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Summary. Necessary and sufficient conditions are obtained for: (i) conver- 
gence of row products from a null triangular array of renewal sequences to 
a particular renewal sequence and (ii) convergence of an infinite product of 
renewal sequences to a non-trivial limit. These products correspond to in- 
tersections of regenerative phenomena of integers. L6vy processes of such 
regenerative phenomena are constructed. 

1. Introduction 

An integer-valued renewal process is a strictly increasing, integer-valued random 
walk starting at 0; the possibility that a terminal state oo may be reached in a 
finite number of steps is not excluded. Its (random) image, excluding oo, is 
called a regenerative phenomenon of integers. To each integral-valued renewal 
process (Tin: m=0,  1,2 .. . .  ) with T0=0 there corresponds a renewal sequence U 
=(u,:  n = 0 , 1 , 2  .. . .  ), where 

u,=P(Tm=n for some m). 

Products of renewal sequences correspond to intersections of independent re- 
generative phenomena of integers. 

Let f ,=P(T i =n), n=  1, 2 . . . . .  oo. Clearly, f~  + ~" f , =  1, which we also write 
~ +  n = l  

as ~ f , = l ;  and any sequence F=(f,: n = l , 2  . . . . .  oo) of nonnegative numbers 
n = l  

whose sum is one corresponds to a renewal process. Kendall 1-1967 and 1968] 
identified the infinitely divisible renewal sequences (for the product operation) 
and proved that those that are zero-free are the renewal sequences that can 
arise as limits of row products in null triangular arrays of renewal sequences. 
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In Sect. 3 a criterion in terms of distributions F = ( f , :  n =  1,2 . . . . .  oo) is given for 
convergence of such products to particular infinitely divisible renewal se- 
quences. This criterion and an interesting construction of infinitely divisible 
regenerative phenomena of integers is what has been added in Sect. 3 to 
Kendall's results. In the process, new proofs of some of his results are ob- 
tained. 

In Sect. 6, the construction of infinitely divisible regenerative phenomena of 
integers is extended to a construction of L6vy processes of regenerative phe- 
nomena of integers. 

In Sect. 4, the connection between the vague topology on the set of distri- 
butions F and convergence questions for random subsets of the nonnegative 
integers is explored. Some of the topological considerations in Sect. 4 are im- 
portant for Sects. 5 and 6. 

In Sect. 5 necessary and sufficient conditions are given for an infinite pro- 
duct of renewal sequences to equal the trivial renewal sequence (1, 0, 0, 0 . . . .  ). 

In Sect. 7 we remove the special role that 0 plays - as the first member of 
the range of the renewal process - by smoothing out regenerative phenomena 
of integers over all the integers to obtain what we shall call homogenized re- 
generative phenomena of integers. Kingman [1970a] uses the adjective sta- 
tionary where I use homogenized. My choice is based on the consideration that 
I want regenerative phenomenon (unmodified) to denote a random set which, 
among other properties, has the property that it contains 0. Moreover, 
Kingman's stationary regenerative phenomena do not exactly correspond to my 
homogenized regenerative phenomena; for he allows infinite underlying mea- 
sures whereas we will restict out attention to underlying probability measures. 

Sections 8, 9, 10, and 11, all of which are about homogenized regenerative 
phenomena of integers, roughly parallel Sects. 3, 4, 5, and 6. However, some of 
the results in the latter sections are not obvious extensions of corresponding 
results in the earlier sections. 

[Kendall, 1974] and [Math6ron, 1975] are good references for general 
theories of random sets. 

2. Definitions and Preliminaries 

Let (~?,Jg, P) denote the underlying probability space. We have already in- 
troduced, for an integer-valued renewal process (Tin: m=0,  1,2 .. . .  ) where T o =0,  
the corresponding renewal sequence U, and corresponding distribution F. Let 

R(co)= {n4= oo: Tm(CO)=n for some m} 

denote the corresponding regenerative phenomenon of integers, a term we some- 
times abbreviate as regenerative phenomenon, just as we sometimes drop "in- 
teger-valued" and speak of renewal processes. The members of R are called 
renewals, so that F is the distribution of the waiting time between successive 
renewals and u n equals the probability that n is a renewal, that is, u, =P(n E R). 
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We use corresponding subscripts in the obvious manner; for example, U 2 is 
the renewal sequence for the renewal process (T2,m: m = 0 , 1 , 2  .... ) whose finite 
image is R 2, a random set to which 3 belongs with probability u2, 3. 

The operation in which we are interested is RiceR  2 for independent R 1 
and R 2. It is easy to prove that R 1 c~R 2 is itself a regenerative phenomenon R 
characterized by u,=ul,nu2,,, for all n or, more briefly, U =  U 1U 2. 

Definition 1. A renewal sequence U and corresponding regenerative phenome- 
non of integers are called infinitely divisible if for each positive integer i there 
exists a renewal sequence U i such that U = U I. 

Remark. We shall not carry over this use of infinite divisibility to the corre- 
sponding distribution and renewal pocess because we do not want to confuse 
the concept with the classical infinite divisibility of distribution functions and 
real-valued random variables. 

Let u//denote the space of all renewal sequences with the topology of point- 
wise convergence and J the space of distributions on {1, 2 . . . . .  o0} with the 
topology of vague convergence, that is, the topology of pointwise convergence 
at each n 4= o0. The relation between generating functions, 

UnZ n :- 1, 
\n = 0 l 

yields the following result. 

]zt < 1, 

Proposition 1. The one-to-one correspondence U*-*F is a homeomorphism of ql 
with ~ .  In particular, all is compact. 

According to Proposition 10 in Sect. 4 and Proposition 1 we have chosen 
the "right" topologies for og and ~ .  

We need names for certain renewal sequences. For positive integers d and 
nonnegative integers n, let dun = 1 or = 0 according as n - 0  (mod d) or not and 
let ~u, ,=l  or = 0  according as n = 0  or n>0.  Clearly o~U" U=ooU and 1U. U 
= U for all U. 

Proposition 2. The renewal sequence ~ U is infinitely divisible. I f  U is infinitely 
divisible, U4=~U, and Ui, i=1 ,2  .... , satisfy U I=U, then, for some d<c~, 
Ui--~ d U  a s  i-+ oo. 

Proof (from Kendall [1967]). Clearly, (ui,,,: i=1 ,2  .... ) converges to, say, u* 
*=1  or = 0  according as u n>0  or =0. By Proposition 1, U =(u , .  where u, 

* = l = u *  where p>n .  Since (T*: m n>0)  is a renewal sequence. Suppose u, 
--0, 1,2 .... ) hits both n and p with probability one, it hits n+p with probabili- 
ty 1 by starting over at p and it must be able to hit p - n  with probability one 

* - - * Since the greatest com- in order that it hit p after hitting n. So, u p + , - 1 - u p _ , .  
mon divisor, say, d, of p and n is a linear combination of p and n, u~ = 1. The 
reader can easily complete the proof. []  

For two numbers a and b we use a/x b to denote their minimum. 
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3. The Central Limit Problem 

Let (Uj, k: 1 <J<Jk, k--1, 2, 3 .. . .  ) be a triangular array of renewal sequences. Let 
Jk 

Uk= I~ Uj, k" (1) 
j = l  

We are interested in studying the limiting behavior of U k as k-~ ~ under 
certain assumptions on the triangular array. 

Were the Uj, k distribution functions on the real line, we would demand 
that Uj, k approach the convolution identity as k-+ ~ uniformly in j, Were we 
to introduce the comparable condition in the present context, we would rule 
out the triangular array where all Uj, k and all U k equal, say, 7U. That would 
be somewhat unsatisfactory on aesthetic grounds and, in addition, we need 
more generality in this section so that we can use it in the proof of Theorem 5 
in Sect. 5. Accordingly, we introduce the following definition. 

Definition 2. Let d be a positive integer. A triangular array (Us, k: l<J<=Jk, k 
=1 ,2  .. . .  ) is a d-null triangular array if Uj, k-'*d U as k---), oo uniformly inj .  

We shall consider d-null triangular arrays for various values of d. Thus, 
according to Proposition 2, at least the triangular arrays formed by roots of 
infinitely divisible renewal sequences other than ~oU come under our purview. 
Of course, we also apply the adjective "d-null" to, say, triangular arrays of 
distributons. 

Proposition 3. A triangular array  (Fj, k : 1 <=J <=Jk, k=  1,2 . . . .  ) of distributions is d- 
null if and only if fj, k , e ~ l  uniformly in j as k~oo .  

Proof This result is an immediate consequence of Proposition 1. [] 

For  d-null triangular arrays we, in Theorem 1, identify, via explicit for- 
mulas, those renewal sequences that can arise as limits of U k, given by (1), as 
k ~  oo and give necessary and sufficient conditions for convergence to a partic- 
ular limit. In Theorem 2 we give a construction for such a limit and, as a 
consequence, we deduce that the class of such limits is the class of infinitely 
divisible renewal sequences. In our arguments we need the basic relation 

P 

Up = ~ f~ Up_,, p = 1, 2 , . . . .  (2) 
n = l  

We also need the notation 

~ = { ( v l , v 2 ,  v 3 . . . .  V~):0<Vr<OO for all r}. 

Typically we shall use V to denote a sequence belonging to ~ and it will be 
understood that vr will denote the r th coordinate of the sequence V. Let 

Recall that ~ + "  indicates that the term with the subscript "oo" is one sum- 
mand. 
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Theorem 1. Let  (Uj, k: l < j < J k ,  k = l , 2  . . . .  ) be a d-null triangular array of re- 
newal sequences. In order that 

Jk 

j - 1  

converge to a renewal sequence other than ~U as k--*o�9 it is necessary and 
sufficient that there exists a V ~ t  F1 such that 

dk 

lim E fj, k, qa=Vq-1, (3) 
k~oo j = l  

and 

q=2 ,3 , . . . ,  

Jk ~ + 

l im ~ ( l - - f j ,  k,d) = 2 Vr' 
k ~  j = l  r = l  

In the case of  convergence the limiting renewal sequence U is given by 

(4) 

In order that 

] {exp -- ~= l (q A r) vr 

U n 
0 

if n=qd ,  q=O, 1,2 . . . .  

if n~  0 (mod d). 
(5) 

Jk 

lim l ]  Uj, k = ~  U 
k ~  j = l  

it is necessary and sufficient that 

Jk 

lim Z (1--fj, k,d)= ~" 
k ~  j = l  

Remarks. By Fubini's Theorem and Fatou's Lemma, 

Jk ~ Jk 

lim inf Z (1-h,k, , )  >lira inf Y~ f~,k,,, 
k ~  j = l  k~oo q=2 j = l  

> lim inf ~ fj, k, qd; 
q=2 k ~  j = l  

so, if (3) holds and ~(1- - f j ,  k,a) converges as k---, ~ ,  then (4) holds for an appro- 
priate v~ >0. Although d-nullity is assumed, no assumption about the relative 
magnitudes of ~,fj, k,, for n~0(modd)  and Z f j ,  k,qd for q > 2  is made. Even so, 
~ f j ,  k,, for n ~ 0  does not enter into the theorem. The necessary and sufficient 
conditions in the theorem are given in terms of distributions. This is a desirable 
characteristic because the class of distributions is more easily characterized 
than is the class of renewal sequences. 

Proof  of  Theorem 1. Part I. All limits will be taken as k ~  ~ and j will be an 
understood index of summation and multiplication when none is indicated. 
Congruences are always modulo d. 
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Part 2. Clearly I]Uj, k,,~O if n~0.  Consider a U such that u , = 0  if n~0.  In 
order that 

I~ Llj, k, qd----Ylgqd ' q=0,  1, 2, ... (6) 

it is necessary and sufficient that 

~logUj, k, qa~logu~d, q =0, 1,2,...,  (7) 

where log 0 = -  oQ. Since the triangular array is d-null, (7) and, therefore, (6) 
are each equivalent to 

~(Uj, k,q~--l)~loguqd, q=0,  1,2,.... (8) 

Part 3. Comparing (5) and (8) we see that we want to prove 

oo+ 

E(Uj, k, qd--1)--*-- ~, (qAr) vr, q=0,1 ,2  .. . .  (9) 
r = l  

under the assumption that (3) and (4) hold. We proceed by induction on q. The 
case q = 0 is clear. Take s > 1 and assume that (9) holds for q < s. By (2), 

sd 
~(Uzk, sa-- l):~,(~=lf j ,  k,,Uj, k,se-,--1 ) 

= E %,,,, (s- ~)~- 1) + Y (f~,,,,d - 1)uj,~,( s _  , ) ~  

sd 
+ 2  ~ fJ, k, qdUj, k, ts-q)e+Z Z fJ, k,,UJ, k, sd--, ' (10) 

q = 2  n = l  
n~O 

1 

where, as is standard, ~ (. . .)=0. By d-nullity and the fact that fZk,~=<l--fj, k,d 
q = 2  

for n#d, the last sum is o(~,(1--f~,k,a))" Since Uj, k,(s_q) d---~l uniformly in j, 

oo+ 

y(fj , , , , ,~-l)uj, , , ,(~_,),<-,-  Z ~.  

and 

q = 2  q = 2  

From (10), (11), (12), and the induction hypothesis we obtain 

oo+ 

2(Uj, k, sd--l) "-*- 2 ( S A F )  Vr'  
r = l  

as desired. 

Part 4. Suppose that ~(1--fZk,e)~oO. 
Noting (8), we see that we want to prove 

2 ( 1  --Uj, k,qd)----~O0, q = 1, 2, 3, . . . .  

(11) 

(12) 

(13) 
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From the basic relation (2) and the inequality 
qd 
Z fJ, k,. < 1 --fj, k.d, 

n = l  n,t-d 

we obtain 

2 (1--Uj, k,qd)---- ~ (1--Uj, k,(q-1)d)+ 2 (1-- f j, k,d) Uj, k,(q 1)d  

qd 

n = l  n4d 

> ~ ( 1  --fj, k,d) [Uj, k,(q- 1)d--max {Uj, k, qd-. : 1 <n<qd,  n 4=d}] 

+~(1 -uj,~,(._ ~)~). 

We shall prove (13) by proving, with the aid of (14), that 

~(1  --Uj, k, qd)> 
lira inf 2 ( 1 ~  = 1, q = 1, 2, 3 . . . . .  

In case q = 1, (15) follows from (14) and the fact that 

(14) 

(15) 

Uj, k, 0--max{uj, k,d_,: 1 < n < d } ~ l  

uniformly in j, a consequence of d-nullity. The induction is immediate from 
(14) and the fact that Uj, k,(q_l)cl--->l uniformly inj .  

Part 5. Assume that (8) holds. We want to prove that ~(1-- f j ,  k,d)--,oe in case 
Uqd=0 for each q > 0  and that there exists a sequence V ~ I  satisfying (3), (4), 
and (5) otherwise. 

Any subsequence of ~(1--f j ,  k,d) has a further subsequence that converges 
in [0, ~ ] .  If the limit of that further subsequence is m, then, by what we have 
already proven, (8) holds with Uqd =0 for each q >0. If the limit is finite, say w, 
then, s ince  fj, k, qd~l--f j ,  k,d for q=2,3 , . . . ,  there exist finite numbers 
Vq_l ,2<q< oe, and a further subsequence such that along that further sub- 

sequence ~ f j ,  k, qd--~Vq_l ,q=2,3  . . . . .  Let v ~ = w - ~  v r. By the remark ira- 
r = l  

mediately following the theorem and what we have already proven, (5) holds. 
Since we are assuming that the full sequence in (8) converges in [ - o e , 0 ] ,  we 
have finished the proof. [] 

As previously mentioned. Proposition 2 implies that Theorem 1 applies to 
the situation where the k th row of the triangular array consists of k copies of 
the k th root of a fixed infinitely divisible U ~ ~ U. Accordingly, such a U satis- 
fies (5) for some V~V 1 and d. Hence, 

SO 

oo+ 

logu(q_l)a--loguqa= ~ vr, q = l , 2 , . . . ,  
r = q  

Vq--log U(q_ 1) d U(q+ 1) d 
(Uqd)2 , q = 1, 2 . . . . .  (16) 
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Therefore, V can be recovered from U. So we (but the readeer should remem- 
ber that only Theorems 1 and 2 and not any of the corollaries contain infor- 
mation not already obtained by Kendall [1967 and 1968]) have proven: 

Corollary 1. The relationship (5) establishes a one-to-one correspondence between 
a subset of {(d,V): 1 < d < o o ,  V~/r  1} and the set of infinitely divisible renewal 
sequences different from ~o U. 

Using (16) we also obtain the following result. 

Corollary 2. I f  U ~ 00 U is infinitely divisible, then there exists a unique d such 
that u, = 0 for n ~ 0 (rood d) and 

u(q_l)au(q+l)a>u~a for q=1,2 ,3 , . . . .  

Corollaries 3 and 4, which follow Theorem 2, are improvements of Corol- 
laries 1 and 2. 

The construction we use in the forthcoming Theorem 2 is similar to one 
used by Tak~cs [1956], Kendall [1968], Kingman [1970b], Mandelbrot 
[-1972], and Shepp [1972] although they work in the context of real numbers. 

Theorem 2. Let V ~ f  . For each n = 1, 2 . . . .  and r = 1, 2 . . . . .  o~, let 

{p: n < p < n + r }  with probability 1 - e  -v~ 

B,,r= 0 with probability e -yr. 

Do this independently for the various pairs (n, r). Then 

{0,1,2 . . . .  } -  ~) ~ B,,~ (17) 
n = l  r = l  

is a regenerative phenomenon of integers equal to MR in case V ( ~  1 and having 
renewal sequence U given by 

u ,=exp  - ~  (n/~r) v, 
r = l  

in case V s ~  1. 

Proof The event that p belong to the set (17) is determined by the sets B,, r for 
n<p. Given that p does so belong, the numbers larger than p that belong to 
(17) are determined by the sets B,, r for n>p. Hence, the random set (17) is 
indeed a regenerative phenomenon R. The probability up that p eR  equals 

P {B,, r = ~ whenever n _< p < n + r} 
p o o +  oo+ 

: ~ [  ~ [  e - V r = e - r ~ l  (pAr) vr 

n= 1 r=p--n+ 1 

Corollary 3. The subset of {1,2,3...}x~//"t mentioned in Corollary 1 is 
{1,2, 3 ...} x ,f-a. Every limit of row products of renewal sequences from a d-null 
triangular array is infinitely divisible and every regenerative phenomenon con- 
structed via Theorem 2 is infinitely divisible. 
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Proof From Theorem 2 every (1, V) with V E ~  1 corresponds to a renewal se- 
quence other than ~U. Fix V~//"1 and let (Tin: m =0 ,1 ,2  .. . .  ) be the corre- 
sponding random walk. Then (dTm: m=0,  1,2 .. . .  ) is a random walk whose re- 
newal sequence is obviously given by d and V in (5). 

Let (d, V)e{1, 2, 3 ...} x ~ a  and let U denote the corresponding renewal se- 
quence. Let U i denote the renewal sequence corresponding to (d, i-1 V). By (5), 
U = U~ i, so U is infinitely divisible. []  

Corollary 4. A bounded sequence (wo, wl,  w 2 .. . .  ) is an infinitely divisible renewal 
sequence if and only if for some d: w n = 0 if n ~-0 (mod d), w o = 1, w, > 0 for all n, 
and 

w(q_l)awtq+l)a>w2 a for q=1 ,2 ,3  . . . . .  

Proof The "only if'" part follow from Corollary 2 for an infinitely divisible 
renewal sequence other than 0o U and trivially (any d) for co U. 

Suppose that for some d: w , = 0  if n ~ 0 ( m o d  d), w o = l ,  w , > 0  for all n, and 

w(q_l)aw(q+a)a>w2qa for q=1 ,2 ,3  . . . . .  (18) 

An easy induction on q > l  shows that wqe>O if and only if wa>O. So, if we=O 
we have o~U and if % > 0  we can define, as in (16), 

Vq = log w(q_ a)a w(q+ 1)a 2 , q =  1,2,3,. . . .  
Wqd 

From (18) and the boundedness of (Wo,Wl,W 2 . . . .  ) we see, for some C > I ,  
w(q_l)a/WoeJ.C as q-~oo. Let Voo=logC. Clearly V=(v l , v  2 .. . .  , v ~ ) ~ .  To see 
that V e V  1, we note that 

,Vq=lOg w(r-1)a log Wsa --+log w(r-1)a Voo (19) 
q=v Wrd W(s+ 1) d Wrd 

as s~oe .  By Corollary 3, (d, V) yields, via (5), an infinitely divisible renewal 
sequence U + ~ U .  That U=(wo,Wl,W 2 . . . .  ) follows from an easy induction 
proof that wra=u,a, r=0 ,  1 . . . . .  a proof based on w0= 1 =u  o and 

oo+ 

logw~a=logw(r_l) a -  ~ vq, r > l ,  
q--r 

a consequence of(19). []  

Remark. A sequence (Xo, xl,  x2, ...) is called a Kaluza sequence if Xo= 1, Xq=>0 
for all q, and 

xq_lxq+l>x2q for q > l .  

As an illustration relevant to Theorems 1 and 2, consider the triangular 
array in which Jk = k and 

2k ( n - 1 )  1) k_l.](n+1)/2 
. { n + l  ( n - l ) / 2  [ ( i - k -  if n = l ( m o d 2 )  

* g 

aJ'k'~=[0 if n = 0 ( m o d 2 )  or n=oe .  
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Here Fj, k is known [Feller 1968, XI.3 and II.12(4)] to be the distribution of 
the first epoch at which the random walk whose steps are - 1  with probability 
k-1 and +1 with probability l - k - 1  reaches +1;  so, the corresponding re- 
generative phenomenon is the set of epochs at which the random walk reaches 
a new maximum. Since fj, k, 1 = 1 - k - 1 ,  the triangular array is 1-null and 

Z ( 1 - f j ,  k, 0---- 1. 
Also, 

Z f j ,  k, 3 = ( 1 - k - ~ ) 2 ~ l  
and 

~ fj, k , ,~0  for n + l , 3 .  

Hence, the conditions (3) and (4) of Theorem 1 are satisfied with V 
=(0, 1, 0,0 . . . . .  0). By Theorem 2 the limiting regenerative phenomenon can be 
constructed as the set left uncovered by a certain random collection of sets 
each covering two consecutive positive integers. The positive interger 1 has 
probability e -1 of being uncovered, whereas each other positive integer has 
probability e 2 of being uncovered. 

A regenerative phenomenon R is a.s. unbounded or a.s. bounded according 

as f~o = 0 or f~  > 0. Since ~ u, equals the expected cardinality of R, it equals 
n=0 

foo- 1 whether < oo or = oe. These observations prove the following theorem. 

Theorem 3. An infinitely divisible regenerative phenomenon R of  integers is a.s. 
bounded or a.s. unbounded according as V ~ ,  corresponding to R via Theorem 2, 
satisfies 

exp - (n A r) v r < oe 
n=0 r = l  

or  no t .  

4. Random Subsets of Nonnegative Integers 

Suppose the renewal process (T,,: m=0 ,1 ,2  .. . .  ) is defined on the probability 
space (Q, J//, P). The mapping R from (f2, Jg, P) to the class J of subsets of 
{0, 1, 2 .. . .  } induces a probability measure W on a collection of subclasses of 5 p. 
Even though they may be well-known to some readers, the forthcoming Pro- 
positions 4, 5, 6, and 7 are stated here for completeness. For sets S 1 and S 2 we 
use the notation S 1 ~ $ 2 = ( S  1 -$2)k_)($2-$1). 

Proposition 4. The collection of  classes 

{SeSe" ( S A S o ) ~ { O ,  1 , . . . , n }=O}  , S0~Se, 0 < n <  o % 

is a countable base for  a separable topology on 5 p (a topology that we hence- 
forth assume 5f  carries). 

We omit the easy proof. 
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Proposition 5. The function o: on 5; x 5; defined by 

a(S~,S2)= ~ 2 -n ls, zxs2(n), 
n = 0  

where 1 s denotes the indicator function of S, is a metric for the topological space 
5;. 

We omit the easy proof. 

Proposition 6. Let Sk ES;, k= 1, 2 .. . .  , co. Then the following three statements are 
equivalent: 

(i) Sk--~Soo as k--~ oo ; 
(ii) for each n ~ {0, 1, 2.. .  } there exists K such that (S k A So~) c~ {0, 1 . . . . .  n} = 0 

if k >=K; 

0 0 
k - 1  i = k  k - 1  i = k  

We omit the easy proof. 

Proposition 7. The topological space 5; is compact. 

Proof Sequential compactness is obvious and is sufficient to imply 
compactness. [] 

Let 0#/" denote the set of Borel probability measures on 5;. Endow ~K with 
the vague topology, that is, the one for which W k ~ W  if and only if 
S hd Wk~ ~ hd W for every continuous real-valued function h on 5;. 
5P 5" 

Proposition 8. The topological space ~tK is compact, separable, and metrizable. 
Let WkeiCK, k = l , 2  . . . . .  oo. Then Wk~Woo as k~oo if and only if 

lira Wk({S~5;: (S AS0)c~ {0, 1 . . . . .  n} =0}) 
k~oo  

= W~({Ses;: (S ASo) c~ {0, 1, ...,n} =0)) (20) 

for every Soes; and positive integer n. 

Proof The first assertion is an immediate consequence of [Parthasarathy, 1967, 
Theorems II.6.2 and II.6.4] and the fact that 5; is a compact, separable metric 
space. 

Suppose that W k ~ W  ~. Fix So~5; and a positive integer n. Let 

h(S)-= { ;  if otherwise. (SAS~  

Since h is clearly continuous, ~ hd Wk~ ~ hd W~ and, thus, (20)holds. 
On the other hand suppose that (20) holds for every S o and n. Let h be an 

arbitrary continuous function on 5;. If I is an open interval, h-a(I) is an open 
subset of 5; and, hence, a countable union of sets of the form 

{Ses;:  (S ASo) c~ {0, 1 . . . . .  n} =0}. 

An easy approximation argument based on this fact yields 
~hdWk~hdWoo.  [] 
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We now come to the proposit ion to which we alluded in the opening sen- 
tences of this section. 

Proposition 9. Let R be a regenerative phenomenon of integers. For c~ a Borel 
subclass of 5 p, {co: R(co)ecff} s Jg ,  the a-field of the underlying probability space. 
Moreover, W,, defined by 

W(C~)=P({co: R(co)~}) ,  c~ Borel, 

is a member of r 

Proof Fix SoeSP and 0__<n< oo and let 

c~ o = {S e 5 ~ : (S/x So) c~ {0, 1 . . . . .  n} = ~ }. 
Then 

{co: R(co)Eqfo} ={co: Tin(co)C{0, 1 . . . . .  n } - S  O for every m and each 

p e s  o c~ {0, 1 . . . . .  n} equals Tin(co ) for some m}. (21) 

Hence, {co: R(co)ec~o}e~. Since every open subclass of S ~ is the countable 
union of classes of the form c~ o and the collection of classes c~ for which 
{co: R(co)~cg}~Jg is a a-field, {co: R(co)~c~}~J/t for each Borel c~. The remain- 
der of the proposit ion then follows. [] 

Consider two regenerative phenomena R 1 and R 2 possibly defined on dif- 
ferent probabili ty spaces and let W 1 and W 2 denote the corresponding mem- 
bers of ~ .  It is easy to see, by looking at events of the form (21), that W t = W 2 
if and only if F 1 = F 2. Accordingly there is a natural injection of the space ~- of 
distributions, or, equivalently, of the space og of renewal sequences, into ~/K. 
We have already seen in Proposit ion 1 that ~//and o ~ are naturally hemeomor-  
phic to each other. The following proposit ion is the rationale for our previous 
choice of topology for ~ .  

Proposition 10. The natural injection of ~ into ~/// is a homeomorphism of 
onto a compact subset of ~ .  

Proof Let Fks~,~, k = 1 , 2  . . . .  ,oo, and suppose that Fk-~F ~. Let W k, k 
= 1, 2 . . . . .  c~, be the corresponding members  of ~K and fix So~9 ~ and a positive 
integer n. Assume 0eS o. Write 

Sock{0, 1 . . . . .  n}={O, t l , t l + t 2  .. . .  , t l  + . . .  +tM} 

where each t i is a positive integer. Let s =  n - ( t  1 +. . .  + tM) [ = n if M =03. Then 

lira Wk({S: (S ASo)c~ {0, 1 . . . . .  n} =~}) (22) 
k~oo 

- - l im  fk, tm 2 fk, p 
k ~ m  1 p = s + l  

= f~,tm ~ f~,p 
1 p=s+ 1 

= wo~({s: (s ~ S o ) ~  {0,1 . . . . .  n} =r  (23) 
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where it is understood that an empty product equals 1. If 0r 0, then (22) and 
(23) have the value 0. By Proposition 8 we see that W k ~ W  ~. 

Now let W ~ K  and Wke~K, k = l , 2  . . . . .  c~, and suppose that Wk~W. Let 
F k e ~  correspond to W k. By the compactness of Y,  we know that every sub- 
sequence of (Fk: k =  1,2 .. . .  ) has a furfther subsequence that converges. By what 
we proved in the preceding paragraph the limit of the further sequence corre- 
sponds to W under the natural injection from ~ into ~W. Hence, Fk~F where 
F corresponds to W. 

Of course, the image in ~/~ of ~ under what has now been shown to be a 
homeomorphism inherits compactness from ~ .  [] 

From the compactness in Proposition 9 we conclude that the limit of a 
sequence of regenerative phenomena is a regenerative phenomenon. Here is the 
precise statement. 

Theorem 4. Let (Rk : k= 1,2 . . . .  ) be a sequence of regenerative phenomena of in- 
tegers defined on a common probability space. Suppose, for some random subset 
Q of {0,1,2...}, that, as k ~ ,  R k ~  Q in probability. Then Q is a regenerative 
phenomenon of integers. 

5. Infinite Products of Renewal Sequences 

In this section, Theorem 5 gives necessary and sufficient conditions for the 
intersection of an infinite sequence of independent regenerative phenomena to 
equal {0}, as opposed to a more interesting random set, a random set which, 
by Theorem 4, is necessarily a regenerative phenomenon. From Propositions 6, 
10, and 1 we see that such an infinite intersection is a limit that is a regene- 
rative phenomenon whose renewal sequence is the infinite product of the re- 
newal sequences corresponding to the independent regenerative phenomena. 

Theorem 5. Let (Uk : k= 1,2 . . . .  ) be a sequence of renewal sequences and let ~o U 
=(1,0,0 .. . .  ). Then 

FIuk=,U 
k = l  

if and only if: (i) fk, o~=l for some k or (ii) {k: max{L, , :  n<N}<�89  is an 
infinite set for every N < oo or (iii) for some d < oo 

(1 --fa, d) l(i:f . . . .  ~i(k) = ~ .  (24) 
k = l  

0 o  

Proof By Proposition 1, I~ Uk is a renewal sequence U. 
k = l  

Suppose that none of (i), (ii), and (iii) hold. Choose N so 
= {k: max{fk," : n<  N} <�89 is a finite set and choose 

p=N! ~ min{n: fk,.>0}. 
keJF 

that 5C 
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We want to show up > 0. Clearly 

I~ Uk,p > 0. (25) 
kEY/ 

For k e y  there exists a unique divisor n(k) of p such that fk,,,(k)>�89 Since 

> ['p/n(k) > fp 
Uk, p=Jk, n(k) =Jk ,  n(k), 

p < 
1 --  Uk, p < 1 - - fk ,  ~(k) = P [1 - - fk ,  n(k)]" 

Since (iii) does not hold, 
N 

(l--Uk, v)__< ~ ~ p[1-L,d] l{~:1,,d>~}(k)<oo. (26) 
kqLY{ k•Y{" d= 1 

By (25) and (26), Up > 0 and, hence U # o~ U. 
Suppose that (i) holds, that is, that Uk=o~U for some k. Then, clearly, 

U=~U. 
Suppose that (ii) holds. Fix N. For k such that max{fk,,: n<N}<= I we 

shall prove that Uk, ,< l - -2-"  for O<n<=N and, hence, that u , = 0  for O<n<N. 
We then let N ~  to obtain U=o~U. Suppose max{f~,,: n<N}< 1. Clearly, 
Uk, l=fk'l<=�89 Take n<N and assume that Uk.q<l--2 q for q<n. Then, by (2), 

Uk,.=fk,.+ Z Uk, qs 
q=l 

< L , .  + ( 1 - 2  -("- 1)) (l -L, . )  

= 1 - 2  ("- 1) ( l - L , . ) <  1 - 2 - " ,  

as desired. 
Suppose that (iii) holds. Fix d so that (24) holds and let 

J = { i :  f/,a >I}. 

We shall show that ~ U k =oo U. Let 
kEJ  

c~ =l im sup (1 --fk, d). 
k~oo 
k a y  

Continuing the supposition that (iii) holds, we also suppose that c~>0. The 
argument for the case where (ii) holds applies here also to yield u k , , < l - 2 - "  
for n<d, keY. For infinitely many k E J  

d 1 

Uk, d=fk, d + Z Uk, nfk, d-n 
n = l  

~ f k ,  d_~ ( 1 __2(d-- 1)) (1 --fk, d) 

= 1 - - 2  - ( d -  1)(1 - - fk , a )  = < 1 --C~2 -d .  

Now an induction argument similar to the one used for the case where (ii) 
holds shows, for any k e J  satisfying uk,e<l--c~2-d, that Uk,,<l--c~2-" for 
n > d. Since our inequalities hold for infinitely many k, [ I  Uk =oo U as desired. 
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Finally we consider the case a = 0  as we continue the supposition that (iii) 
holds. Write J={g(1 ) ,  g(2) . . . .  } where g(1)<g(2)< .... Let J 1 , J 2  . . . .  be positive 
integers and let 

Fj, k =Fg(s~+...+ J~ ~+j),  l < j < J k ,  l<k .  

Since c~=0, the triangular array (Fj, k: l < j < J k ,  k = l , 2  . . . .  ) is d-null (compare 
Proposition 3). By compactness, a subsequence of 

Jk 

j--1 

converges. If U 4 ~ U, then the limit of this subsequence does not equal co U. By 
Theorem 1, 

Jk 

E (1 - f j ,  k,a) 
j 1 

converges as k approaches ~ through the subsequence. Thus, we can force a 
contradiction by initially choosing Jx, Je,... so that 

Jk 
lim ~ (1--fj, k ,d)=~.  []  
k~oo j = l  

6. L~vy Processes of Regenerative Phenomena 

Let U be an infinitely divisible renewal sequence other than ~ U. As we have 
seen there is a unique corresponding V ~  ~ and a unique corresponding 
de{ l ,2 ,3  . . . .  }. For t~[0, oo), not necessarily an integer, let U(t) denote the re- 
newal sequence determined by V(t)=tV. In particular, U(1)= U and V(1)= V. It 
is clear that, for t2>t  1, U(t2)= U(tl) U ( t 2 - t  O. The next theorem shows how to 
extend the construction of a single regenerative phenomenon in Theorem 2 to 
a natural construction, on one probability space, of regenerative phenomena 
R(t) corresponding to the renewal sequences U(t). 

Theorem 6, Part I. Let Ve '~  ~ and let 

{A.,. : n = l , 2  . . . . .  r = l , 2  . . . . .  oo} 

be an independant family of random variables such that the distribution function 
of An, r is )v~---~l-e -xvr, 0__<2< oo, with the convention that An,r= ~ a.s. if v~=O. 
For each (n, r), let 

,(t)=fr if t<A,,,,. B. 
' ~{p: n<=p<n+r} if t>=A.,~. 

Then 

or+ 

R(t )  = {0' l '  E . . . .  } -  n= ~)1 r~l Bnr(~)= t~[O, oc)), 
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is a stochastic process of regenerative phenomena of integers with the following 
properties: 

(i) for each t, R(t) corresponds to the renewal sequence U(t) determined by 

[ ] u,(t)=exp - t  ~ (n/xr) v~ ; 
r = l  

(ii) a.s. R(t)TR(O)={O, 1,2...} as t$0; 
(iii) a.s. R(t)${0} as t~oo  provided V+(O, O, ... 0); 
(iv) a.s. R is right continuous and has left limits on [0, oo); 
(v) at each t,R is a.s. continuous. 

Proof. Theorem 2 implies that R(t)~ for each t, is a regenerative phenomenon 
and that (i) holds. By construction, t~--~R(t) is monotone for every point in the 
sample space. Hence, by Proposition 6, R has left and right limits on [0, oo) 
and R(t) converges as t~oo .  Clearly, U(t)--*IU as t~0 and, in case V 
~(0,0 . . . . .  0), U(t)--*~oU as t--.oo. That (ii) and (iii) hold follows from Propo- 
sitions 1 and 10 and the fact that we already know that R(t) converges as t ;0 
and as t--* oo. Similarly, the continuity of U and existence of one-sided limits of 
R yields (v). 

Since Ve~//~, it is almost surely true that, for each positive 2 and each 
positive integer n, Av,~<2 for only finitely many pairs (p,r),p<=n. Fix a point in 
the probability space for which this is the case and fix n. Then fix t o and 
choose t I > t  o such that Ap,~(~(t o, t~l for every (p,r) for which p<=n. By Proposi- 
tion 5 the distance between R(t) and R(to) is less than or equal to 2 -"  for 
t~[t o, t~]. Hence, t~--~R(t) is right continuous. [] 

We could prove the strong Markov property and quasi-left-continuity in 
the context of Part I of Theorem 6; but we also want stationary, independent 
increments in analogy with real-valued processes formed out of classical in- 
finitely divisible distributions. There is a problem: if, for instance, one knows 
both R(2) and R(3), there is no unique natural set to choose as the one which 
intersected with R(2) gives R(3). Accordingly, we shall begin with a construc- 
tion that includes increments in a natural manner and which, as a con- 
sequence, gives rise to a richer family of a-fields than is suggested by Part I of 
Theorem 6. It is in this more elaborate context that we shall prove the strong 
Markov property and quasi-left-continuity. 

For  n = 1, 2 . . . . .  r = 1, 2 . . . . .  oo, let f2n, r be the class of subsets of (0, oo) having 
no accumulation points in [0, oo). Let Nn, r denote the Borel field generated by 
events of the form {con, ref2~,, : card(~% r c~ [0, t]) = z}, 0_-< t < oo, z = 0, 1, 2 . . . . .  Let 
P,,r be the probability measure induced on N,,r by the condition: the smallest 
member of con, ~ and the difference between successive members of con, r are to 
be independent, exponentially distributed random variables with mean 1Iv r (If 
v~=0, P,,r({0})=l, where 0 is to be viewed as a member of f2n, r and thus 
{r c ~o,~.) 
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A s  the next step in constructing all the apparatus connected with a Hunt 
process we form the probability space 

We adopt a standard notation for a member co of s 

co=(S; co,,~: n = l , 2  .. . .  , r = l , 2  .. . .  , oo), (27) 

where Se5  p and con,,e~2.,, for each (n,r). We introduce a probability measure 
for each initial state in 5": 

PS=g s x P.,~ , Se5 ~, 
n l r = l  

where gs denotes the probability measure supported by {S}. Let N o denote the 
Borel a-field of subsets of 5 P and let ~ be the completion, with respect to the 
family {PS: SeSQ, of 

For  O < t <  oo, let ~/t be the completion, with respect to the family {pS: Se5~}, 
of the a-field generated by events of the form 

{co: Secg, card(co,,,c~ [0,s])=z, ,  r for n = 1 , 2  . . . .  , r = l , 2 ,  ..., oo}, 

where s<t,  cg~ff o, and each z,,r is a nonnegative integer. In particular, 

In order to obtain the full apparatus needed for a Hunt  process we still 
need to define the main ingredient which is R(t, co) for (t, co)e[0, oo] x~2 and 
shift operators 0,. Since we also want to discuss increments into the future, we 
actually need to define a whole family of incremental processes - one for each 
starting time. For co given by (27), toG[0, oo) and te[t  o, oo], let 

B, ~(t, co; to)={0{ 
if (to,t] c~co.,.=0 

' p :  n < p < n + r} otherwise, 

R(t, co;to)={O, 1,2 . . . .  } -  ~) ~ B . . r ( t ,  co;to), 
n = l  r = l  

R(t, co)=Sc~R(t, co; 0), 
and 

0F(co ) = (R(t, co); 0,(co,,r): n = 1, 2 . . . . .  r =  1, 2 . . . . .  oo) 

where Ot(co,,r)={tl : t +tleco,,r}. 

Theorem 6, Part  II. Let f2, ~ ,  Jgt for O<_t<o% pS for S~5 ~, No, R(t, co; to) for 
(t, co; to)el0, oo] xf2 x [0, oo) with t > t  o, and R(t, co) for (t, co)e[0, ov] xf2 be as 
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defined in the preceding three paragraphs. Then, in the terminology of Blumenthal 
and Getoor [1968, 1.9], 

(f2, d/l, Malt, R( t, .), Or, pS) 

is a Hunt process with state space (5 P, (r Under p{0, 1, 2,..4, each R(t,') is, for 
O<t< 0% a regenerative phenomenon of integers which can be identified with 
R(t) of Part I of Theorem 6 via the definition 

A,,,r(co) = min {s: saco,,r}. 

Under any pS, each R(t,.; to) is a regenerative phenomenon of integers corre- 
sponding to U(t-to). For t 0 < t  1 < t 2 < . . .  < t  M' 

M 

R(tM'CO; to)= 0 R(ti,co; ti-1), coE~, 
i = 1  

M 

R(tM'co)=Sc~R(t~176 O)c~/-~R(ti'co;-'l tl- 1)' co~t2, 

and the family 

{R(tl," ; ti_x): l<i<_M} 

of regenerative phenomena of integers is an independent family under any pS. 

Proof We shall prove three of the properties that a process must have in order 
to be a Hunt  process - namely, that J l t=~/~+,  the strong Markov property, 
and the quasi-left-continuity. All other features of the theorem either are im- 
mediate consequences of the definitions and the "lack of memory" property of 
the exponential distributions used in defining the measures P,,,r or are con- 
tained in Part I of Theorem 6. 

Each transition operator for the process (t, co)~--,R(t, co) (obviously Markov 
with respect to the a-fields d{~) takes continuous functions to continuous func- 
tions since if S 1 and S 2 are two starting states for which (S 1 AS2)c~ {0, 1 . . . . .  n} 
=~, then 

[R(t,(S1; con, r" n = l , 2  . . . . .  r = l , 2  . . . . .  oo)) 

AR(t,(S2; COn, r: n = l , 2  . . . . .  r = l , 2  . . . . .  oo))] ~{0, 1,.. . ,n} =--r 

Hence [Blumemthal and Getoor,  1968, I(8.11) and subsequent remarks], (t2, 
J/I, J~+, R(t,.), O~,P s) is a strong Markov process. Since, also, R( . ,  co) is right 
continuous a.s., Blumenthal and Getoor's [1968, pp. 49-50] argument applies 
to give quasi-left-continuity. 

We cannot conclude immediately that Mgt=M/tt+ since the a-fields M/I t are 
not the completions of the a-fields determined by the process (t, co)~--,R(t, co). 
We get around this difficulty by constructing another strong Markov process Y 
such that the completions of the a-fields determined by Y are ~ t .  Then [Blu- 
menthal and Getoor,  1968, 1(8.12)], it will follow that ~----/r As a state space 
we choose a countable cartesian product of copies of {0, 1} : 

o o +  

){ {0, 1}. 
n = l  r ~ l  
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It is metrizable with, say, the distance between x=(x,,~) and y=(y,,,~) being 
given by 

o0 

n - 1  r = l  n = l  

Let 
fi: {0,1,2 .. . .  } x {0,1,2 . . . . .  oo}--* {0, 1, 2 .. . .  } 

be a bijection. Define the component Yn,~(t, (~) of Y(t, o0) by 

Y,,r(t,(S,~o,,,~: n = l , 2  .... , r = l , 2  . . . . .  oo)) 

={~  otherwise.ifls(~(n'r))+card(c%'rc~[0't]) is even 

It is easy to see that each transition operator for the process (t, oo)~-W(t, co) 
takes continuous functions to continuous functions; so [Blumenthal and Ge- 
toor, 1968, I(8.11) and subsequent remarks] (~2, d/Z,J~t+, Y(t,.), Ot, PX), where 
P~, for x = (x,, ~), equals 

p{~ (,,, r): x.,~ = 1}, 

is strong Markov. [] 

Remark. Had we not been able to prove ~/#t=J4+ we would have obtained a 
Hunt process by replacing J/ t  by .W~+. 

On the basis of Theorem 6 (both parts) we are certainly entitled to use the 
term LOvy process of regenerative phenomena for the process (t, co)~--~R(t, co). 

The L6vy process R(t) determined by vr=l/r 2, r = l , 2  .. . .  , and voo=0 is an 
interesting example. By Theorem 3, R(t) is unbounded for t <  1 and bounded 
for t > 1. Instead, use 

1 2 
vr=~-q r21og r, r=2 ,3 , . . . ,  

to obtain an R(t) that is unbounded for t < l  and bounded for t > l .  Of course, 
neither of these examples contradicts the fact that, with probability one, R is 
continuous at 1. 

One can imagine a number of interesting questions about the sample func- 
tions of Ldvy processes of regenerative phenomena. 

7. Homogenized Regenerative Phenomena 

Definition 3. A homogenized regenerative phenomenon of integers is a random 
subset R u of the set of all integers with the properties: (i) P(n~R H) does not 
depend on n; (ii) conditioned on neR u, events of the form {pieRU: 
i = 1 , 2  .. . .  ,~} where each pi>n are independent of events of the form {qFRU: 
j = l , 2  . . . .  ,fi} where each qj<n; and (iii) P(n+pERH[n~RH), p>=O, does not 
depend on n. 
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The regenerative phenomena dicussed in the preceding parts of this paper 
have properties (ii) and (iii) of Definition 3. Of course they fail to have 
property (i) and not just because negative integers were not considerd. The 
number 0 played, in Sects. 2 through 5, a special role: P(0~R)= 1 for all (non- 
homogenized) regenerative phenomena. This special role of 0 disappears for a 
homogenized regenerative phenomenon, but, nevertheless, there is, unless the 
homogenized regenerative phenomenon is the empty set with probability one, a 
corresponding renewal sequence U: up = P(n + peRHln ~Rn), p > O. The question 
arises: to which U's and F's does there correspond a homogenized regenerative 
phenomenon? Here is the widely known answer. 

Lemma 1, The distributions F that correspond to homogenized regenerative phe- 
nomena R ~ of integers are exactly those with finite expectation, that is, those for 

which f~  = 0 and ~ nfn < oo. For such an F, 

)' 
P(n~RH)=p(RH +O) nf, (28) 

n- -1  

Proof Following Feller []968, XV.2(k)] we introduce the transition matrix 

f2 f3 f, . . . / 2  
1 0 0 0 .. .  0 

0 1 0 0 ... 0 

0 0 1 0 ... 0 

0 0 0 0 ... 1 

(29) 

for a state space {Eo,E1,E 2 .... ,E~}. 
Suppose that F has finite expectation. Then the expected time to return to 

E 0, starting at Eo, is ~ ns < ~ .  Hence, there is an invariant probability mea- 
n = l  

sure which assigns the reciprocal of this expectation to the state E o. Use it to 
obtain a stationary Markov chain. Let R u equal the (random) set of epochs at 
which this chain is in the state E o. Clearly, R H is a homogenized regenerative 
phenomenon for which P(pq-n~RHInERtt)=Up for p>0 .  (Of course, U 
=(Uo,Ul,U 2 . . . .  ) is the renewal sequence corresponding to F.) 

On the other hand, suppose that R H is a homogenized regenerative phe- 
nomenon. Define a process with state space {Eo,E~,E 2, ...,E~} to be in state 
E m at epoch n i f j + n ~ R  H for O<j<m and, in case m < ~ ,  m + n e R  H. Exclude 
the trivial case P ( R H = 0 ) = I  for which there is no corresponding F e ~  or 
Us~ The process we have defined is a stationary Markov chain with a tran- 
sition matrix of the form (29). The probability that, at any particular epoch, the 
chain is in a state that communicates (in both directions) with E o is p(RH#O). 

The expected time to return to E o starting at E 0 is ~ nf, i f f~  = 0  and + ~ if 
17=1 

f~  >0.  Since the Markov chain is stationary, this expected time is finite. Since 
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R H equals the set of epochs at which the chain is in the state E o, (28) follows 
from well-known facts about Markov chains. [] 

One renewal sequence corresponds to many stochastically distinct homoge- 
nized regenerative phenomena. The renewal sequence determines P(n 
+peR nlnaR ~) but not P(neRU). The reason for this is that with positive 
probability R r~ may equal 0. 

For any F e ~  and corresponding U e ~  we set p(F)=p(U) equal to the 
reciprocal of the expectation of F: 

0 

p(F)=p(U)= 
i f foo>0  or ~ nf=oo.  

,= 1 . (30) 
1 

otherwise. 

Let AU be a symbol that should be considered as an ideal renewal sequence 
corresponding to an ideal distribution ~F: the meanings of both ~U and AF 
will be nurtured by subsequent developments. 

Theorem 7. Let p be defined by (30) and 

~ "  = {(0, ~F)} u {(7, F): 0 < 7 < 1, F e ~ ,  p(F) > 0}. 

For any homogenized regenerative phenomenon R ~ of integers there exists a 
unique (7,F)e~ ~ such that: (i) P(RH=~))= 1--7; (ii) P(neRH)=Tp(F); and (iii) if 
7>0, P(n+peR~lneRH)=ulpl. Conversely, corresponding to any ( 7 ,F ) e ~  H 
there is a homogenized regenerative phenomenon R H, unique up to stochastic 
equivalence, such that (i), (ii), and (iii) hold. 

Proof. The theorem is an immediate consequence of Lemma 1, Definition 3, 
and, to obtain ]Pl in (iii), the basic formula for conditional probability: (ii) of 
Definition 3 is needed to establish the uniqueness up to stochastic 

[] equivalence. 

Let 

~ u  = {(0, ~ U)} u {(7, U): 0 < 7 < 1, UaqL p(U) > 0}. 

There is an obvious natural one-to-one correspondence between ~ H  and d//u. 
For F e ~  and corresponding Ue~#, U%o~U, we set, using GCD for grea- 

test common divisor, 

(5(F)=8(U)=GCD{n: un>0}, (31) 

which we know, by basic renewal theory, to equal 

GCD{n < oo" f ,  > 0}. 

It is also well-known [Feller, 1968, XV] that 

lira uqa(v ) = p ( a )  6(V). (32) 
q ~ c o  

Let R f  and R2 H be two independent homogenized regenerative phenomena 
corresponding to (71, UI) and (72, U2)- Let (7, U) correspond to R~[c~R~. From 
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(ii) of Theorem 7 we see that 7=0  if either 71 =0  or ~2=0. Suppose 71 >0  and 
72>0 so that U 1 and U 2 are members of q/. From (ii) and (iii), respectively, of 
Theorem 7 we obtain 

7p(U) = 71 72 p(UD p(U2) (33) 

and U =  U I U 2, Clearly, 8(U) equals the least common multiple of 6(U1) and 
6(U2). From (32) and (33), we obtain 

p(u) P(G) 6(G) (34) 

and then 7=71 72/GCD{b(U1) , 6(U2) }. We define (71, U1) (72, U2) to equal (7, U). 
Thus, 

u) 
(71, G) G)=(( 717  G) 

\GCD {~(UD, 6(U2) } ' U1 

if 71 72 =0  

if 7172>0. 
(35) 

Also of some interest is the formula 

p(U) = p(U1) p(U2) GCD {6(U1), 6(U2) } (36) 

which easily follows from (34). 

Definition 4. A member (7, U) of ~#u and corresponding homogenized regene- 
rative phenomenon of integers are called infinitely divisible if for each positive 
integer i there exists a (7i, Ui) E~(H such that (7, U)=(7i, U/)Q 

Of the renewal sequences I U, 2 U,... ooU that played a central role for re- 
generative phenomena only 1U will now play such a role. Consider, for in- 
stance, (7,2U) and suppose (7,2U)=(73,/_I3) 3 for some 73 and U 3. Since 2U 
=U3,6(U3)=2. From (35), we obtain 7=72/4, which, since 73__<1, implies 
7<1/4. So if 7> 1/4, (7, 2 U) has no cube root. Similarly, (y, dU) is not infinitely 
divisible in ~#~ for any d > 1 and 7 > 0. 

By examining Theorem 7 we are led to specifying a topology on ~ by 
specifying the following necessary and sufficient conditions for convergence of 
sequences: (Tk,Fk)~(y,F) as k~oo  if and only if 

(37) ( o  if 7k=0J [ 0 if 7=0J  

and, in case 7>0, f k , , ~ f ,  for each n as k~oe .  (If 7>0  and (37) holds, then 
7k > 0 for large k so that fk,, is defined for large k.) We make ~r~ homeomor- 
phic to ~H:  (Tk, Uk)~(7, U) if and only if (compare (30)) 

~TkP(Uk) if 7 k > O ~ y p ( U )  if 7>0~ (38) ( O  if 7k=0J ( 0 if 7=0J 

and, in case 7>0, Uk,,---'U . for each n. 
The fact that {(7,F)eYu: 7=1} is not a closed subset of ~-H is the reason 

we have chosen not to exclude, via an altered definition, the case 7<1. The 
following two examples illuminate this consideration. 
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Let fk, k=l--)~k,l=l/k and 7k=1. Then (Tk,Fk)--,(0.5,1F) where 1F 
--(1,0,0 .... ). Consider a fixed, finite set S of integers and homogenized re- 
generative phenomena Rk u corresponding to F k. For large k, the probability is 
close to 0.5 that Rffc~S=O and close to 0.5 that Rffc~S=S. 

Now let fk, k=l--fk, l = l / ] ~  and 7 k = l .  Then (Tk,Fk)---~(O, zlF). For large k, 
the probability is close to 1 that Rff c~ S = ~. 

Proposition 11. The topological spaces ~ n  and ql ~ are compact and homeomor- 
phic to each other under the natural one-to-one correspondence between them. 

Proof That ~H and 0-# ~ are homeomorphic follows from the definitions and 
the homeomorphism between ~ and q/(compare Proposition 1.). It remains to 
prove compactness. 

An arbitrary sequence in ~ has a subsequence ((Tk,Fk): k=l ,2 , . . . )  such 
that, for some Ce[0, 1] and F ~ ,  

{Tko(Fk) ifif 7k7k ----> 00} -*C 

and, in case 7k>0 for all large k, fk,,~f~ for each n<ov (where at this point 

know ~ f n < l t .  If C=0,  then (Tk,Fk)-~(O,~F). Suppose C>0.  Then we only 
. = l  / 

p(Fk) > C/2 for all large k and, hence, for such k, 

L,.<p -~ ~ nfk,.<2(pC) - ~ 0  
n = p  n = l  

as p--.oe uniformly in k. Therefore X f , = l .  Let 7=C/p(F) which, by the fo1- 
n = l  

lowing argument based on Fatous's Lemma, is no larger than 1; 

C/p(F) = lim 7k P(Fk)/p(F) 
k ~ o o  

< [lim sup 7k] [lim sup p(Fk)/p(F)] 

__<1.1=1. [] 

The renewal sequences d U for d > l  play no special role in the following 
proposition even though it is an analogue of Proposition 2. 

Proposition 12. The member (O,~U) of ~ is infinitely divisible. I f  (7, U) is 
infinitely divisible, 7:t=0, and (7i, U/), i=  1, 2, ..., satisfy (7i, Ui) i =(Y, U), then 
(7i, U/)~(1, 1U) as i-+oo and 6(U), defined by (31), equals 1. 

Proof By (35) and the proof and statement of Proposition 2, 6(U)=(~(Ui) for all 
i and Ui~a(v)U in 0//. From (35), 

71=76(U)i- 1, i=  1,2, ..., (39) 
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an impossibility for 6(U)> 1, since then the right side goes to ~ as i---,~ while 
the left side is bounded by 1. Insert 3(U)=1 in (39) to obtain 71--.1 as i- .oe.  
Examining the sentence containing (38), we see that we can complete the proof 
by showing p(Ui)---,p(1U), which, we know, equals 1. From (36), p(Ui) 
=p(U)lli--* l. [] 

8. Another Central Limit Problem 

We now turn to the central limit problem for intersections of independent 
homogenized regenerative phenomena;  that is, for products of members of ~,H. 
The simple nature of Proposition 12 indicates that nullity should involves less 
complications for homogenized regenerative phenomena than it does for re- 
generative phenomena. 

Definition 5. A triangular array ((Tj, k, Uj, k): 1 <J<Jk, k =  1, 2 . . . .  ) of members of 
~H is a null triangular array if (?j,k, Uj, k)~(1, 1 U) as k ~o o  uniformly in j. 

We, of course, also the use the term null in connection triangular arrays of 
members of ~ u .  From the sentence containing (37) we immediately obtain the 
following result. 

Proposition 13. A triangular a r r a y  ((Tj, k Fj, k): 1 <j  < Jk, k = 1, 2 .... ) of  members of 
~ n  is null if and only if ?j, kp(Fj, k ) ~ l  as k ~ o e  uniformly in j, where p is 
defined in (30). In particular, 3(Fj, k), defined by (31), equals 1 .for all (j, k) with k 
sufficiently large provided the array is null. 

For the present context, when we use (5) we want a positive limit as q ~  oo 
and we want to incorporate the parameter 7. Accordingly, we let 

{ o i } ~ u =  (~ ,V) :O<~<l ,  V e V l ,  v o =  rv~<oe . 
= 

Theorem 8. Let ((Tj, k, Uj, k): l < j < J k ,  k = l , 2  .... ) be a null triangular array of 
members of ogH. Let p be defined by (30). In order that 

Jk 

j = l  

converge to a member of ql H other than (O, aU) as k--*oo it is necessary and 
sufficient that there exists (7, V) ey/~u such that 

and 

Jk 

lim Z fJ, k,, = V,_I, n = 2, 3 . . . .  , (40) 
k~cr  j = l  

lim ~ [1--Tj, kp(Fj, k)]= rvr--logT. (41) 
k~cz~ j = l  r = l  

In the case of convergence the limiting member of ~U is (7, U) where U is 
given by 

u, = exp (n ~, r) v~ , n = O, 1, 2, .... 
- 1  

(42) 
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In order that 

Jk 
lim l~ (Tj, k, Uj, k) = (0, ~ U) 
k~oo j = l  

it is necessary and sufficient that 

Jk 
lira ~ [1--~2,kp(Fj, k)]=oe. 
k~oo j - -1  

Remark. Suppose (40) holds for some V~Y/~ arnd ~ [-1-~;j k p(F: k)J converges as 
k~oo.  By compactness and the theorem a subsequence of ~(Tj,  k, Uj, k) con- 
verges to a limit =#(0,~U). Applying the theorem again we conclude that (41) 
holds for some 7 and that (7, V) ~yFr~. 

Proof  of  Theorem 8. Part 1. All unindicated limits will be taken as k-~ oo and j 
will be an understood index of summation and multiplication throughout. 

Part 2. From (35), (36), and Proposition 13 we obtain 

V[ (?j,k, Uj, k) = ( I ]  7j, k, 1~ Uj, k) (43) 
and 

P (1~ Uj, k) = [ I  P (Uj, k) (44) 

for sufficiently large k. [Let (Tk, Uk)=l~(~Jj,  k, Uj, k)" One way we shall use (43) 
and (44) is to obtain ykp(Uk)=[I  7j, k P(Uj, k)" That this is true is, however, really 
a more basic property: in the light of (ii) of Theorem 7 we defined multipli- 
cation of members of ~,~t so that it would be true.] 

Part 3. From 

- log fyj, k p(Fj, k)] 

= ~  {[-1 --Yj, k P(F~,k)] [1 + ~(1 -- ~/j,k P(Fj, k))]}, 

the fact that Yj, k P(Fj, k)----<I for each (/', k), and the fact (compare Proposition 13) 
that yj, g p(Fj, k )~l  uniformly in j, we conclude that 

lim ~ - l o g [ y  j, k p(Fj, k) l =lira ~ [ 1  --Yj, k P(Fj, k)J (45) 

in the sense that if either limit equals + oo, then so does the other and if either 
limit does not exist, then neither does the other. 

Part 4. Suppose that 

~1%,k, Uj, k)--,(0, ~ C7). 

By (43), (44), and the sentence containing (38), I~ ~j,k p(Fj, k)~O. This and (45) 
imply that ~, [1 - 7j, k p(Fj, k)J ~ oe, as desired. 

Part 5. Suppose that (7, U) ~y/H, ~>0, and 

[ I  (~j,~, uj,~)-+(y, u) .  
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By (43), (44) and the sentence containing (38), 

17 Uj, k--+U (in q/) (46) 
and 

I ]  7 j, k P(Fj, k ) ~  y P(U). (47) 

From (46) and Theorem 1 we conclude that there exists V e ~  such that (40) 
holds, 6(U)= 1, and 

] u ,=exp  - ~ (n/xr) v r , n=0 ,1 ,2  .. . . .  (48) 
r = l  

Then from (32) and (48) we obtain 

p (U)=exp  - ~ rv r > 0  (49) 
L r = l  J 

so that (7, V) ~ H  and (42) holds. To obtain (41) we take logarithms in (47) and 
use (45) and (49). 

Part  6. Assume now that either (40) and (41) hold for some (7, V) ~UH or 
~, [ 1 - y j ,  k P(F~,k)]~ c~. The limit of a convergent subsequence of l~(7j, k, Uj, k) 
either is determined by the right sides of (40) and (41) or equals (0, a U). Hence, 
all the convergent subsequences have the same limit. Since ~#H is compact, the 
original sequence converges. [] 

Corollary 5. The relationship (42) establishes a one-to-one correspondence be- 
tween ~U u and the set o f  infinitely divisible members of  ~ll u different f rom (0, a U). 

Proo f  Let (7, V) e ~ u .  By Corollary 3, U given by (42) is a member of q/. By 
(42) and (32), (7, U) eq/u. The i th root of (7, U) is (71/i, Ui) where U i is given by 
(42) with i-  1 V in lieu of V. 

Now suppose (7, U) e~H is infinitely divisible. Since Proposition 12 holds, 
the argument leading to Corollary 1 applies here also to yield a unique corre- 
sponding (7, V) with V e ~  1. Then (32) implies that (7, V ) e V  H. [] 

The following analogue of Theorem 2 has a proof that is similar to the 
proof of that theorem and which we shall omit. Mandelbrot [1972] and Shepp 
[1972] have similar constructions in the context of real numbers. 

Theorem 9. Let  V ~ V  and 7~(0,1]. For each n = . . . , - 1 , 0 , 1 , . . ,  and 
r = 1, 2 , . . . ,  oo, let 

B = ~ { p : n < p < n + r }  
~  (r 

with probability 1 - e -v~ 

with probability e -~r. 

Do this independently for  the various pairs (n, r) and independently o f  that let 

with probability 7. 
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~fhen 
oo+ 

n = - - c ~  r = l  

is an infinitely divisible homogenized regenerative phenomenon of integers equal 
to 0 with probability one in case (7, V)q ~I/'~ and corresponding to (7, U) with U 
given by (42) in case (7, V) e~UH. 

In the light of Theorem 9 one may, for some purposes, want to introduce 
the notation v ,̀ = - l o g  7. 

As an example consider the null triangular array with Jk=k, fj, k,k= l /k2= 1 
- f j ,  k, 1, and 7j, k=l .  By Theorem 8, the row products converge to (l/e, ~U) and 
the corresponding (7, V)e~U u is (i/e,(0,0 . . . .  )). Fix a finite set S. For k suf- 
ficiently large the corresponding interection of independent homogenized re- 
generative phenomena has probability close to 1/e of containing S and proba- 
bility close to 1 - 1 / e  of being disjoint from S. 

For another example let Jk=k, fj, k, 3 = 1/k= 1- f j ,  k, 2, and 7j, k= 1. By Theo- 
rem 8 we again have convergence - to a limit determined by (1, V)~U ~, where 
V=(0, 1,0,0 . . . .  ,0). By Theorem 9 the limiting homogenized regenerative phe- 
nomenon can be constructed as the residual set obtained by covering each pair 
of consecutive integers with probability 1-1/e .  (Of course, some points get 
covered twice.) 

9. Random Subsets of Integers 

To obtain a section analogous to Sect. 4 we want to use { - n , . . . ,  - 1 ,  0, 1,... n} 
where {0, 1,...,n} is used there. Our topology on ~ H  was designed with (ii) 
and (iii) of Theorem 7 in mind. For that reason, the entire Sect. 4 can, in a 
straightforward manner, be modified to fit the context of homogenized re- 
generative phenomena. 

10. Infinite Intersections of Homogenized Regenerative Phenomena 

Theorem 10. Let ((Yk, Uk): k=  1,2, ...) be an infinite sequence of members of ql H. 
Then 

~l (yk, uk) = (o, `, u)  
k = l  

if and only if 7k = 0 for some k or 

22 E1 -y~p(5 ) - I  = o0. 
k = l  

We omit the easy proof (that does not rely on Sect. 8). 
Suppose that 

1~ (1, u~)=(7, u) 
k ~ l  

for some 7>0. If, say, 6(F1)=6(F2)>l, where ~5 is defined by (31), then 7<1. 
We now argue that this is typical of the ways in which 7< 1 is possible. From 
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Theorem 10 and the obvious inequality c~(Fk)p(Fk)<l, we see that  3(Fk) equals 
1 for all but  finitely m a n y  k's. If, for some kl :}:k 2, 

G C D  {6(Fkl), 6(Fk2)} > 1, 

then 1 > 7 > 0 .  If  this is not  the case for any distinct k 1 and k2, then the event 
that  the intersection of  corresponding independent  homogen ized  regenerative 
phenomena  be empty is a tail event;  so, since we have assumed 7 > 0 ,  we 
obtain  7 = 1. 

It should be remembered  that  when Theorem 10  is converted to the 
language of  homogenized  regenerative phenomena,  there is no quest ion of  a.s. 
convergence - it necessarily occurs. The quest ion is: is the limit trivial? Con-  
trast this with Theorem 8 where convergence in distr ibution is the context and 
it need not  occur. 

11. L6vy Processes of Homogenized Regenerative Phenomena 

All aspects of  Sect. 6 carry over to the present context in an obvious manner  
except that, since there is no exampie of  a homogenized  regenerative phenome-  
non  that  is bounded  wi thout  being empty, there are no analogues of  the 
examples at the end of  Sect. 6. 

Here  are some of  the major  changes needed in Sect. 6 for the present 
context. There is a L6vy process R~(t) of homogen ized  regenerative phenom-  
ena of  integers for each (7, V) ~y/~- The corresponding (7(0, U(t)) ~qlH is given 
by 7(t)= 7 t and 

u,(t)=exp [-tr~__ l (n a r) G ]. 

In the present context, necessrily 6(U(t))= 1 (compare (31)), whereas in Theorem 6 
that  was implicitly assumed as a convenience. As t~oo, Rn(t)--*O unless 7 =  1 
and  V=(0,0 , . . . ) .  We generalize the construct ion of  Theorem 9, so we use 
B,,r(t ) for nonposi t ive n as well as for positive n and also B~(t). Accordingly,  
for an analogue of  Theorem 6 we need a number  v~ : it should equal - l o g  7. 
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