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O. Introduction 

Let M be a martingale, and let U(M,a,a+e) be the number of upcrossings 
made by M from below a to above a + e. The classical upcrossing inequality of 
Doob states that if M is uniformly integrable, 

E U ( M , a , a + e ) < I  ( M~ 11+1al). (0.1) 

From the definition of the local time of M, L~t(M), it is easy to check that, if M 
is uniformly integrable, 

E L~ (M) < 11M~ ][1 (0.2) 

In [13 the quantity L*(M)=suplY~(M) was introduced, and it was shown that 
a 

if M is a continuous martingale, 

I[L*(M) Ihl < c I1 M* []1, (0.3) 

where c is a universal constant, and M*=sup lM,  I. Comparing these three 
t 

inequalities, and recalling that, for a continuous martingale M, 

L~ (M) = lime U(M, a, a + e), (0.4) 

it is natural to conjecture that E(sup e U(M, a, a + e)) is bounded by c [I M* IL 1. In 
a 

this paper this conjecture will be proved, and the result will be extended, in a 
suitable form, to general semimartingales. The principal result is the following 
inequality. 

Theorem. Let X be a semimartingale, with decomposition X = X  0 + M + A, where 
M is a martingale and A is previsible and of.finite variation. Then there exist 
universal constants, c v such that for each p >- 1 
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a+e)]rp<cp M* ildA~l p. Jlsup e U(X, a, + (0.5) 
a 

As this result holds for discontinuous, as well as continuous, semimar- 
tingales, it also holds for processes in discrete time. 

The convergence in (0.4) is in D, so (0.3) is an immediate consequence of 
(0.5); in some ways the natural approach to these inequalities would be to 
prove (0.5) for discrete time processes, and then deduce the general result by 
suitable limiting arguments. However, a direct proof of (0.5) seems hard, and 
the approach adopted here is to deduce (0.5) from (0.3) (and its generalisation 
to semimartingales proved in [-2]) by using the probabilistic tricks of path 
decomposition and Skorohod embedding. 

Consider first the case when X is a continuous martingale. By time change 
this reduces to proving (0.5) for X of the form B r, where B is a Brownian 
motion, and T any stopping time. In fact, by Lemma 4.1 of [2] it is enough to 
prove that, for any n > 0, 

E(sup e UT,,(B , a + e)) <= c E(B~. ), (0.6) 
a 

where T, = inf{t: IBtt = ne}. 
We may decompose the process B as follows. Let S~,$2,... be the suc- 

cessive hits by B on the grid e]g - so that the process BI~)=Bs,, i>O, is a 
simple symmetric random walk on e;g. 

We may consider the process B r- as being built out of a simple symmetric 
random walk on eZ, and a collection of independent, identically distributed 
Brownian journeys to +e  and - e .  It is therefore intuitively clear (and it will 
be proved in Sect. 2) that B (~) is independent of the random variables L~s~+, 
-LB~,, for i__>l. 

Let n > l  be fixed, let N=min{ i :  B}~)=ne}, let R be the smallest value of r 
which maximises UT,(B, re,(r+l)e), and let V be the value of this maximum. 
As R and V depend only on the process B (~), if Sj~ .... ,Ss, ~ are the times which 
mark the beginnings of the V upcrossings made by B from Re to (R+l )e ,  then 
V is independent of each of the random variables ,h,i =~Sj~rR~ + ~ -- ~Ss~rR~ 1 < i <  V . _  _ 

V 

Therefore, since Lr >=LR~n>= ~" hi, and Ehi=e, 
i = 1  

Finally, 

V 

cEB~r.>E ~ h i = E V ' E h i = e E V  
i=1  

V= max Ur,(B, rE, (r + 1) e) >sup Urn(B, a, a + 2e), 
r a 

proving (0.6). 
Now let M be a general (right-continuous) martingale in H 1. By Monroe's 

result [7] M may be embedded in a Brownian motion - there exists a 
Brownian motion B t, and a time change rt such that M.~B~., and B ~ is 
uniformly integrable. Let T= z~ : using (0.5) for B r, for any p > 1 
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ILsup U(M,a,a + e)][p< Ilsup Ur(B,a,a + e)ll, 
a a 

___cp IIB*IL,< pep IkBzL[,, 
= p - 1  

_ p% [lMzl[v< pcp [IM~llv, 
p - 1  = p - 1  

proving (0.5) for general M in this case. Unfortunately, this cannot work for p 
= 1, since there exist martingales M for which IIM*]I 1 < 0% but [ [B~-][I  = 0(3. 

This difficulty is overcome by restricting attention to increases in the local 
time of B inside the envelope {(x,t):lx]<M*}. Using the results of [2], it is 
shown in Sect. 4 that this restricted local time is bounded by an expression 
which depends on IlM*lll and [IBT][ 1, rather than IIB}]I 1. This enables the basic 
upcrossing inequality for a discrete martingale embedded in a Brownian mo- 
tion to be proved (Proposition 4.2). 

In Sect. 5 this inequality is extended to semimartingales, using the embed- 
ding theorem of Monroe [8]: any semimartingale is the time-change of a 
Brownian motion. 

1. Basic  Not a t i o n  

Let (~2, Y,  Yt, P) be a probability space and X be any measurable stochastic 
process. Let 

X*=suplXsl ,  X*- -  X~.* 
S<t  

Let U~*(X,a,b) denote the number of upcrossings made by X across the 
interval (a, b) in the time interval [0, t], and let 

U~* (X, e) = sup U,(X, a, a + e). 
a 

We will frequently make use of the pathwise inequalities 

sup Ut(X, re, ( r+ 1)e)< Ut*(X , ~) (1.1 a) 
r 

Ut* (X, e) < sup Ut(X, r-!e2 , ( r+ 1)-�89 (1.1 b) 
r 

For any random variable ][fl[p=(Elf[P) 1Iv is the LP-norm of f, for each 
p_>_l. Let M be a local martingale; for p > l  we define the L p and H p norms of 
M by 

IIMII~ = II [M, M]~  lip 

IlMllL~=sup{llMrllp, T a finite stopping time}. 

The H p norm is well known, and is related to IlM*llp by the Burkholder- 
Gundy inequalities: there exist universal constants cp, Cp, such that 
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cp [[Miler;__< [[M*[[p~ Cp [[M]lu,. 

It follows that if IIMII~,< ~ ,  then M is a martingale. 
If p > 1, and []M]IL~ < oo, then by the martingale convergence theorem IIMll/~, 

=[IM~llp, and M is again a martingale. If p = l ,  and M is a uniformly 
integrable martingale [IMllL1 = liMbo ]l 1, but in general it is only true that IIM~ II1 
< [[MllL~. If M is a martingale, then as M T = l i m  MT^t, and E IMTAtl<=EIMt[, 

t---~ o9 

by Fatou's Lemma E IMTf< lim E IM, I ~ for any finite T, so that 
t ~ O 0  

[[M[IL; = sup [IMt[[p. (1.2) 
t 

This shows that, if M is a martingale relative to two filtrations, p[M[[Lp does 
not depend on the filtration. (1.2) is not true in general for local martingales. 

If M is a local martingale, and Tn]" + oo, then 

lim [IMTnIIL~ = IIMllLp- 
n ~ o o  

A semimartingale X is a process of the form X = X o + M + A, where M is a 
local martingale, A is a process of locally finite variation, and M 0 = A o = 0 .  The 
H p norm of X is defined, for p > 1, by 

[IX[IHP = X=Xo+M+Ainf [Xo[+[M,M]~ +~ p' 

(see [4]). If l IX[lul<~,  we shall say X is an H1-semimartingale; X has a 
canonical decomposition X = X  o + N+B, where N is a martingale in H 1, and B 
is a previsible process of integrable variation. Further, [IXllnp= II IXo[+ [N,N]~ 
+SldBslllp for p > l .  Note also that, if X is in fact a martingale, the two 
definitions of IlxlEn~ agree. 

If X is any continuous semimartingale, then X has a canonical decom- 
position X=X o+M+A, where M is a continuous local martingale, and A is 
continuous and of locally finite variation. Thus any continuous semimartingale 
is locally in H 1. 

Throughout  this paper cv will denote a universal constant depending only 
on p, the precise value of which will change from line to line. 

Using the Burkholder-Gundy inequalities, if X = X  o +M+A is the canoni- 
cal decomposition of an Hl-semimartingale X, then 

IdAsl p<=Cv X* OOldAsl Ilxil,, _-<cp IXol+M*+! +! v--<cpllXllH  (1.3) 

We will only be concerned with the local time of continuous semimar- 
tingales. For  any a~lR, the local time of X at a is defined by Tanaka's formula 

( Xt - a) + = (Xo - a) + + i l(xs > a~ dXs + �89 (1.4) 
0 
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When it is clear which process is being referred to, we will omit the de- 
pendence on X and write L]' we will also use the notation L(a, t) or L(a, t, X) 
when a,t are themselves complicated expressions. By 1,9] we may take a 
version L: (a, t )~L] which is jointly right-continuous with left limits in a, and 
continuous in t. We set 

L* = sup L~, L*=L*.  
a 

The following inequality was proved in I-2]" for any continuous semi- 
martingale X, there exist constants cp such that 

ILg*(x)llp<% IIX-X011~,, p > l .  (1.5) 

In the remainder of this section we shall recall some elementary con- 
sequences of Lemma 1.2 of [6], which is stated here in a simplified form. (Note 
the misprint in [6, 1.2(a)].) 

Lemma 1.1. Let A be a non-negative, increasing and previsible process, with A o 
= O, and f be a non-negative integrable random variable. I f  for all stopping time 
S, 

E(A~ - As) <-_ E ( f  l(s < ~), (1.6) 

then, for all p > 1, 

ILA~ILp~plIfLlp. 

The following result was proved in I-6] in the case when X is a uniformly 
integrable martingale. 

Corollary 1.2. Let X be a continuous semimartingale, with canonical decom- 
position X = X o + M + A. Then for any p >= 1 

Ilg~ p X~ + ildAsl p (1.7) 

Proof. Suppose first that M is in H ~. For any stopping time S 

Lo ro _ y +  
oo 

o - ~ s - ~ o  - X ~  - l(xt>o)dMt- ~ l(x~>o)dAt, 
S S 

so that 

S 0 

By Lemma 1.1, therefore, we have 

]Lg~ X+ +i ldAsl  p. 

The result now follows, since any continuous local martingale is locally in H ~. 
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In particular, if M is a local martingale, 

[IL~ IIMIIL~, p > l .  

This inequality is false, in general, for p < 1 - see [10]. 

M.T. Barlow 

(1.s) 

2. Skeletons of Brownian Motion 

Let X t be any continuous process. Let e>O be fixed: we define the skeleton of 
X on the grid eZ, denoted X (~), as follows. Set 

So(X)=inf{s>O: Xs~elg} 

Sn+ a (X) = inf{s > O: IX s - Xs,(x)l = e} 

x ~  ~) = Xs.~x~. 

Thus X ~) is a discrete time process, taking its values on e2g. In contexts where 
it is clear which process is being referred to, S,(X) will be shortened to S,. 

If X is a Brownian motion, it is intuitively clear that, conditional on 
whether X s . + - X s .  is equal to +e  or - e ,  the path Xs.+t-Xs. ,  O<=t<=Sn+ 1 
- S , ,  is independent of the process X (~). We shall call these parts of the path of 
X journeys from 0 to +E, and will decompose X into X (~) and two sequences 
of independent identically distributed random variables taking values in the set 
of journeys to +e, and - e .  

Let J+ be the space of journeys from 0 to + e. More precisely, J+ is the set 
of left-continuous functions f:  IR + ~IR w {0} with the properties 

(i) f(O) = 0 

(ii) if ~(f)=inf{s:  f(s)=e} then 

(a) f ( t ) = a  for t > ~ ( f )  

(b) f ( t ) ~ ( - e , e ]  for ONt<=~(f) 
(c) f(t) is continuous for O_ t_< ~(f) 

(d) f(~(f)) = e. 
Similarly, let J -  be the space of journeys from 0 to - e ,  and let J=J+ u J-.  

Let B be a Brownian motion, with B o =0,  S,=S,(B), and 

{,(t)={Bs._~+t-Bs._, O<-t~-Sn-Sn-lt>sn__Sn_ 1 

Thus ~a, ~ 2  . . . .  is a sequence of J-valued random variables, and by the Strong 
Markov property of B the ~ are independent and identically distributed. Let # 
be their common probability distribution on J. 

We now split the sequence (r162 into two sequences, with values in J+ and 
J - .  Let 

N - = i n f  in: ls~(~i)=r ~ + = ~ ; ,  ~2=~N; 
i = 1  
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The sequence (~+) is therefore the sequence (~i) with the values in J -  omitted. 

Lemma 2.1. (i) (3/+), (d_F) are sequences of independent identically distributed 
random variables, with law given by 

# •  +-) for A ~ J  

(ii) B (~), (~i +) and (iV) are mutually independent. 

Proof. Since (~i) is a sequence of independent identically distributed random 
variables, it is a classical result that 

P(~ [ ~ A 1 . . . . .  3, + ~ A,~, ~ 1 E C1, ..., ~ ~ Cm, 1s+ (31 ) = e ~ . . . . .  1 j+ (~k) = ek) 

= [ I  P (~ IEAi I~ IEJ+)  " lmI P(~;eBjI~-;~J-)  "2-k 
i-i j = l  

= [ I  
i = 1  j - -1  

This implies (i), and also that the sequences ( ~ ) ,  (~-), (1j+(~i)) are independent. 

Since B~,~)=e (2 ~ l j+ (~ i ) -n ) ,  (ii)follows. 
i = 1  

This lemma gives a decomposition of B into the independent components 
B(~), (~+), (iV). This decomposition may be reversed, so that given a simple 
symmetric random walk Y on eZ, and sequences of i.i.d.r.v. ~+ J-+ ~-Y in , with laws 
#+-, a Brownian motion W t may be constructed, with W(~)= Y. 

Lemma 2.1 is the independence result used in the sketch proof of (0.6) given 
in the introduction. In Sect. 4 a more complicated version of the same result 
will be needed: 

Theorem 2.2. Let B be a Brownian motion on the probability space (f2, ~ ,  ~ ,P ) ,  
where ~ contains a random variable with continuous distribution independent of 
~ .  Let C, be a discrete time process, with C,6,~s,(m. Then there exists a 
filtration (Nt) and a process W t such that 

(i) W is a Brownian motion/(Nt) , 

(ii) W(~)= B ~), 

(iii) C,~s,~w). 

Remark. The conditions on -fioo and f f  are simply to ensure that a large enough 
supply of random variables independent of ff~ can be found. 

Proof Let (~+), (~-) be independent identically distributed random variables, 
with distributions #+ and ~,-, and jointly independent of floe. Let W be the 
Brownian motion obtained from B (~), (~+), (IV) by reversing the decomposition 
of Lemma 2.1, and let ~ be the natural filtration of W. Set 

Nt=a(W~, C, l[s,, ~)(s), n>0,  s<t). 

Thus W t and Nt satisfy (ii) and (iii), and it remains to verify that W remains a 
Brownian motion when (Wt) is enlarged to (N~). For this it is necessary and 
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sufficient that, for each t>0,  ~oo and Nt should be conditionally independent 
given ~ - see [3] or [4]. 

For some elementary properties of conditional independence see, for exam- 
ple [4]. ~oo and fgt are conditionally independent given ~ if and only if for 
each t > 0 

E(glX~)~24~t for all gEbfr t. (2.1) 

Let S ,=S , (W) :  we begin by proving (2.1) for S,. Let n > 0  be fixed, d~n 

=a( Ws~ +t - W s ,t>_O), and Y,= ~, 1.n~ o~ , Then 
n - -  ( / $ i  > J ~ i  - 1 J  " 

i = 1  

a + Y.,B~ ~, C~,r<n), ~r = (~i , i<Y. ,~. i - , i<=n- 

(r + Y,, Y R (e) - -R ~e) r>f}~ ~,= (~i , i>  ~? i > n - -  

so that Ns, and d~ are independent. Hence, since ~f~ = 3fsn v o~,, it follows that 
24~ and fqs~ are conditionally independent given ~s~. 

Therefore, if C z b ~ ,  g, zbfgs., 

E(4 0 l(sn<o[~)=Ol(s,<=t)E(tpl~)=41(Sn<t)E(~blSsn)Z N .  (2.2) 

By the monotone class Lemma it now follows from (2.2) that E(g lx4~)e~  for 
any g of the form g=g,l(s<=t), where g, ,~b(~ v fr However, 

a(g, 1 (s~_< t), g, e b(2/~t v Ns,), n > 0) = (r 

and, applying the monotone class Lemma again, (2.1) follows. 
The following Lemma, which will be needed later, relates the L v norms of B 

and B (~). 

Lemma 2.3. Let M be a stopping time/(~,~s,). Then 

II (B(~)) ~ II L, ------- II B s'~ II L~ ----< e + II (B(~)  M II g~" 

Proof For n > 0, S, ^ u is a stopping time/(~), so that the left hand inequality is 
immediate. If t > 0, let N = rain {n > 0: t _-< S~} : then [B t ~ s~ - B s ~  M[ < ~, proving 
the right hand inequality. 

3. A Lower Bound for the Upcrossings of a Continuous Martingale 

The inequality presented here is a complement to Theorem 5.3, and, together 
with (0.5), provides a two-sided bound on U*(M,e), in the case when M is a 
continuous martingale. 

Theorem 3.1. Let M be a continuous martingale with M o = O. There exist univer- 
sal constants Cp, such that 

cpllM*llp<=~+l[eg*(M,e)llp, 0 < p < ~ .  (3.1) 

Proof It is enough to prove this for M = B  r, where B is a Brownian motion 
and T is any stopping time: the general result then follows by time-change. Let 
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Z = B  (~) be the t-skeleton of B, and S.=S.(B), n>O, be the associated stopping 
times. Let N=inf{n:  S.>T}" we have R*<R* < R * - ~  

~ -  ~ ~ T = ~ S N = ~ T  " ~  

Now ( Z } N = [ Z , Z ] N = N e  2, and therefore, by the Burkholder-Gundy in- 
equalities for p_>l, and the inequality [[X*[I._<C . [f(X}~[I. for p < l  (see, for 
example [6]), it follows that for 0 < p <  oo IIZ*ll~__< c~ II(e-NFiI~. 

For aee2g let 

and 

N - 1  N - 1  

U~= ~ l(z . . . .  z . . . . .  +~), U * = s u p U  ~, D ~= ~ l(z,.=a Z~+t . . . .  )' 
r = O  a r = O  

N - 1  

H " =  ~] l(zr=a)= U~+DC 
r = 0  

We have ~ H ~ : N ,  and e(~, Ua--ZDa)=ZN, and so 
a a a 

* * 9 * * �89 y~ U~ U ZN/~)�88 Z~. 
a 

Now for 0 < p < o o  there exist constants c. such that for any f, g, I[f-gllp 
> c .  [{f  lip - Hgl{p (for p > 1, cp = 1), and therefore, using HSlders inequality 

l[4s U*Hp I[Z*llp 

> 114sU* * = ZNllp/2 > liNe 2 -~Z}Hp/2 > c p liNeal[p~2- ][eZ~ II p/2 

>% II(NP)�89 liZ~liv>c , z* 2 II ~ l i p - s  l l /}l l~. 

Dividing by r4Z~ll p we obtain the inequality 1[4eU*lbp>cp]pZ*llp-e, from 
which (3.1) follows immediately by applying the pathwise inequalities 
U*<I+U*(B,e),  *< * _ Br=ZN. 

Remarks. 1. Except for the minor difficulties caused by working with upcross- 
ings rather than the occupation measures H", the proof above is essentially 
identical with the proof in [1] of the inequality Jlg*(M)llp>%llM*ljp for a 
continuous martingale M with M o = 0. 

2. It is not possible to remove the initial e on the right hand side of (3.1): 
for example let T= in f{s>0 :  [Bs[=�89 } and M = B  r - then U*(M,s)=0 while 
M* =�89 

3. This inequality does not extend to general discontinuous martingales - it 
is enough to consider the martingale Mt=4~l(t>__t) , where P(q5= 1 ) = P ( ~ b = -  1) 

I 

4. A n  U p e r o s s i n g  I n e q u a l i t y  f r o m  L o c a l  T i m e  

Let X - X  o + M + A be a continuous semimartingale, and C~ 
right continuous adapted increasing process. Let 

r~ = ( x , / ,  c,) v ( -  c,); 

be a non-negative, 

(3.1) 
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we begin by obtaining a bound on I[L*(Y)llp for p > l .  If Ta=inf{t: Ct>a } for 
a>0 ,  and Ta=inf{t: - C t < a  } for a < 0  then it is easily verified that 

L~t( Y) = L] ( X) - L t ^ ra(X), (4.1) 

so that the local time of Y is just the local time of X inside the envelope 
{(a, t): - C t < a < Ct}. 

Theorem 4.1. There exist universal constants cp such that for p > 1 

( ) I[L*(Y)llp<-_cp ]PMIIL~+ ! IdAsl p+ IIX*A Co~[I, (4.1) 

Remarks. 1. As L*(Y)<L*(X), by (1.5) 

( rlg*(g)llp<ep tiM*lip+ , for p > l .  (4.2) 

This shows that, by restricting the region over which the supremum in 
supL~(X)  is taken, IlM*/lp may be replaced by the smaller term fIMllL~. This is 

a 

only of interest for p equal to 1, or close to 1, for otherwise, since IrM*llp 
< P =p- 1 ]]MIIL,, the two terms are of similar size. 

2. Setting C t = x > 0 we obtain: 

[]lal<=xsup L~(X)]Ip<-_cp (]FM,[L~ + i]dA,] p+ ]]X*A x]rp) (4.3) 

3. This inequality does not hold in general for p < 1. For, if it did, letting 
x$0 in (4.3) we would obtain, for any continuous martingale M, the inequality 
IIL~ IrMIIL~, which, as was remarked in Sect. 1, is known to be false. 

Proof It is enough to prove (4.1) for X in H t. For, if X is any semimartingale, 
let (T,) be an increasing sequence of stopping times such that X T" is in H z. 
Then, if (4.1) holds for each X T", 

,]/x* (Y),lp=<C (,,Mr",,L,+ ~]dAs] + ,,X~, A Cr,,,], ) 

( ) < c  [IMIIL,+ +llX*ACooHp , 

and so (4.1) holds for X also. 
We may also suppose that C is continuous. For, if (4.1) does hold for 

t 

continuous C, let C]-- ~ nCsdS, so that C" is continuous, and ChiC. If Y" 
t -  1In 

= ( X A  C " ) v ( - C " ) ,  then L*(Y")TL*(Y), and (4.1) holds for C. 
Let Y=Yo+N+B be the canonical decomposition of Y. Then, since 

(N )  <=2 Y* L*(Y), for p > l  
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= ( N ) ~  ildB~lv ildBs] p. ' V I1,, I IL*(Y)I I~+ l[ Y -  Yoll.~ + <cplL * ~ 

By (1.5), ]]L*(Y)Hp<c v [I Y -  Yo[]~, and therefore 

cyo 

IIL*(Y)II,,<% II Y*II~ l l /Y (V) l l~+  Cv ! IdB~l p" 

Now if 2 < ~ 2 } + f i  then , ~ 2 - t - f i ,  and so 

]'L*(Y)['~,<=c v ('lY*llv+ i ldB~[ p). 

By Tanaka's formula, as Y~ = X t -  (X t - Ct) + + (X t + Ct)-, 

t t 
cs) - ~z;, (x - 0 yt=yo+fdX_Sl(x ,>c, ,d(Xs - 1 0 

0 0 

- i + fl2,(X + C) l(xs__c~)d(Xs+Cs ) 1 o 
0 

t t 

= Yo + ~ l(-cs<Xs<=Cs)dM~ + ~ 1c_c,<xs<c, ) dA~ 
0 0 

t 

- ~ ( x -  c) +v#,(x + c) +j'(l(x~>c~)_l(x~<_c~))dC s 1 0 1 0 

0 

Hence 

By Lemma 1.2 

o~ IdBsl ~ ~ IdA~l + Coo + �89176 + c)+�89176 C). 
0 0 

IIg~ C)llp~P (IIMIILp+ i ldAs[+ Coo p), 

and the same bound holds for IIL~ C)llp. Therefore 

ildBs[v<=cp([lMllu'+[lCoollv + i ldAslp),  

and substituting this in (4.4) we obtain, since Y* < Coo 

,,L*(Y)][p<=cp (,,M,,L~+ i ,dA~, p+ ], C~,,p). 

( 1 )  ~- x* +~ Now if C t is replaced by C, - C t A 

(4.4) 

(4.5) 

Y =  ( x  A 0 v ( -  c )  = ( x / ,  C") v ( -  c"), 

and so the final term in (4.5) may be replaced by 11 Ca  A X*l[p+ -1, for any n>_ 1. 
(4.1) now follows, n 
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The principal application of (4.1) is in the proof of the following inequality. 

Proposition 4.2. Let ((2, ~ ,  ~ ,  P) be a probability space such that ~ supports a 
random variable independent of Y~ with a continuous distribution, let B be a 
Brownian motion/(~), let 0 =  T o <__ T 1 < ... < T k be finite stopping times/(~), and 
let X/=Br, ,  O<i<_k. Then there exists a universal constant c such that 

Lie g*(x ,  e)H1 __<c(e+ IlX*ll 1 + I[BrkllL1) (4.6) 

Proof Let B (~) be the e-skeleton of B, as defined in Sect. 1, let S,(B), n > 0 be 
the associated stopping times, and let 

C,=min{re,  reZ" [X/l<re for all i s.t. Ti__<S,}. 

Set m = m i n { n :  S ,>  Tk}, and let C',eP, x {0, 1} be defined by C',=(C,, I~,<M)). 
The first step in the proof is to obtain a bound on 

max UM((BC~) A C) v ( - C), re, (r + 1) e). (4.7) 
r 

Let R be the smallest value of r which maximises (4.7), let V be the value of 
this maximum, and let N 1 ... .  , N v be the initial times of the V upcrossings made 
by (B(~)/x C ) v ( -  C) from Re to (R+ l ) e .  Note that M, R, V, N 1 . . . .  ,Nv, are all 
~ measurable. 

Now applying Theorem 2.2 to B and C' we obtain a Brownian motion W 
on a filtration (Nt), with WC~)= B ~). By the construction of W, the V upcrossings 

Ws~,(w)+t-Wsz~,(w),O<=t<=Su,+I(W)-Su,(W), i= I , . . . ,V ,  

are independent of ~-~. Hence cci=L(R, SN~+I(W),W)-L(R, Su~(W),W ), i 
= 1 . . . . .  V are also independent of g~.  

Let C~= ~ C, 1Es,(w) ' s,+~(w))(t), and Y = ( W A  ~) v ( -  C). Writing S=SM(W), 
n = 0  

V 

L*s(Y)>LRs(Y)> ~ c~/, and therefore since V is ~or measurable, and Eei=e, 
i = 2  

EL*>eE(V-1 ) .  By Theorem 4.1, and the definitions of W and C, 

e E ( V -  1)< EL*(Y)<c(I[ WSlIL ~ + II Cs A W*ll 1). (4.8) 

By Lemma 2.3, and the fact that ]I'IIL~ of a martingale does not depend on 
the filtration, 

II WSllL~ <=e+ II(W(~))MI[L~ =-e+ II(B<~))M[IL~ <=e+ IIBS~(B)IILI =<2e+ [IBTkilL~. (4.9) 

Also, 

e U*(X,2e) < max e Uk( X, r e, (r + l ) e) 
r 

--<e max [1 + UM((B~I A C) v ( -  C), re, (r + 1)0] 
r 

=e(1 + V). (4.10) 
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Combining (4.10), (4.8) and (4.9), and noting that C s < X * + e ,  we obtain 
(4.6) for 2e. 

5. The Upcrossing Inequality for Semimartingales 

Let No,X1, . . . ,X  k be any integrable discrete time process adapted to a fil- 
tration Yo, ~1 ... .  , ~ .  We may decompose X into the sum of a martingale and 
a predictable process by the elementary Doob decomposition: let 

A X r = X r - X r _ I , A A ~ = E ( A X ~ I ~ _ I ) , A M ~ = A X ~ -  AAr, 

and then, if M r =  f A M  i, A t=  f AA  i, X = X o + M + A  is the desired decom- 
i=1  i = 1  

position, which is evidently unique. We set 

= IXo[ ( k  )~ k A~[ p. ]IXHHv + i~l(AM,)Z +I__~IIA (5.1) 

Proposition 5.1. Let O= X o, X I , . . .  , X k be an integrable discrete time process. Let 
~ ,  O < i N k  be the natural filtration of X, and let X = M + A  be the Doob de- 
composition of X. There exists a Brownian motion B t o n  a filtration (gt), and 
stopping times/(Et) O = r o < % < . . . < z  k such that (Xo, . . . ,Xk)  is equal in law to 
(B,o, ... , B,~). Further 

(5.2) 

Remark. While the existence of the embedding is well known (see Monroe, [8]) 
the bound (5.2) appears to be new. 

Proof We modify slightly the standard Skorohod construction. (The procedure 
used here is less efficient than that used in [8], but does not lose very much, 
and is simpler to calculate with.) Let X = M + A be the Doob decomposition of 
X, and 

y2r= Xr O<_r<_k, 

Y2r+ l = Xr+ AAr+ l O<_r<k, 

(ff2r = (t~2 r+ 1 = c - ~ .  

Note that (~#n) is the natural filtration of Y. 
We now embed the process Y in a Brownian motion using the procedure of 

Monroe [8]. There exists a Brownian motion Bt, on a filtration (G), and 
stopping times 0 = T o __< T 1 < . . .  < T2k such that 

(Yo, Y1 . . . . .  Y2k)~(Bo,Brl,  .... Br2k)" 

By the construction of Y each jump is either a pure martingale jump, or one 
which is predictable: that is A Y2 ~+ 1 ~-~2~ 0 < i < k -  1, while E(A Y2 ~+ 21 ~ i+ 1) 
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=0, O<_i<_k-1. For jumps of either of these types the stopping times T~ take 
particularly simple forms: we have 

T2i+1 =inf{t >_ T2i : B t - B r ~  ~ =f~}, 

where f i~a(BTj,j  <= 2 0 and 

T2i+a=inf{t>_ r2i+ 1 : Bt-BT2~+l~{gi,hl}}, 

where gi, hi are finite and gr~,+~ measurable, but in general depend on a 
random variable independent of B. (This second case is the "random 2-sided 
barrier" used in Skorohod's original construction.) 

Let 

g t = !  = ltT2i,T21+d (S) dBs, 
L 0 

U t -  0 i_~o l(T21+l, T2,+2](S) dBs, 

Thus BT~~= vW~k + U T~k, and IBBT~IBL, < II vW~llL~ + II uT2"IIL'. Also 

(Uo, UT2, ..., UT~)~(Mo,  M,  . . . . .  Mk), 
and 

(Vo, VT:, ..., VT~)~(Ao,A  ~, ...,Ak). 

k--1 
The martingale U r~ may be written u T ~ =  ~, (U r~ . . . .  Urn'), and, by the 

i=0 
definition of T2i+2 , each of these martingales is uniformly integrable. Therefore 
U r~ is also uniformly integrable, and 

II uT~kIIL~---- II UT~Ir~ = rlMkH~. (5.3) 

If S=inf{t>0:  Bt=a}, then it is easily verified that IIBSllL, =2lal. Therefore, 
for O<_i<_k-1, 

II g r . . . . .  rZ2~llg~ ---- RE I f~[ = 2 g l  rz~+ ~ -- r r ~ l - - 2 E  IDA,+ 11" 

k--1 
Hence II vT~[IL' <2 ~ EIAAI+ 11, and combining this with (5.3) we obtain (5.2). 

i-O 

Corollary 5.2. Let X, M, A and B be as in Theorem 5.1. Then 

IIB~IIL, <--_2B[XJIH~. 

The following Lemma is a special case of Proposition 12 of [5]. 

Lemma 5.3. Let X o, X~, ..., X k be an integrable discrete time process, adapted to 
two filtrations (~) ,  (%). I f  % c ~ for each n, then 

I1X IIH~<~.)< 311XlIH~<~.). 
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Lemma 5.4. Let  X be a semimartingale on ( f2, ~,, ,~ ,  P), 
= T o < T 1 <=... < T k be stopping times. Let  

Y~=Xr , ,  C,.=~r, O<_i<k. 

There exists a universal constant c such that 

471 

and let 0 

By (1.3), 

{ t E ~ [dA~]=sup E ~ dsdX~, J previsible, Id]=l  
0 0 

k 

i = 1  

k 

, (Y* +i , Bi,t (x,+ ! 
Theorem 5.5. Let  X be a semimartingale. For each p >  1 there exist universal 
constants C p such that 

II~g*(x,e)Hp< IIX-XolLup. (5.5) 

Proof. It is sufficient to prove the theorem for X with Xo=0.  The proof 
consists of three steps: first the basic inequality 

[LeU*(X,~)llp<c(e+ I[XIl~l) (5.6) 

is obtained, then (1.1) is used to extend (5.5) to p >  i, and finally the e on the right 
hand side of (5.5) is removed. 

Let X (') be the discrete time process X~' )=Xr2  n, 0 < r < 4  ~, and ,_~(n) 
= ~ 2 - - .  As X is right-continuous, 

IIe U* (X, e)[1~ = lim II e U* (X ("), e)Ill. 
n ~ o o  

Let k = 4  ~, and let B, and To< T 1<. . .  < T k be the Brownian motion, and 
stopping times, obtained in Proposition 5.1 such that 

B ~ ~ (X (') X(k'0). By Proposition 4.2, (Bro, ' " ,  r~ t o,  .... 

lie U * ( X  <'), e)Ll~ < c(e + II (x(")) * II1 + IlBrqlgl) �9 

By Proposition 5.1, if (SF~ "}, m>0)  is the natural filtration of X, 

IL HI H*<e.~ < c II X II ~*(j.). (5.4) 

Proof. If lIXLIw= oo there is nothing to prove. Let [IXllw < oo, and let X = X  o 
+ M + A  be the canonical decomposition of X. As X ' e L ' ,  Y is integrable, and 
has a Doob decomposition (relative to (4*,)) Y = Yo + N + B. Now 
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[IBr~ IlL 1 __<2 II X(")IIHI(~(~> ) 

~C IIX(')IIH~(~)) by Lemma 5.3 

__<c IIXIl.1 by Lemma 5.4. 

Thus as (X(")) * <X*,  and IIX*[ll __<c IlSll~l, (5.6) follows. 
Now let Vt(X ) = Uff_ (X, e), so that V is previsible, and 

oo 

Vt(X)< Ut*(X,e)< Vt(X)+e. Let G(X)= [ M , M ] 6 +  ~ IdA~l. Let S be any stopping 
0 

time, Xt= X s + t -  Xs,  f/ft= M s + t - M s ,  A t = A s + t - A s ,  ~ =~s+t ,  and Q= PI~s< ~). 
is a semimartingale/(Q,~.),  with canonical decomposition X = ~ / I + A .  We 

have 

o(2)<=c(x), v~(x)<v~(x)+v~(2)+~. 

By (5.6), applied to ){, 

~o. v~( 2) <__ c E~( C(2) + ~), 
and therefore 

E( V~(X) - Vs(X)) < c E( G(X) + e) l(s < ~). 

Thus Vt(X ) and G(X)+e satisfy the conditions of Lemma 1.1, and so, for p > l ,  
H V~(X)llp<cp IlG(X)+~llp. Hence 

IIe u* (x,  e)II p < cp [1G(X) + e 1[ p. (5.7) 

Now let S = i n f { t > 0 :  Ut*(X,e)=l}, and let X, 3~r, A, ~ ,  Q be as above. 
Note that 

NUIlo.,p=(EQUP) l/p= II f l(s<oo)llpP(S < oo) lip. 

Since e u * ( x ,  e) < e u*(J?, e) + l(s < ~), and U*(J?,e) l(s = ~o)= 0, 

IJ~O*(X, 8)lip ==_ II~ o * ( 2 ,  ~)ll. + ll~ l(s< ~)11. 
= (P(S < ~))I/P/I ~ u*(2, ~)II e , ,  + (P(S < o ) )  1/" 

<= (P(S < ~))l/PKcp II G ( 2 )  + ~ II Q,. + 8) 

<= (P(S < ~))l/P(cp I1G(X)ll ~,. + (cp + 1)~) 

= cp 11X II..  + (1 + cp)e(P(S < m))l/p. 

As {S < m} ~ {X* >�89 by Chebyshev's inequality 

P(S < o~) <= (�89 p < (�89 ][ Xll~,, 

and substituting for P(S < ~ )  we obtain (5.6). 

Remark. Theorem 5.5 may be generalised to cover moderate convex functions 
F: for any semimartingale X in H 1 

EF(~U*(X,e))=cvE F([M, MJ + IdA s . 
0 

The proof is only slightly more complicated than the case F(x)= x p. 

(5.8) 
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