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0. Introduction

Let M be a martingale, and let U(M,q,a+¢) be the number of upcrossings
made by M from below a to above a-+e. The classical upcrossing inequality of
Doob states that if M is uniformly integrable,

EUM,a,a+5) S~ (1M,.], ). (0.1)

From the definition of the local time of M, [4(M), it is easy to check that, if M
is uniformly integrable,

EL (M)S My 0.2)
In [1] the quantity I*(M)=sup L’ (M) was introduced, and it was shown that

if M is a continuous martingale,
L (M)l =cIM* 4, (0.3)
where ¢ is a universal constant, and M*=sup|M,. Comparing these three
t

inequalities, and recalling that, for a continuous martingale M,

L (M)=limeU(M,a,a+e¢), (0.4)
el 0

it is natural to conjecture that E(supeU(M,a,a+¢)) is bounded by ¢ |[M*|,. In

this paper this conjecture will be proved, and the result will be extended, in a
suitable form, to general semimartingales. The principal result is the following
inequality.

Theorem. Let X be a semimartingale, with decomposition X =X+ M + A, where
M is a martingale and A is previsible and of finite variation. Then there exist
universal constants, c, such that for each p=1
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. (0.5)

p

lsupsU(X,a,a+9)],<c,

M*+ [ |dAy
0

As this result holds for discontinuous, as well as continuous, semimar-
tingales, it also holds for processes in discrete time.

The convergence in (0.4) is in I', so (0.3) is an immediate consequence of
(0.5); in some ways the natural approach to these inequalities would be to
prove (0.5) for discrete time processes, and then deduce the general result by
suitable limiting arguments. However, a direct proof of (0.5) seems hard, and
the approach adopted here is to deduce (0.5} from (0.3) (and its generalisation
to semimartingales proved in [2]) by using the probabilistic tricks of path
decomposition and Skorohod embedding.

Consider first the case when X is a continuous martingale. By time change
this reduces to proving (0.5) for X of the form BY, where B is a Brownian
motion, and T any stopping time. In fact, by Lemma 4.1 of [2] it is enough to
prove that, for any n=0,

E(supeU, (B, a+e)) <cE(B%), (0.6)

where T, =inf{t: |B,|=ne}.

We may decompose the process B as follows. Let §,,5,,... be the suc-
cessive hits by B on the grid ¢Z - so that the process B =Bg, i=0, is a
simple symmetric random walk on ¢Z.

We may consider the process BT as being built out of a simple symmetric
random walk on ¢Z, and a collection of independent, identically distributed
Brownian journeys to +& and —e. It is therefore intuitively clear (and it will
be proved in Sect. 2) that B® is independent of the random variables Lf5
— L, for i 1.

Let n=1 be fixed, let N=min{i: B®=n¢}, let R be the smallest value of r
which maximises Uy, (B,re, (r+1)¢), and let V be the value of this maximum.
As R and V depend only on the process B, if S, ,...,S,, are the times which
mark the beginnings of the V upcrossings made by B from Re to (R+1)¢, then

V is independent of each of the random variables h,=L§ —LY 1ZisV.
v ' .

Therefore, since Ly 25 2 Y h;, and Eh;=¢,
i=1

,
CEB: 2E Y h=EV-Eh=¢cEV
i=1

Finally,
V=max Uy (B,re, (r+1)&)=sup Uy, (B,a,a+2¢),

proving (0.6).

Now let M be a general (right-continuous) martingale in H'. By Monroe’s
result [7] M may be embedded in a Brownian motion - there exists a
Brownian motion B,, and a time change 7, such that M.~B_, and B™ is
uniformly integrable. Let T=7_: using (0.5) for BY, for any p>1
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Hsup U(M,a,a—l—a)’\ipé Hsup UT(B7 a=a+3)”p

pc
<c, \\B’Hpéfp_"l I1Brll,

pc"l IM, ), <5

- L

proving (0.5) for general M in this case. Unfortunately, this cannot work for p
=1, since there exist martingales M for which |M*||, < oo, but |B¥|,=cc.

This difficulty is overcome by restricting attention to increases in the local
time of B inside the envelope {(x,?):|x|<M}*}. Using the results of [2], it is
shown in Sect. 4 that this restricted local time is bounded by an expression
which depends on || M*|; and | Bl ,. rather than | B%||,. This enables the basic
upcrossing inequality for a discrete martingale embedded in a Brownian mo-
tion to be proved (Proposition 4.2).

In Sect. 5 this inequality is extended to semimartingales, using the embed-
ding theorem of Monroe [8]: any semimartingale is the time-change of a
Brownian motion.

1. Basic Notation

Let (@, #,%,,P) be a probability space and X be any measurable stochastic
process. Let

XF=sup|X{, X*=X%.

st

Let U*(X,a,b) denote the number of upcrossings made by X across the
interval (a,b) in the time interval [0, t], and let

U¥(X,e)=sup U(X,a,a+e).

We will frequently make use of the pathwise inequalities
sup U(X, re, (r+1)8) < UF(X, &) (L.1a)

U(X,0)Ssup U(X,r-3e, (r+ 1)- o) (1.1b)

For any random variable || f,=(E|f IPY'7 is the IP-norm of f, for each

pz1l. Let M be a local martingale; for p=1 we define the I’ and H? norms of
M by
IM | o= IM, M1% ],

M|, =sup{|M.[,, T a finite stopping time}.

The H? norm is well known, and is related to [M*|, by the Burkholder-
Gundy inequalities: there exist universal constants c,, C,, such that
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M| g S IM*||,= C, | M| -

It follows that if | M| g, < oo, then M is a martingale.

If p>1, and |M]||,, < oo, then by the martingale convergence theorem ||M],,
=[M,ll,, and M is again a martingale. If p=1, and M is a uniformly
integrable martingale |M||.=|M_|,, but in general it is only true that |M |,
S[M|p:. If M is a martingale, then as M, =1lim M., ,, and E|M,, |<E|M|,

t—
by Fatou’s Lemma E|M [’ <lim E|M,? for any finite 7, so that
t— 00
M| Lo = sup [| M, ,- (1.2)
t

This shows that, if M is a martingale relative to two filtrations, |M|,, does
not depend on the filtration. (1.2) is not true in general for local martingales.
If M is a local martingale, and T,1+ oo, then

lim M), = M| .

Hn—Co

A semimartingale X is a process of the form X=X,+M+ A, where M is a
local martingale, 4 is a process of locally finite variation, and M,=A4,=0. The
H? norm of X is defined, for p=1, by

XN g =
X

9
p

~|X0| +[M, M1%,+ | ldAs|
0

inf
=Xo+M+ A

(see [4]). If || X |41 <co, we shall say X is an H'-semimartingale; X has a
canonical decomposition X =X, + N+ B, where N is a martingale in H', and B
is a previsible process of integrable variation. Further, || X ||z, = || |X,|+ [N, N1%
+ jlstl |, for p=1. Note also that, if X is in fact a martingale, the two
definitions of || X ||, agree.

If X is any continuous semimartingale, then X has a canonical decom-
position X =X,+ M+ A4, where M is a continuous local martingale, and A4 is
continuous and of locally finite variation. Thus any continuous semimartingale
is locally in H!.

Throughout this paper ¢, will denote a universal constant depending only
on p, the precise value of which will change from line to line.

Using the Burkholder-Gundy inequalities, if X =X,+M+ A4 is the canoni-
cal decomposition of an H'-semimartingale X, then

”X||Hp§cp

| Xol+M*+ [ |dAs|
0

<
_.Cp
p

X*+ [ |dAs|
0

<e | Xy (13)

P

We will only be concerned with the local time of continuous semimar-
tingales. For any aeRR, the local time of X at a is defined by Tanaka’s formula

t
(Xt—a)+=(X0—a)++§l(Xs>a)dXs+%L“t(X). (1.4)
0
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When it is clear which process is being referred to, we will omit the de-
pendence on X and write I%: we will also use the notation L(a,t) or L(a,t, X)
when a,t are themselves complicated expressions. By [9] we may take a
version L: (a,t)— I which is jointly right-continuous with left limits in a, and
continuous in t. We set

DE=supIf, F=1% .

The following inequality was proved in [2]: for any continuous semi-
martingale X, there exist constants ¢, such that

X, =c, 1 X = Xolge,  p21. (1.5)

In the remainder of this section we shall recall some elementary con-
sequences of Lemma 1.2 of [6], which is stated here in a simplified form. (Note
the misprint in [6, 1.2(a)].)

Lemma 1.1. Let A be a non-negative, increasing and previsible process, with A,
=0, and f be a non-negative integrable random variable. If for all stopping time
S,

E(A,— A S E(f 15 o)) (1.6)
then, for all p=1,
Aol =p £,

The following result was proved in [6] in the case when X is a uniformly
integrable martingale.

Corollary 1.2. Let X be a continuous semimartingale, with canonical decom-
position X=X,+ M + A. Then for any p=1

HBAXNpégpp\ (1.7)

XF+{1da
0

p
Proof. Suppose first that M is in H'. For any stopping time S

o< o

L, —Ly=X5—X¢ — [ g 00dM,— [ 15,0044,
5 5
so that
E(I9,—I9)=F (X; x| 1<Xt>0)dA,) <El,., (X;; ; ldAJ).
N 0
By Lemma 1.1, therefore, we have

1L ,<p

p

Xi+[1dAy
0

The result now follows, since any continuous local martingale is locally in H!.
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In particular, if M is a local martingale,
LM, <p M| pzl. (1.8)

This inequality is false, in general, for p<1 - see [10].

2. Skeletons of Brownian Motion

Let X, be any continuous process. Let ¢>0 be fixed: we define the skeleton of
X on the grid ¢Z, denoted X, as follows. Set

SoX)=inf{s=0: X ceZ}
S, 1 (X)=inf{s20: | X, — X |=¢}
X0=X,

Sn(X)*

Thus X® is a discrete time process, taking its values on ¢Z. In contexts where
it is clear which process is being referred to, S,(X) will be shortened to §,.

If X is a Brownian motion, it is intuitively clear that, conditional on
whether Xg . —X; is equal to +¢ or —¢, the path X ,, —X5 , 05158,
—S,, is independent of the process X®. We shall call these parts of the path of
X journeys from O to +e, and will decompose X into X® and two sequences
of independent identically distributed random variables taking values in the set
of journeys to +¢, and —e.

Let J* be the space of journeys from 0 to +& More precisely, J* is the set
of left-continuous functions f: IR* >R v {0} with the properties

@) f(®=0

(1) if {(f)=inf{s: f(s)=¢} then

(@) f()=20 for t>{(f)

(b) f(t)e(—¢,¢e] for 0=r=((f)

(¢) f(z) is continuous for 0=t Z{(f)

@) fE(N=e.

Similarly, let J~ be the space of journeys from 0 to —e¢, and let J=J* 0 J™.
Let B be a Brownian motion, with B,=0, §,=S,(B), and

B —B 0=t<S,—-S
én(t):{asn—1+t Sn-1 ="=%n n—1

t>8,—-5, 4

Thus &,,&,,... is a sequence of J-valued random variables, and by the Strong
Markov property of B the ¢, are independent and identically distributed. Let p
be their common probability distribution on J.

We now split the sequence (&) into two sequences, with values in J* and
J~. Let

]\]rizjnf{m; z lji(éi):r}a ‘széNﬁa 6r—=ézv;~
i=1

1
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The sequence (&;7) is therefore the sequence (£;) with the values in J~ omitted.

Lemma 2.1. (i) (&7), (&) are sequences of independent identically distributed
random variables, with law given by

pE(A)=P(¢FfeA)=2u(AnJT=) for Ac=J
(1) B®, (&) and (¢7) are mutually independent.

Proof. Since (£, is a sequence of independent identically distributed random
variables, it 1s a classical result that

P(ETed,,....E €A, E1eC, ..., eC, 1, (E)=e,....,1;:({)=¢)
=[] P(¢,e4,|¢,ed7) H P(g’;eBﬂé;eJ‘)Q"‘
i=1 j=1
= [l w4 Hu (B)-

I
—-

This implies (i), and also that the sequences (&), (£7), (1,+(&;) are independent.
Since B¥=¢ (2 > IJ+(§i)—n), (ii) follows.
i=1

This lemma gives a decomposition of B into the independent components
B9, (¢5), (&7). This decomposition may be reversed, so that given a simple
symmetric random walk Y on ¢Z, and sequences of iid.r.v. £ in J*, with laws
©=, a Brownian motion W, may be constructed, with W® =Y.

Lemma 2.1 is the independence result used in the sketch proof of (0.6) given
in the introduction. In Sect. 4 a more complicated version of the same result
will be needed:

Theorem 2.2. Let B be a Brownian motion on the probability space (Q, F, %, P),
where F contains a random variable with continuous distribution independent of
F. Let C, be a discrete time process, with C,eFg . Then there exists a
filtration (4,) and a process W, such that

(1) W is a Brownian motion/(%,),
(i) W& =pB@®
(i) C,e%s, )
Remark. The conditions on %_ and % are simply to ensure that a large enough
supply of random variables independent of &_ can be found.

Proof. Let (&), (¢;7) be independent identically distributed random variables,
with distributions p* and u~, and jointly independent of #_. Let W be the
Brownian motion obtained from B®, (£), (¢7) by reversing the decomposition
of Lemma 2.1, and let % be the natural filtration of W. Set

gt: G(VVsa Cn 1[Sn,oo)(s)7 I’l>0, Sét)'

Thus W, and %, satisty (ii) and (iii), and it remains to verify that W remains a
Brownian motion when () is enlarged to (%,). For this it is necessary and
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sufficient that, for each =0, s, and ¥, should be conditionally independent
given #, - see [3] or [4].

For some elementary properties of conditional independence see, for exam-
ple [4]. #,_ and ¥, are conditionally independent given s if and only if for
each =0

E(g| A )eH, for all geb¥,. (2.1)
Let S,=S,(W): we begin by proving (2.1) for S,. Let n=0 be fixed, &,
=o(W;,,,—W;s,.t20),and ¥, = > Lp@, @,y Then
i=1

Y, =o(r,iLY,,¢r,ign—Y,,BY, C,,r<n),
=0, i>Y, ¢ ,i>n—Y, ,BY —B® r>0),

n+r

so that 43 and &, are independent. Hence, since #,,=H#5 Vv &,, it follows that
#,, and % are conditionally independent given #; .
Therefore, if pebs#], yeb¥ ,

E(@Y s, <ol )= s, < EWN )= P15, < EW | A5, )e ;. (2.2)

By the monotone class Lemma it now follows from (2.2) that E(g|s#, )e#, for
any g of the form g=g,1 -,, where g,eb(#, v %5 ). However,

G(gn 1(S,.§t)> gnEb(‘% 4 gS,,)7 ngo): gt’

and, applying the monotone class Lemma again, (2.1) follows.
The following Lemma, which will be needed later, relates the I norms of B
and B®.

Lemma 2.3. Let M be a stopping time{(%;,). Then
[BYM| o S 1B | o e+ H(B“S’)MHLP.

Proof. For n20, S, ,, is a stopping time/(%), so that the left hand inequality is
immediate. If t=0, let N=min{n=0:¢<S,}: then |B —Bg,, yl <&, proving
the right hand inequality.

tASM

3. A Lower Bound for the Upcrossings of a Continnous Martingale

The inequality presented here is a complement to Theorem 5.3, and, together
with (0.5), provides a two-sided bound on U*(M,¢), in the case when M is a
continuous martingale.

Theorem 3.1. Let M be a continuous martingale with M,=0. There exist univer-
sal constants c,, such that

¢, IM¥| e+ [cUXM,8)f,, O<p<co. (3.1)

Proof. It is enough to prove this for M =B7, where B is a Brownian motion
and T is any stopping time: the general result then follows by time-change. Let
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Z=B" be the e-skeleton of B, and S,=S (B), n=0, be the associated stopping
times. Let N=inf{n: S,>T}; we have Bf<B¥ <B¥+¢

Now (Z)y=[Z,Z]y=N¢? and therefore, by the Burkholder-Gundy in-
equalities for p=1, and the inequality |X*|,<C, [<X>% |, for p<1 (see, for
example [6]), it follows that for O<p<oco | ZF H < C (2> Ny= I,

For aeeZ let

N-1 N—-1

% __ a a
Ut= Z 1(Zr a, Zr+1=0a+¢)? U —SupU’ D= Z 1(Zrza Zyyi=a—g)?
a r=0

r=0

and
N-1

= Z Ly _=U+D"
r=0
We have Y H*=N, and ¢}, U*—Y D%)=Z,, and so
L(Ne? +sZN)—SZZU”<3 (2-U*Z%/e)=2eU*Z%.

Now for O0<p<oo there exist constants c, such that for any f, g, [[f—gl,
zc, Il fll,—ligl, (for p=1, ¢,=1), and therefore, using Holders mnequality

l4eU*|, 1231,
2 |14eU*Z3 o 2 INe® —eZ§ oz ¢, INEn = e Zl
zc, [(NeP s —e | Z¥l,zc, 1235 —e 1 Z] -

p="p
Dividing by [[Z¥|, we obtain the inequality [4eU*{,zc,|IZ3],—e from
which (3.1) follows immediately by applying the pathw1se mequahtles
U* <1+ Uf(B,e). BE<Z%.

Remarks. 1. Except for the minor difficulties caused by working with upcross-
ings rather than the occupation measures H® the proof above is essentially
identical with the proof in [1] of the inequality |[L*(M)||,Zc,|M*|, for a
continuous martingale M with M,=0.

2. It is not possible to remove the initial ¢ on the right hand side of (3.1):
for example let T=inf{s=0: ([B|=1%¢} and M=B" - then U*(M,&)=0 while
M*=1eg

3. This inequality does not extend to general discontinuous martingales - it
is enough to consider the martingale M,=¢1,,,, where P(¢=1)=P(¢p=—1)

1
=3.

4. An Upcrossing Inequality from Local Time

Let X=X+ M+ A be a continuous semimartingale, and C, be a non-negative,
right continuous adapted increasing process. Let

Y=(X,A C)v (- C); (3.1)



466 M.T. Barlow

we begin by obtaining a bound on |L*(Y)|, for p=1. If T,=inf{t: C,>a} for
az0, and T,=inf{t: — C,Za} for a<0 then it is easily verified that

L(Y)=L(X) =L, 1,(X), (4.1)

so that the local time of Y is just the local time of X inside the envelope
{la,t): —C,2a<C}.

Theorem d4.1. There exist universal constants c, such that for p=1

IEY)],=¢c, (IIMILP+) FlAJ| +1X*A COOHI,) (4.1)
Remarks. 1. As [¥(Y)<I¥(X), by (1.5)
1Ml ,=c, (HM*Her [1dA ) for p21. (4.2)
0 p

This shows that, by restricting the region over which the supremum in
sup L7, (X) is taken, | M*||, may be replaced by the smaller term [[M||,,. This is

only of interest for p equal to 1, or close to 1, for otherwise, since |M*|,

§—p—1 M| .-, the two terms are of similar size.
p__.

2. Setting C,=x>0 we obtain:

p="p

I sup LX)

al£x

<c (lIMHLp+

f1day
0

+ ||X*/\x”p) @.3)
p
3. This inequality does not hold in general for p<1. For, if it did, letting
x]0 in (4.3) we would obtain, for any continuous martingale M, the inequality
112 (M)] 2S¢, [IM]1,, which, as was remarked in Sect. 1, is known to be false.

Proof. It is enough to prove (4.1) for X in H'. For, if X is any semimartingale,
let (T)) be an increasing sequence of stopping times such that X~ is in H".
Then, if (4.1) holds for each X,

Tn
nLa(Y)npgc(uM“nm {14, +\|X*nAcThnp)
0 p
gc(uMum [1d4, +|1X*Acooup),
0 p

and so (4.1) holds for X also.
We may also suppose that C is continuous. For, if (4.1) does hold for

t
continuous C, let Cf= | nC,ds, so that C" is continuous, and C"1 C. If Y"

t—1/n
=(X A C Vv (—C"), then L¥(Y")1 L¥(Y), and (4.1) holds for C.
Let Y=Y,+N+B be the canonical decomposition of Y. Then, since
(NYZ2Y*[¥Y), for p=1
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Y=Yyl = ]<N>fo+°§|st| SR {14, .
By (1.5). |L¥(Y)], <c, | Y— Y,z and therefore
I, Se, Y415 I+, | 1B .
Now if A<al?+§ then A< e+ B, and 50
0, Ze, (17414 | 1B, ) (44)

By Tanaka’s formula, as ¥,=X,—(X,— C)* +(X,+ C)~,

t t
Y=Y+ [dX,— [ 1x,.c,d(X,— C)—3L(X - C)
0 0

t

—[ L. c_cydX,+ C+3LUX + C)
[}

11 t

= Yo‘*‘j 1(~CS<XS§CS)dMs +j 1(»CS<XS§Cs)dAs
0 0

t

‘H' (Lxgsco— Loz —cy)d C,—3L(X - O)+3LY(X 4+ C)
)
Hence

[1dBJ< [1dA|+ Coo +5L(X + C)+3 L (X — O).
0 0

)

By Lemma 1.2
15,0+ Ol <p (1M1 +

[1dAJ+C,,
0

p

and the same bound holds for ||L) (X — O)ll - Therefore

f1dA]
0]

[ ldBy
0

<, (HMHLP-FHCooHﬁ
p

™
S

and substituting this in (4.4) we obtain, since Y*< C

p="p

(Y|, <e (\|M\|Lp+

+ cwup). (4.5)

Tlaay
0

p
. : 1
Now if C, is replaced by Ci'=C, A (Xt*+_>,
n
Y=(XAQO)Vv(=O)=(XACYv(—CY,

1
and so the final term in (4.5) may be replaced by [|C A X*| ,+~, for any n=1.
(4.1) now follows. "
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The principal application of (4.1) is in the proof of the following inequality.

Proposition 4.2. Let (Q, %, %,,P) be a probability space such that & supports a
random variable independent of ., with a continuous distribution, let B be a
Brownian motion/(#,), let 0=T,<T,=...<T, be finite stopping times{(%,), and
let X;=B;, 0<i<k. Then there exists a universal constant c such that

leU*(X, &)y Scle+ | X*[[, + B ) (4.6)

Proof. Let B® be the s-skeleton of B, as defined in Sect. 1, let S (B), =0 be
the associated stopping times, and let

C,=min{re,reZ: |X||<re forall i st. T,=<8S,}.

Set M=min{n: §,2T;}, and let C,eR x {0,1} be defined by C,=(C,, 1)
The first step in the proof is to obtain a bound on

max Uy (B A C)v (= C),re, (r+1)e). 4.7

Let R be the smallest value of » which maximises (4.7), let V be the value of
this maximum, and let N;, ..., N;, be the initial times of the V upcrossings made
by (B?A C)v(—C) from Re to (R+1)e. Note that M, R, V, N, ..., N,, are all
Z, measurable.

Now applying Theorem 2.2 to B and C’ we obtain a Brownian motion W
on a filtration (%,), with W®=B®. By the construction of W, the ¥ upcrossings

Wyy iy~ Way gy OSES Sy, (W) =Sy (W), i=1,....

are independent of % . Hence o,=L(R,Sy (W), W)—LR,Sy(W),W), i

=1,..., V are also independent of % .

Let C,=Y C,lis a.s..,0my(0s and Y=(Wa C)v (—C). Writing $=5,,(W),
n=0

”
L"g(Y)gL’;(Y)gZ ®;, and therefore since V is %

-, measurable, and Ea;=s¢,

1

=2
EI%zeE(V—1). By Theorem 4.1, and the definitions of Wand C,
eE(V-1)SELY)Sc(| W3+ | Cs A WeE] ). (4.8)

By Lemma 2.3, and the fact that ||-||;; of a martingale does not depend on
the filtration,

(WSl e+ [(WOM| =g+ [(BOPM|| o Se+ [ BP]| o £2e+ | BT 1. (49)
Also,
eUF(X,2e)<maxeUfX,re,(r+1)e)
<egmax [1+ U, (BY A Cyv(—C),re (r+1)e)]

=¢(1+V). (4.10)
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Combining (4.10), (4.8) and (4.9), and noting that Cg<X*+e, we obtain
(4.6) for 2e.

5. The Uperossing Inequality for Semimartingales

Let X,,X,,...,X, be any integrable discrete time process adapted to a fil-
tration %, 7;,...,%. We may decompose X into the sum of a martingale and
a predictable process by the elementary Doob decomposition: let

AX,=X,—X, |, AA,=E(AX,|F, ), AM,=AX,—AA,,

and then, if M,=Y AM;, A,= ) A4;, X=X,+M+A4 is the desired decom-

i=1 i=1
position, which is evidently unique. We set

1

| Xol+ (é (4 M,.)Z)j + é |44}

i

XN o= ) (5.1)

p

Proposition 5.1. Let 0=X, X,,..., X, be an integrable discrete time process. Let
F,, 0<i<k be the natural filtration of X, and let X =M+ A be the Doob de-
composition of X. There exists a Brownian motion B, on a filtration (&), and
stopping times/(€) O=1,<1,=...Z71, such that (X,...,X,) is equal in law to
(B ,B,,). Further

90 0"

k

2 1444

i=1

B[ S IIM| i +2 (5.2)

1
Remark. While the existence of the embedding is well known (see Monroe, [8])
the bound (5.2) appears to be new.

Proof. We modify slightly the standard Skorohod construction. (The procedure
used here is less efficient than that used in [8], but does not lose very much,
and is simpler to calculate with.) Let X =M + A4 be the Doob decomposition of
X, and
Y, =X, 0
Y, =X, +44 0
Y2 =%21=%

r+1

Note that (%4,) is the natural filtration of Y.

We now embed the process Y in a Brownian motion using the procedure of
Monroe [8]. There exists a Brownian motion B,, on a filtration (&), and
stopping times 0=T, =T, <...£T,, such that

(Y, Y, ..., Y5, )~(Bo, By, ..., Bp,)

> P Tk

By the construction of Y each jump is either a pure martingale jump, or one
which is predictable: that is 4Y,, €%,; 0=Si<k—1, while E(4Y,, ,1 %, )

2i4
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=0, 0Zi=k—1. For jumps of either of these types the stopping times T, take
particularly simple forms: we have

T =inf{t27T,;: B,— B, =/},
where fiea(B;,j<2i) and
T ,=if{t=T,,,,: B,— By, e{gih}},

where g;, h; are finite and &, , measurable, but in general depend on a
random variable independent of B. (This second case is the “random 2-sided
barrier” used in Skorohod’s original construction.)

Let

-1
( Z 1(T21 T21+1](S)) dB

t
V=]

0

t k-1

j (Z 1(T21+1 T2;+1](S)) dB

Thus BT =V T2 4 UT> and BT, < ||V .1+ | UT*| .. Also

(UO’UT;_)-- Tzk) (MO’MI""7Mk)>
and
(V0> VTz’ . TZk) ( :Ak)

k—1
The martingale U™ may be written UT**= Y (U">*2—U"?), and, by the
i=0
definition of T, ,, each of these martingales is uniformly integrable. Therefore
UT2x is also uniformly integrable, and

1O ] 1= 1U g, Il = M, ] (5.3)

If S=inf{t=0: B,=a}, then it is easily verified that |B%||,.=2la|. Therefore,
for 0<i<k~—1,

HVTZHZ—VTZiHLizzElfil:Q’EIVT T2|_2E|AA

242 l+1|

k—1

Hence ||V, <2 Y E|4A;. |, and combining this with (5.3) we obtain (5.2).

i=0

Corollary 5.2. Let X, M, A and B be as in Theorem 5.1. Then
B s =2 [ X || g
The following Lemma is a special case of Proposition 12 of [5].

Lemma 5.3. Let X, X,, ..., X, be an integrable discrete time process, adapted to
two filtrations (%), (%,). If 9,= F, for each n, then

”XHHl(g.) é 3 ”X“Hl(.ff‘.)-
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Lemma 54. Let X be a semimartingale on (Q,% #,P), and let 0
=T, =T, <...£T, be stopping times. Let

Y=X,, ¢&=%, 0=Zisk
There exists a universal constant ¢ such that

I Y“Hi(g,)éc HXHHl(f,)' (5.4)

Proof. If | X| g:=o00 there is nothing to prove. Let | X |51 <00, and let X=X,
+ M + A be the canonical decomposition of X. As X*eL!, Y is integrable, and
has a Doob decomposition (relative to (£,))Y = Y, + N+ B. Now

E | |dA,|=sup {E j J.dX, J previsible, |J|= 1}
0 0

k
gsup{E Y JiAYi,Jieé‘“il,|J|=1}
i=1

1=

k
=E ) |4B].
i=1

By (13),

k 20
1Y Il gsgey SCE (Y*+_Z1 |ABil>§cE (X*+§ |dAsi> <X s
0

I=

Theorem 5.5. Let X be a semimartingale. For each p=1 there exist universal
constants ¢, such that

leU*(X, &), = 11X — X ol o (5.5)

Proof. 1t is sufficient to prove the theorem for X with X,=0. The proof
consists of three steps: first the basic inequality

leU*(X, e)| , = cle+ 1 X g1) (5.6)

is obtained, then (1.1) is used to extend (5.5) to p=1, and finally the ¢ on the right
hand side of (5.5} is removed.

Let X be the discrete time process X"W=X,, ., 0<r<4" and Z"
Z,,-». As X is right-continuous,

I

[eU*(X, 8} = lim [sU*(X,5)] .

Let k=4" and let B, and T,<T,<...<T, be the Brownian motion, and
stopping times, obtained in Proposition 5.1 such that
(Brys s By )~ (XY, ..., X{). By Proposition 4.2,

leU*(X™, &)l e+ WX Y| + I BTl ).

By Proposition 5.1, if (2™, m=0) is the natural filtration of X,
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BTN L 21X ™ g1 gromy
Sc|X"[gi s, by Lemma 5.3

Zc|X| g by Lemma 5.4.

Thus as (X™)* < X*, and | X*(|; <c| X |1, (5.6) follows.
Now let V(X)=U*(X,e), so that V is

M.T. Barlow

previsible, and

VX)SUXX,e)SV(X)+e Let G(X)=[M,M]*+ | |dA,|. Let S be any stopping
0

tiNmea Xt=XS+t_XSJ Mt:]v{S-H_MS’ "It:ASH_AS’ *g}tzggﬂr af3d Q~=P|_(S< )
X is a semimartingale/(Q, % .), with canonical decomposition X =M+ 4. We

have
G(X)=G(X), V(XWX +V (X)+e
By (5.6), applied to X,

E2V,(X) S cEXG(X)+8)
and therefore
E(V(X)— V(X)) ZcE(G(X)+e) 1 g o)-

Thus V,(X) and G(X)~+e¢ satisfy the conditions of Lemma 1.1, and so, for p=1,

V(X ,=cp|G(X)+ell . Hence
[eU*(X, )| ,=cp|G(X)+ell,.

(5.7)

Now let S=inf{t>0: U*(X,e)=1}, and let X, M, 4, #, Q be as above.

Note that

1fllg,p=E2f ") P =1 f g ooyl ,P(S < 00)~*.

Since eUX(X, &) e UE(X,8)+ 1 5. ), and UZ(X,8)1s_ =0,

le Uz (X, ), < e UA X, ), + e Ls < ooyl

=(P(S<o)'"?|cUX(X, &) g, , +(P(S < 00))*

S(PS< o) ?(eplGX)+elg ,+e)

<(P(S<0))""(cp | G(X)llg,,+(cp+1)e)

=cp|| X | go+ (1 +cp)e(P(S < o))
As {S< o} {X*>1e}, by Chebyshev’s inequality
P(S<0)=(Ge) PEX*Y =(36) [ X | f»>

and substituting for P(S < o0) we obtain (5.6).

Remark. Theorem 5.5 may be generalised to cover moderate convex functions

F: for any semimartingale X in H!

EF(eU*(X,8) < cFE[F([M, MIE+ ij)o IdASI)] .

(5.8)

The proof is only slightly more complicated than the case F(x)=x?.
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