exit time. See [4 or 9].) Let c 1 be as in 
Lemma 3.1 and let A k be the event in (3.2). Then 

Pxho(T(n, k) > n-6 cl l V) > P]'o(T(n , k)>n -6 cl, Ak[ V) 
h h > Exo (P;(o) (ZB~ > n- 6 c 1 I W); Akl V), 

where X(r denotes the hitting position on ilk. The conditional probability in- 
side may be collapsed to a single conditioning with a new harmonic function 
on Bk,. More specifically, note that for B c_ suppPfX(#(n, k + 1))-1 

k(B, x) = Pf(X(#(n, k + 1)eB) 

is h-harmonic in Bk, (use Dynkin's formula, for example) and k( . , x )~k( ' , yo)  
where Yo is any fixed point in Bk, (use maximum principle on the harmonic 

. . . . .  k(B, x) 
function k(B,.)h(.)). Then n . tx)= nm . ~ , ,  B shrinking nicely to z, defines 

B~(~} tqts, Yo) 
an h-harmonic function on B~ as the convergence is uniform on compact sub- 
sets of B~. Using now the above stated conditional independence 

h h E~o(P~t~)(zB~ >n 6 c11V);AkIV)(og) 

- -  h h 6 -E~o(P~(~)(ZB~>n- cl lX(#(n,k + 1))=z);Aklr)(e)) 



The Lifetime of Conditioned Brownian Motion 9 

where z = z(co) = X(l~(n, k + 1) (co), (co)). Furthermore, 

h h E~o (PL~ (~B~ > n ~ c l) kz (X (~B~.)) kz (X (~))- 1; A k IV)(co) 
- - E  h hkz - 6 - xo(P/c(~)(~B~>n cl);AklV)(co). 

It then follows from Lemma 3.1 and (3.2) that 

P~ho(T(n,k)>n-6Q[Y)>=c2c 3, a.s. 

Let N denote the number of the T(n, k) in the triangular arrays of random vari- 
ables, independent in each row, which are greater than n - 6 q .  It follows from 
the weak law of large numbers (see e.g. [1]), that there is a constant c 4 such 

t h a t P ( N > ~ c 2 c  3 V) >c , .  Thus 

Since L(n)> ~ r(n,k), (3.1) follows with )~1 = 1 C L C 2 C 3  and 22=c 4. 
k = l  

There remains only to show (3.2). Let C denote the intersection with ~B~ of 
the outgoing tube. Let Y(t) denote the process X(p(n ,k )+( tA  T(n,k))). Then 
there is a nonnegative function g, harmonic in Bk, with boundary values sup- 
ported in C, such that the semigroup of Y(t) on (0, oo) is the same as that of 
X(t/x zB~) conditioned by 8. With these remarks in mind it is easy to see that 
(3.2) follows from 

Lemma 3.2. Let 0 < 6 < � 8 8  and B and B~ be the balls of radius 1 and 3 respec- 
tively, centered at the origin. For 0 < e < � 8 9  define I~ as the intersection with ~B of 
the ball of radius e centered at (0, 1,0), and J~ as the intersection with B of a 
similar ball centered at (0, - 1 ,  0). Let g be any nonnegative function harmonic on 
B with boundary values supported in I~. Finally, let Y(t) be a process defined on 
a probability space (f2, o~,P) and having the followin 8 properties: 

(3.3) Y(t) has continuous paths on [0, oo). 

(3.4) P(Y(O)eJ~/2) = 1. 

(3.5) Y(t) is strong Markov on (0, oo). 

(3.6) The semigroup of Y(t) on (0, oo) is the same as that of Brownian g-paths. 

Then there is a constant c4, depending only on e and 6, such that 

P(Y(t)  hits B~)>c 4. 

Proof Let P(z,w) denote the Poisson kernel for the annular region B\B~ with 
pole at w and let Q(z, w) denote the Poisson kernel for B with pole at w. Then 
there is an absolute constant c 5 such that 

P(z, w) 
(3.7) ~ < c 5 < 1  for z~J~, w~I~. 
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To see this, first note that it is enough to show that 

P((0, - x, 0), w) 
lira < 1 
x~ Q((0, -x ,  0), w) 

for each w in Iz~. Fix such a w and let q(x) and p(x) stand for the denominator  
and numera to r  above and co x for harmonic  measure relative to B\B~ at the 
point  (0, - x, 0). Then 

p(x) = q ( x ) -  5 Q(z, w)~ox(dz ). 
2B~ 

Since Q(z,w) is bounded  below by some positive absolute constant  on Ba it 
,. ox(Ba) 

suffices to show that  n m - - > u .  This follows at once from the explicit ex- 
pressions ~ ~ q(x) 

and 

~ox(Ba) = ~(1 - x )  
x t l - ~ ) '  

q(x)=c(1 - x 2 )  I w -  (0, - -  X, 0)[ - 3 .  

Now it follows from (3.3) and (3.4) that  there is a strictly positive stopping 
time z such that  Y(v) belongs to J~ with probabil i ty 1. Fix z in J.. By (3.6) we 
have 

u(z) 
P~(Y(t) hits B a ) -  

g(z) 

where u is a function harmonic  in B \B  a with boundary  values g on B a and 0 
on 0B. N o w  

g(z) = ~ g(w) Q (z, w) d w 

and 

But 

by (3.7). Thus 

u (z) = g (z) - 5 g (w) P (z, w) d w. 

~ g(w) P(z,w) dw=< cs ~ g(w) Q(z, w) dw 

u(z )>  1 _ c 5 > 0 .  
g(z) :  

Finally, by (3.5) we have 

P(Y(t) hits Ba) = EPym(Y(t ) hits Ba) = 1 - c 5 

and the proof  is complete. 
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