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1. Introduction 

Throughout  this paper F will denote a separable Banach space. We shall as- 
sume that F satisfies the following condition: 

"The norm [1 [I of F,, as a function F - { 0 } ~ I R ,  is three times con- 
tinuously Fr6chet-differentiable, and its differentials satisfy sup{ D 1 II xll, (1.1) 

D 2 II xll, [IDYll: I l x l [ = l } = R < + o o  where D / denotes the differential of 
order i of [1.1[." 

Let (Q, 2;, P) be a fixed probability space. An F-valued random variable X 
is a Bochner measurable map O ~ F. We denote LPv the set of F-valued random 
variables X such that ILX]f is integrable. An F-valued random variable T is 
said to be Gaussian if for each x*~F*, x* o T is a real-valued Gaussian random 
variable. It is known that if F is a Hilbert space, then each F-valued Gaussian 
random variable T satisfies the following condition. 

"There exist a constant G such that for s , ~ > 0  we have P(s<= [IT[] __<s 
+ 3) < G6." (1.2) 

Known examples (in l ~) show that this is not true in general for an arbi- 
trary Banach space. However, we don't know what is the situation when (1.1) 
is satisfied. 

We denote by E(Z) or EZ for the expectation of the real valued random 
variable Z. 

Suppose (Xi)i<, is a sequence in L~. Since (1.1) implies that F is of type 2, 
there exists a Gaussian random variable T which has same covariance as X, 
(the covariance being the bilinear functional of F* given by 
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(x*,y*)-+E(x*(X)y*(X)) where X = ~ X  i. In [9], [-11], bounds of A 
i<=n 

=suplP( l lX l l<t ) -P( l l r l ]<t ) l  are estimated under the hypothesis (1.1) and 
t 

(1.2), when the (X~) are independent random variables with mean zero and in 
L~. In this work, under the assumption of (1.1) and (1.2) we shall find the 
bounds of A for m-dependent sequences (X~)~, of random variables with mean 
zero, i.e. sequences such that for a, b~[1, n-I, the s e q u e n c e s  (Xi)i~[a,b ] and (Xi)i~ A 
are independent, where A = [1, a -  m -  1] w [b + m + 1, n] (with the convention 
[p, q] =~0 if q<p). Using truncation ideas of Feller [3] we obtain these results 
assuming only X ~ L  2. It is noted that, in contrast with the independent case, 
the covariance of X is not simply related to the covariance of the X~. We find 
it is worthy to work out universal bounds, bounds which depend only on uni- 
versal constants and the parameters. We have tried to get sharp bounds of A. 
However, we have not tried to find numerical values of the universal constant 
in the bound since the values obtained by our methods are too large to be 
interesting. 

Part 2 recalls some elementary facts. In part 3, we establish bounds for 
independent random variables. The reward of having the courage to work out 
the explicit computations is that we improve a result of Kuelbs and Kurtz [9]. 
In part 4, we gather some technical tools. In part 5, we find bounds of A for m- 
dependent random variables case by using blocking techniques and combina- 
torial ideas. 

2. Some Preliminaries 

The results of this section are either well known or easy. Hence most of them 
are stated without proofs. 

Lemma 1. For x~F, x+O, 2+0,  we have Dx~,=D x, D]x = 2-1 Dx ,2 D~x=)-2Dx .3 
Hence IIDx] I <R,  I[D~II < R  Ilxll 1 IID~[[ _-<ellxll-2 

Lemma 2. F is of type 2 with constant R, i.e. for all independent F-valued 
random variables X 1 .. . .  , X n of mean zero in L~, E [[ Z X  i [[ 2 <= RZ E  [I X i I] 2. 

In fact, F is a "type G" in the terminology of [-4], i.e. there exists a map- 
ping g (given by g(0)=0, g(x)= IIxl]2Dx for x+0)  with the properties ]]g(X)Hv, 
= [[x]l~, (g(x), x)  = [Ixl[~, ]lg(x)-g(y)]lF.<R [[x-y[I e. 

Lemma 3. There exists a universal constant K 1 such that for 3>0,  s > 0  there 
exists f :  IR---,[,0,1], f ( t ) = 0  if t<s,  f ( t ) = l  if t>s+fi ,  f is three times con- 
tinuously differentiable, l[ f(3)][ oo < K1 fi- 3. 

Lemma 4. Suppose f :  IR ~ IR is three times continously differentiable and f (t)= 0 
if t<O. Let x,y~F, h(2)=f(]lx + 2yl[). Then h is three times continuously differ- 
entiable. I f  x + Z y = 0 ,  h(~.)=h'(Z)=h"(2)=h(3)(2)=O. I f  [[x+2yll +0, 

h'(2)= D~ + zy(y) f ' (  llx + Z yl]) 
h" ,~ 2 *,  2 ()=(D~+~y(y)) f ( l lx+2y[l)+D~+x,(y,y)f '( l lx+2yll)  
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h(3)(2) = (D~+ ~y(Y)) a f(3)(llx + s 3D~+xy(y) D~+xy(y, y) 

�9 f"(l[x + 2y [I) + D~ + x,(y, y, y) f'(l[x + 2y II). 

The following lemma will be used many times without quoting. 

Lemma 5 (G-inequality [10])�9 For al, az, ..., a,>=O and r>=O 

ai <--An r ai 
i i = l  

where A, , r=n  r-1 /f r > l ,  A,,~=I if r<l .  Hence if X 1 , . . . , X  . are random vari- 
ables in IZa, 

n r n 

E ~ X i <An, r 2 E I x i l  ~. 
i = l  i = l  

Lemma 6. Let A, (Bi)i<=, , (ri)i__< . be positive numbers. Then 

ri 1 

Inf (A6+ ZBdS-r9<(n+ 1) ~, Al +riB' +r~. 
6 > 0  i n n  

Proof It is of course true if A=0.  If A+0,  let i o such that 7~o=Sup{7i, i<n} 
1 

where 71=(BiA-1)~+r,. Then for all i, 
rio 1 

Bi T:~-ori <= Bi Tj~ = A Ti <= A Tio= A l +~io Bl +rio 
SO 

ri 1 

AYio+ ~BiTior~<(n+l)ATio<(n+l)~Al+~Bl+r ' .  Q.E.D. 
i < n  i < n  

The following is an easy consequence of the method of Fernique in [2]. 

Lemma 7. There exists a universal c o n s t a n t  K 2 such that for all Banach space 
valued Gaussian random variable X, one has: 

/ \ U  2 

a) for all uMR P(I]X[]>u)<=exp - ~[-K2IIXll2 ) 

b) For all l < p < 4  IIX[l~<=gNl[Xll2. 

3. Bounds for Independent Random Variables 

Let X=(Xi)i<, be a sequence of independent F-valued random variables in L~ 
with mean zero. Let T1,... , T, be independent F-valued Gaussian random vari- 
ables such that for each i, T~ has the same covariance as X i. The existence of T~ 
is shown in [6], Proposition 3.3 since F is of type 2, and moreover it is shown 
that EI[TI[2__<RE[IXi[I2. We want to find a bound for A =A(X) 

= SuplP(ll ZXil[ < t ) -P( l [  ~ Till <t)l. 
t i<=n i<=n 

The method will follow the Theorem 2.1 in [9]. However, since we don't 
assume that the T~ have same covariance, the computations have to be done 
with somewhat more care. 



436 WanSoo Rhee and M. Talagrand 

Suppose that for i<n we have a decomposition X i = R z + X '  i, where 
IIJ~zll" IIX'ill =0, ~ g ~  2, and each of the sequences (J(1)i__<n and (X'i)i<=, is inde- 
pendent. (such a decomposition is a generalization of truncations in the real- 
valued case). Set 

E X' 2. 3; = b =  ~ ~ , c =  ~EIIX~[I d ~EIIJf~llT/2; e=  ~(EliS'~ll2) 7/'~ 
i ~ n  i<n i<--n i<n 

q=c+ ~ EI[T~II 3 d,=d+ ~ EIIT~I[ 7/2. 
i<n i<n 

In order to get an interesting bound for A, it is reasonable to assume that 
P(][ ~T/N<t )  does not vary too wildly as a function of t. We write ~ T i = W  

i<n i<n 

-V, where W and V are Gaussian, such that there exists a constant G such 
that 

supP(s < IIWII <s+~)<=G~. 
s>0 

Let M v =  Inf{Ge + P(llVH >0}-  
~>0 

The following lemma is the key of the method of successive improvements 
of the bound of A. 

Lemma 8. Let (Xi)i<=, be a sequence of L 2. Suppose that for each sequence 2 
=(Jf t  . . . .  ,2 , ) ,  where X I = X  i or 2 i=Ti ,  we have A(X)<=A"(X), where A n is a 
function of b, ct, dl, e, G, M v, R. Let s>O, (5>0, and let f:  I R ~ [ 0 , 1 ]  be a 
three times continuously differentiable function, with f ( z ) = 0  for z<s,  f ( z ) =  1 
for z > s + fi, Il f(a) ll o~ <= K a 6 - 3, and let 

A f (X) = ]E f (ZXi I3 -  E f (HZT~11)[. 

Then for all sequences X, where Xi = Xi or Xi = Ti, we have 

Af(2)<=K,1R(6-2(c~G+b)+6-aCl(A"(X)+Mv)+C~-v/2(d~ +e)) (3.1) 

where K a ~ is a universal constant. 

Proof We are going first to prove (3.1) for X = X .  It is of course possible to 
suppose that the T z are independent of the 3;~ and of the X'r For i < n, let 

j < i  j > i  

SO 

f ( l lZXi l l ) -  f(][ST~ll)= ~ f (]{Ui-4- X~l])-f(l[U~ + Toil) 
i<_n 

and hence Af(X)<= ~ Vii , where ~=IE(f(IIUr We fix i and 
i<n 

evaluate V i. For  2elR, set g(,t)=f([]Ur h(2)=f(llUr From Lem- 
ma 4, g and h are three times continuously differentiable. It is shown in [8] 
or [11] that E(g'(O))=E(h'(0)), E(g"(0))= E(h"(0)) so we get V/__< Vii4 - V/2, where 

V~a = Elg(1)_ g(O)_ g,(O) ~ , ,  - y g  (0)1; V~E=Elh(1)-h(O)-h'(O)-lh"(O)]. 
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Now set 
gl(2)=f(llgi+zR~ll), g2(Z)=f(llgi+2x'~ll). 

Since []Jf~ll [Ix'~[I =0,  we have g1(2)+g2(2)=g(2)+g(0)  and for j = l , 2  g(~)(2) 
+g~)()~) = gU)(2). So we get V/1 < V~ 3 + 1///4+ Vi s where 

V~3 = E]g 1 (1) - g 1(0) - g'1(0) 1 '' - ~ g  (0)1 = gl+g(13)(z 1)1 

~4 = EIg2(1)_ g2(0)_ g~(0)l ~ ,, =El~g2('~2)l 
r/5 1 ~t =El~g2(0)l.  

Note  that  for 1 < j < 3 ,  fu)(t)<K~a-3t3-JZ[~,s+a~(t) and IIO~]l <Rllxll-~+a.  It 
follows then from L e m m a  4, and since z 1 < 1, that 

V~ 3 =< K 1R6-  3 E(II%~ II 3 Zts, s + d  II U~ + ~1 x ,  13). 
We have 

So, since U~ and )(i are independent,  and since 
II%,ll~zta, <(11%i11)_<_ a -I/2 tlg,/I v2, we have: 

Vi3<=KIRb 3(g(l[X, ll~)gZts_a,~+2a~([]g,l[)+6-1/2g(llX, lI7/2)). (3.2) 

We have: 
z~s_ a, s+ 2aa( II gi II) = zt~- 2a, s+ 3a~( II g~ + x~ 13 + zta, < II x~ II. 

Now if J( denotes the sequence (Xa, ...,X~, T~+a, ..., T,), we have by hypothesis  
A(X)<=A"(X), so 

EZts_ 2~,~+ 3~(l[ U~ § S ,  ll) ~2  A"(X) § E zt~_ 2~,s+ 3<(ll ~ Till). 
i<n 

Moreover ,  for each e > 0 

i<_n 

Since zt~,<llXil l<a 1/211x, II1/2, we get, by substituting these relations into 
(3.2). 

V~3 <=K~R6- 3(EHX, I]3(2A"(X)+ 5~G + 2eG + P(IIV[] >=e) 

+ ~- 1/: E II Xi II ,/2) + ,~- 1/: E II 2 ,  II ~/~). (3.3) 

Now, notice that IIX~111/2 = IIR,1[1/2 + IIX'~11~/2. By H61der's inequality, 
1 1 

E[IXill3EllXi[ll/m<EIIXil[ 7/2. Moreover ,  since for p,q>=l, - + - = 1 ,  we have 
P q 

a p b q 
ab< + - - < a P + b  q, we get EIIXiI]3EIIX'I]I1/2<=(EI[XiH3) 7/6 

P q 
+ (E ][X'~ ]11/2)7 < E II x~ II 7/2 + (E II X'~ II ~)~/4. Since (3.3) is true for all ~ > 0, we get 

V~3 < 5 K ~ R 6 -  3(E I[X~II3(A"(X) + 6G + Mv) § 6-1/e(E llXiII T/2 + E IIXIII2) w4). 
(3.4) 

A very similar computa t ion  yields 

V~2<=5KIR6-3(EIITzll3(A"(X)+,:3G+Mv)§ (3.5) 
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Moreover, easier computations give, using the fact that f(2)(t)<=K16-2, 
f ' ( t )<  K1cS-2t: 

V~4<=K1REIIX'iI[2; V~S<=KIREI]X'i]I 2 (3.6) 

and the result follows from (3.4), (3.5), (3.6), with K l i  = 5 K  1. 
To see that the result still holds for 3? instead of X, just note that if 2 i  = T~, 

the corresponding V~ is zero. Q.E.D. 

Lemma 9. Suppose, under the same hypothesis as Lemma 8, that for each se- 
quence 3;= (21, . . . , 2 , )  where S i = X  i or x i = r  i we have A(X)<A"(X),  where A" 
is a function of b, cl, da, e, G, Mv,  R. Then we have A(X)<-_A"+ I(x),  where 

A "+ l(X) = K12(R1/3(cl G + b) i/3 G 2/3 + RI/4cl/4(A"(X) + Mv)I/4G 3/4 

+ R2/9(dl § e)2/9 G 7/9) + 2M v (3.7) 

and K12 is a universal constant. 

Proof Let f :  IR~[0 ,  1] be three times continuously differentiable and f ( t ) = 0  
for t<s, f ( t ) = l  for t>=s+6 andf(3)(t)<K1 ~-3. We have, if h = l - f :  

P( l] 2;X~ I[ < s) < Eh( ]l ZX~ I]) 

< Af (X)  + Eh(]] ST~ II) 

< A f ( X ) +  P(IIST~I I <s+6) 

< AN(X)+ P(IIWII <s+rS+e)+ P(llrll >e) 

< A f ( X ) +  P(IIWII < s - e ) + G ( 6 +  2~)+ P(I[r21[ >=e) 

< A f ( X ) +  P(IIST~I[ <s)§ 2eG + 2P(IIVII >=~). 

Since this is true for all e > 0, 

P(l l~X,  It -<_ s)-P(IIST, II <s) <=A f (X) + G6 + 2Mv. 

A similar computation yields 

P(IIZT~II <=s)- P(llZX, II <=s) < A f (X) + G6 + 2 Mv. 

So A ( X ) < A f ( X ) + G 6 + 2 M  v. This is true for all 6>0.  If we substitute the 
bound for A f ( X )  given by Lemma 8 and use Lemma 6, the result follows with 
Ka2=4KI/~. Q.E.D. 

Theorem 10. Under the same hypothesis as Lemma 8, we have 

A <=Ko(Mv+R5/6cU3G§247247 7/9) (3.8) 

where K o => 1 is a universal constant. 

Proof Consider the sequence A"(X) defined by (3.7) and A~ Let A~(X) 
=InfA"(X). We have A(X)<A~(X) .  Moreover, since Ki2>=3 and if we set 

n 

Y = A ~ ( X ) + M v  

A = K i 2(Mv + R1/3(Cl G + b) 1/3 G 2/a + R2/9(dl § e) 2/9 G 7/9) 

B = K12 R a /4 cl/4 G 3/4, 
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then we have for all n: 
Y <~A + B( A"(X) + My) ~/'* 

and hence Y < A + B Y  1/4. Since BYt/*<3B4/3+�88 we get y < 4 A + B  4/3, so, 
with K~3 =2sup({K12 , K~/23), and since (c 1G + b) ~/3 <(c 1 G) ~/3 + b 1/3 

A < K 13(Mv + R 1/3 C 1/3 G § R 1/3 b 1/3 G2/3 § R2/9(dl + e)2/9 G7/9). 

It is possible to a s s u m e  bG2~l. Otherwise, since K 1 3 =  > 1, R =  > 1 (3.8) is auto- 
matically satisfied. Using Lemmas 5, 7 and Schwartz's inequality, we get 

E II r~ [I 3 __< K3/2(E II r~ll 2)3/2 ~ K32/2R3/2(E IIX~ II 2)3/2 
<= 132/2 R3/2(( E II J?~ll 3)2/3 § g IIX'zll 2)3/2 

< K 32/2 R 3/Z ]/2(E I]XiI[ 3 % E IIX'i lI 2 b1/2 ) 
SO 

G ~ g  II T~II 3 ~K32/2R3/2 ]/2(cG§ l ~ ( c G + b ) .  
i<n 

Similar computation gives 

E II T~ll 7/4 ~ Kv2/4R7/423/4(d + e) 
i<n 

hence we get (3.8) with Ko=K13(1 +K32/2 1/2) 1/3. 

Example: Let (Y,) be a sequence of independent F-valued random variables 
with g(ll Y, IIT/2)<=M for all n. Suppose that all the I1, have the same covariance, 
and let T be a Gaussian random variable with this covariance. Suppose that 
P(s<= I/Tll <=s§ for s, 3>0.  Then Theorem 10 shows that 

suplP([]n-1/21~ Yill < t ) -  P(]ITI] <=01 

< K 13 n-  1/6(R 5/6 M6/7 G + R 11/18 MGT/6) = O(n- 1/6) 

(we take X~=n -1/2 Y~, X'i=O , V=0). 
This shows that Theorem 10 is stronger than Theorem 2.1.0 in [9] for the 

case r =  3. Moreover, it is more precise since the bound includes all the param- 
eters explicitly. Hence this bound can be used when the parameters vary (i.e. 
triangular arrays). The term M v in Theorem 10 will be used later. 

It should be noted that V. Paulauskas [11] shows that for independent 
identically distributed Hilbert space valued random variables with third mo- 
ments, the rate of convergence of A is of order n-1/6. His proof relies heavily 
on the fact that the variables are identically distributed. However, there is 
some hope that his method gives a bound similar to the bound of Theorem 10 
for non-identically distributed random variables with only third moments in- 
volved. We have not been able to achieve this goal. 

4. Some More Lemmas 

Lemma 11. For p>=2 and a sequence (Xi) of independent F-valued random vari- 
ables in L p we have 
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E bl ~ X, IIP~N~RP/2EE(~ IIGIIZ)P/23 
i<n i<n 

where Np is a universal constant. 

Proof Let 51,.. . ,q, be a Rademacher  sequence independent of the X r To be 
more clear, we assume that the probabili ty space is a product, and that the e i 
depends on the first coordinate co 1 and the Xi on the second co 2. A result of 
Kahane  [7] asserts that for each elements xl ,  . . . , x ,  of any Banach space, 

II ~ ~(o~) x~ II p < S ; q  11 ~ ~(~) x~ II 2)~/~ 
i<n i<n, 

where N~ is a universal constant. So we get 

i<n 

< Np ~(~ II s ~z(~ 1) xz(o~ 2)II 2)p/2 dfo2 < NpRp/2 ~(~ II gz(~2)I/2)p/2 d(D2 
<--__ N~R ~/2 g I-(S II Xz II 2F/23 

since F is of type 2 with constant R. But it follows from Corollary 4.2 in [5] 

that E II Z Xi II ~_-< 2PE II ~ ~gill~, whence the result with Np = 2 pNs 
i<n i<=n 

The following lemma is an extension to Banach spaces of a lemma of Ego- 
roy I-1]. 

Lemma 12. Let X 1 .... , X  n be m-dependent F-valued random variables, with 
m> 1. Then 

g ][ ~ X~IIP<=N~n p/2- lmp/2Rp/2 ~ E IlXill p 
i<n i<n 

where Nip is a universal constant and R is defined in the introduction. We set K 3 
= sup(N21, N3 t, Nlv/2). 

Proof Write ~ X i=  ~, Yj, where Yj= ~, Xtl+(m+2) 1. From Lemma 
i<n j < m +  l l ~ q + ( m +  2)l<=n 

5 a n d  l l w e g e t  

Ell~Xe]lP<(m+l)  p-x ~, EIIY~ll p 
i<n j < m +  l 

<Np(m+I)P-IR p/2 ~ El( ~, IlXq+(~+2)tli2)p/2]. 
j<=m+l q+(m+2)l<=n 

n 2n 
Now for each j, l runs over at most  1+  < - -  integers since we can 

m + 2 = m + l  
suppose n > m + 1 and hence by Lemma  5 again we have 

Eli ~ XI[IP < Np(m + l )p/2 2p/2np/2- a Rp/2 ~ E HXiII p 
i<n i<n 

whence the result with N~ =Np2 p. Q.E.D. 
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Lemma 13. Let Y,, Z, X = Y+ Z be F-valued random variables in L 2. Then there 
exist U, V, T= U + V Gaussian F-valued random variables with the same co- 
variance as Y, Z and X respectively. 

Proof Let W be the F x F - v a l u e d  random variable co~(Y(~o), Z(co)). Since 
F x F is also a type 2, there exist a Gaussian random variable co~(U(o~), V(og)) 
with the same covariance. It is easy to check that for a, t ieR,  c~Y+fiZ has the 
same covariance as ~U+flV. Q.E.D. 

Lemma 14. Suppose the probability space is diffuse. Let p>/2, U~L~, V6L 2, 
W = U  + V. Then we can write W= ITV+ W' with IlWll-IlW'll = 0  and 

E][I~IIP<<.2P§ p, EIIW']Iz<2p+2EIIVll 2. (4 .1)  

Proof Suppose we can write I[UII+IIVII=T+T' where EITIP<~2P+ZEIIUI] p, 
E'IT'IZ<~2p+2EIIVH 2. If one set I ~ = 0  for T = 0  and f f ' = W  otherwise, and W' 
= W - I ~ ,  then [ll~]l<T, IIW'II<T' and hence l~ and W' satisfy (4.1). Hence 
one can assume F=IR ,  U, V>/0. 

If E(W2)<=2P+2E(V2), one can take 1~=0, W '=W.  It is hence possible to 
suppose E(W 2) > 2 p + 2 E(V2). Define 

2=Inf{-c=>O; E(WZZ{w>=,}) < 2P+ Z E(V2)}. 

We have E(W2x(w>z})~2P+ZE(V2), and hence 2 > 0  (if 2=0 ,  wZZ{w>a}=W2). 
For z < 2 ,  we have by definition of 2 E(W2Z{w>=O>2P+2E(V2) and hence 

E ( W  2 Z{w >= ~}) >= 2p + 2 E(V 2). (4.2) 

It follows that there exists a measurable set A such that { W > 2} c A c { W > 2} 
and E(W2ZA)=2P+2E(V2). In fact, 

E( W 2 Z{w => ~}) = 22 P ( W =  2) + E( W 2 Z{w > ~}) 
so from (4.2) 

22 P(W= Z) > 2 p + 2 E(V 2) _ E ( W  2 X{w > s}) (4.3) 

and it is enough to take A = { W > 2 } u B ' ,  where B ' c { W = 2 }  and 22p(B ') 
=2P+zE(V2)-E(W2Z{w>z} ). (It is to ensure the existence of B' that we assume 
there are no atoms.) 

We are going to show that E(WPZA,)<__2P+ZE(UP) and hence that it is 
enough to take W =  WZAO, W '=  WXA. 

Suppose 
E(W p ZA~) > 2p + 2 E(UP). 

From Lemma 5, we have W z ~ 2 ( U 2 +  V2), WP~2p-I(Up+ VP). Hence 

2 p+ 2E(V2 ) = E(WZZA) ~ 2E(UZxA + V2ZA) <= 2E(V 2) + 2E(U2XA) 
(4.4) 

(2 p+ ~ - 1) E(V 2) < E(U2)~A). 
Similarly 

2 p + 2 E(U p) <= E(W p)~A~) <~ 2p - ~ E(U p ZA~ + VPZA ~) <~ 2p- ~ E(U p) + 2 p - ~ E(V p)~A,.). 
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S o  

7 E(UP) __< E(VPz~o). 
N o w  define 

B = A ~ { U > V }  and C = A c ~ { v > u } .  
So 

E ( U 2 Z A \ B ) ~ E ( V  2) 

E(VPz~o.c) <E(U"). 

Hence,  f rom (4.4) and (4.5) 

(4.5) 

If  ~ '  aj,, <kll/3, then aj~ =Sup{aj:j~Ii} (4.10) 

I f  ~ a j > k # / 3 ,  then aj=Inf{af i je l i} .  (4.11) 
i < i  

such that  ~ aj,<k#/3. I f  io<k, then 
i '  < io 

Let  i o be the greatest  integer 
a j, > k#/3. I f  i o = k, then 

i<=k 
�9 1 > # k  

i ; a s i = i ; s u p { a s ; J ~ I i } ~ 3 - p ; a j = 3 - "  

(2p+ 1 __ 2) E(V z ;gc) ~<( 2p + i _ 2) E(V 2) < E(UZZB) (4.6) 

6E(UP)~B) < 6 E(U v) < E(VV )~c). (4.7) 

On  B, since U>V, U>�89189 
On C, since V> U, V>�89189 

Hence  f rom (4.6) and (4.7) 

(2v-I-1)E(W2Zc)<(2P-I--2)E(VZ)~c)<E(UZ)~B)<E(W2)~B) (4.8) 

2- p + 2 E( WV zB) < 4 E( UP )~B) < E(VV Zc) < E( WP )~c). (4.9) 

Since C c A c, we have W < 2 on C and since B c A, W > 2 on B. F r o m  (4.9) 
we get 

2 - p  + z 2p - ZE(W2ZB)<.2-p+ 2 E(WVzn) < E(WPZc) <~)~P- 2E(W2•c ). 

So 2-P+2E(W2zB)<E(W2Xc ). Since (2 p - l -  1 ) 2 - p + 2 >  1, together  with (4.8), 
this implies that  E(W2;~c)=O. Hence  V < U  on X c ~ { W > 0 } ,  so E(WVXA c) 
<2 p E(U zAc)<~ 2 v E(U p) and this cont radic t ion  concludes the proof. 

The  following two l emmas  prepare  the basic L e m m a  17. 

L e r n m a l 5 .  Let p and k be two integers. Let (Ii)i<_k be a disjoint family of sets 
such that 3p<cardli  <3p for all i. Let I= UIi.-Let (aj)s~ I be a family of non- 

i<k 
negative real numbers. Let 0>=0. Suppose S u p a j < 0 #  where # = ( ~  a)/pk. Then 

j~I j~I 

there exist for i <= k an element Ji ~Ii such that k#/3 ~ ~ aj~ ~ (0 + 2 k) #. 
i<=k 

Proof. Let  us pick by induct ion on i<=k an elementj~Ii ,  such that  
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On the other hand, 

~ a j =  ~ aj~+ajio+ ~, aj <=~-+O#+ ~ Inf{afijelj} 
i <=k i < io i > io i <=k 

< ~ - + 0  5 
12 + 3p j~laJ<=(O + 2k) 12 

which concludes the lemma. 
For t~lR we denote [t] the largest integer ~<t. 

Lemma 16. Let p and k be two integers. Let (Ii)~<_k be a disjoint family of sets 
such that p<=cardI~<3p for all i, and let I= ~fIi. Let (aj)jE I be a family of 

i<_k 

non-negative integers such that supaj_-<012, where 12=(~ a~)/pk. Then, if 

r = -2(0/k+ 2) ' there exist for each i < k a family (Ji, l)z <=r of distinct elements of 

Ij such that for all l<=r 

~ -  <i~<=kaj~,,<(O + 2k)12 �9 

Proof. The construction goes by induction on l<  r. Note that r <=p/4 <=2p. If the 
points J~,r  have been constructed for all i < k  and l '<l ,  set II~ 
= I i ~  {Ji, l . . . .  ,Ji, l - l }  and P =  ~)Ill. We have 

i < k  

Moreover 

~-  <=p-l <=card lli <=3p. 

#pk 
2 <12pk-# (O+2k)r<~aj -  ~ aj~,,,= ~aj<=12pk 

j E I  l" < l  j E 1  l 
i < k  

, 1 2 < ,  hence, if 12 = ( ~ a y p k ,  7 =  # <12. Then the existence of the family (]i,l)i<_k fO1- 
jE11 

lows from Lemma 5 which concludes the proof. 

The following lemma will be essential to sharpen the blocking methods. It 
is one of the main ideas of this paper. 

Lemma 17. Let q and k be two integers, with 8k<q and k>=5. Let (al)i<=q , 
(fi*)i<=q, z= 1,2, 3,4 five families of non-negative real numbers. Let 0 be a real, 
0 >= k. Set # = q- 1 ( ~ ai). Suppose 

i < q  

Z ai<:�89 ai �9 (4.121 
ai >=O,a i <_q 

Then there exist integers Jl,...,Jk~[1, q ] such that the following properties 
are satisfied if we set jo= 1, jk§ 1 =q. 

For all O_<l_<k, jl+l-jz>=2. (4.13) 

For all O<_l<_k, Jz+l-Jl<=3~ �9 (4.14) 
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k 

--<,--~1 aj, _-< 3(3 0 + 2k) #. (4.15) 

For z=1,2 ,3 ,4 ,  ~ f ~ < 3 0 ( 3 0 + 2 k )  2 i f "  (4.16) 
l N k  q i N q  

Proof. Ist Step: We are going to show that there exist I~,I2, . . . , I  k such that if 

[ q - q / k ]  the following conditions are satisfied: 
P = [ 2 k - l J  

For l < _ i < k - 1 ,  lali, l'~Ii+l=~l'-l>=2. 

3a 
For 1-<i_<k-1, l~Ii, l ' ~ I i + l ~ l ' - l <  --~ 

= ],2 " 

For l<_i-<k-1,  p < c a r d l i < 3  p. 

k 

2ai>>-~q, where I = U I  i. 
i ~ l  - -  3 i =  1 

ieI  ~ a i  <=O #. 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

It is easily checked that ~ = = _ p ~  (and hence p>3).  

Let J={i~[1,  q]; ai<Op}. Since O>=k, it follows that cardJ>_q - q .  More- 

over (4.12) implies that ~ai>=~-.  Since p(2k -1 )<cardJ ,  we can enumerate 
i e J  L 

in a increasing way the first p ( 2 k - 1 )  elements of J by n t,...,np(2k_l). For 
l _ < / < k - 1 ,  let Jl={ni, p ( 2 l - 1 ) < i < 2 p l } .  For each 1 < / < k - 1 ,  let iz~J ~ such 

that ai=Inf{ai;  iEJl}, k-1 <1 2ai .  Now set io=0, ik=q, set 1 I Then Pai < ~ a i and hence l ~  l 
J a i l  = i e J  

= ]iz-1, il[(~ J for 1 El_< k, I = ~ I l and let us check (4.17) to (4.20). First, (4.17) 
l 

is obvious. If l_<s_<k-1;  l~Is, 1'~I~+1, we have, since is~J~, i~_lSJ~_l: 

l ' - l  <=i~-is_ 1 <=n2ps-np(2~- 3). 
�9 q < 3 q  

But since card{[1, q] \J}<=q/k  it is clear that n2p~-npt2s_3)<=3p+~=~ - 

which shows (4.19). It is obvious that p<=cardIl<=3 p for each 1. Finally, (4.20) 
k 1 2 >#q 

comes from the fact that ~ a i = ~ a i - ~. ai~ >= ~ a i - :  ~ a i > ~ ~ a i = - ~ .  
i e I  i a J  l = 1 i c J  F i ~ J  - '  i e J  

1 ~< >q 
2nd Step." Let #'=~-~l),~a~. Then 3 = # ' < 3 #  since kp =3" For each j e J ,  we have 

a .<O#<30# '  S e t r = [  O+ ] . I f r _ < 4 t h e n ( 4 . 1 6 )  isautomatical lysat isf ied 
J =  = ' 6 ( 3  2 k )  - 

and it is easy to conclude. If r=> 1, then it follows from Lemma 16 that for all 
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i < k, there exists a family (ji, ~)~__< r of distinct elements of I i such that for all 1 < r 

k # < V a .  < 3 ( 3 0 + 2 k ) # .  
18 =i~k J~' 

Let A~={l<r, ~ fj~, >4 ~ f j t .  Then cardA~<4. Hence there exist lo<r such 
i<=k " i<=n ) 

that loq~A1uAzwA3wA 4. If we set jl=ji,zo for i<k,  then it is clear that (4.15) 
[ 0 q ] 1 15(30+2k) _ > 4 and hence -_< and (4.16) are satisfied, since r >  6(3 2k) r -  2q 

We gave rather precise bounds in Lemma 17, because we feel that it is of 
independant interest, and that this can be done at a negligable extra cost. In 
the sequel we shall use it with O=K6k, where K 6 is a universal constant to be 
defined later. Hence there is a universal constant K 5 such that (4.15) and (4.16) 
become 

k k a 
K51- ~ a i~ l~a i l~Ks- i~  q Tq (4.22) 

q i < q  _ 

for z=1 ,2 ,3 ,4 ,  ~ f ~ < K 5  k ~" f~. (4.23) 
l< k tj  i<q 

5. Bounds for m-Dependent Random Variables 

Let X1, ..., X,  be a sequence of m-dependent random variables with mean zero. 
Suppose that for each i we have a decomposition X~ = - ' X~+X~ as in Sect. III. 
Let 

b= ~EI[X;II 2, e= ~EIl~ill 3, d= ~EIIRill 7/2, 
inn i<_n i<n 

e= ~,(EIIX;[I2) 7/4, B= ~ EllXiH z, B=E[[ ~Xill  2 
i<n i<n i<n 

Let T be a Gaussian random variable with the same covariance as X =  ~ X~. 
i<n 

Suppose that for s,(~>O, P(s<=l[rll<s+c~)<__G6. Set A--suplP(llXll<=t) 
-P(HTII =t)]. t 

Theorem 18. 

Z] <= K ( R 4 / 3 m l / 3  G2/3 b l/3 q- R l ~ m4/9  GS/9 B1/9  c 2/9 

-k e 8/9 m 10/2 7 G 2 0/2 7 ~ l /9 (d  q_f,)4/2 7) 

where K is a universal constant. 
mi 

Proof. Let q=[n /m]  +1. For  l < i < q - 1 ,  let Ai= Z X j ,  Aq 
j=m(i--1)+ i 

= ~, Xj. Let ai=El[Ai[] 2. Let k be an integer, which will be chosen 
j= m(q -- 1) + 1 
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later, such that 5__<k and 8k<__q. By a much simpler form of Lemma 17, which 
is used by Egorov [1], and that we leave to the reader, there exist ix, ...,ik< q 

k a 
satisfying (4.17)and (4.18)and i~ka~<Ksqi~q ~. Let, for j<k, Zj=Aij and for 

j<k+l,  Yj= ~ Ai,. Since the X i are m-dependent, the (Zj)j__< k and the 
i j - l < l < i j  

(Yj)j~k+~ are independent. Let Z =  2Zj ,  Y= E Yj" Since X=Y+Z, it fo1- 
j<=k j < k + l  

lows from Lemma 13 that one can write T= U + V, where U and V are Gaus- 
sian and have the same eovariance as Y and Z respectively. 

For te]R one has 

P(IIX[I ~t)-P(IiTI[ ~t)~P([IYII ~ t-t-~)-t-P(IIZ]I ~ ~)-P(II VII ~t-~)-+-P(llVlI ~ )  

SO 

P(I]XII ~t)-P(llTl[ ~t)~2~G-I-P(IIZII ~ 0-t-P(]I VII ~ ) +  A' 

where A' = sup IP(11Y II < t) - P(11 a II < t)l, Similar estimates in the other direction 
give t 

A <2~G+P(DIZll <e)+P(]lVll <e) + A'. (5.2) 

From Lemmas 12 and 14, it is clear that one can write for all j Yj= ~ +  Yj, 
where I/~l] [IYj[] =0, and 

EII YjII2 < KaKgmRb (5.3) 
j < k + l  

2 EIIfjllN<N1/NgaK4 m3/2R3/2c (5.4) 
j<-k+ 1 

EII~l17/N<N3/4KNK4 mV/4RV/4d. (5.5) 
j<k+J. 

With some easy computations using Lemma 5: 

(Ok) 3/4 2 (EIIYjIIN)7/a<N3/4171/4K~/4 mV/4RT/%" (5.6) 
j<=k+l 

Hence Theorem l0 shows that there exists a universal constant K14 with 

A' <=KI,, (Mv+ (qk)I/6mI/2R4/3cl/3G+ml/3R4/3bl/3G 2/3 

+ (~)1/6m7/lSe(dTe)2/9GT/9). (5.7) 

Let/~ = ~ a i. We have E IIZH z<  K5 k/~. Moreover, since V is Gaussian with the 
i<q 

same covariance as Z, EII v]l 2 ~ RE IlZ II 2. Hence 

<K5 
P(IIVI[ < 0 = ~ -  k-R/3 

q 
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So we get 

Mv=Inf(Ge+P(llVll _<e))_<2K~/3 RI/3B1/aG 2/3 

k 
by taking s = K5 -mRBG - 1 

q ~@_k/~ Since (5.1) is true for all e; and P(rlZ[]<~)< we get, with K15 
q =2K15/3K14 

A<=K15 ((~)l/3R1/3B1/3G2/3 + (~)l/6m1/2R4/3cl/3 G 

-r (~) l/6mT/la R(d q-e)2/9 GT/9 d-m1/3 R4/3 b1/3 G2/3 ). (5.8) 

Let 
k=[q(ml/2RB-1/3cl/3G1/3 +mT/18R2/3B-1/3G1/9(d+e)e/9)a]. (5.9) 

We shall not prove in details that if Kis  is large enough one can suppose k > 5  
and 8k<q. The argument is rather tedious. The method is to show that if k < 4  
or 8k>q the right-hand side of (5.1) is >/1, which needs a lot of calculations. It 
uses the fact that since P(IITI[2>=RE[ITI]2)<=�89 we have 

�89 < P(ll r[I __<(2E [] r[] 2)1/2) <(2E I[ rl[ 2)1/2 a 

and hence 1 < 8E II T II 2 G2. A~ 
B<=K3mRB. If t>=4, then "5~<[t]<t .  Moreover, for a,b>O, we We have 

have (a + b)-a < a - a +  b-1. If we use these elementary inequalities it is easy to 
substitute (5.9) into (5.8) to get (5.11). Q.E.D. 

Let us now specialize this result. Suppose that we have a sequence (X~) of 
m-dependent random variables, with sup E [IX~ I[ 7/2 < oo. Let B, = E II ~ Sgll 2, Let 

i i ~ n  

T~ he a Gaussian random variable with same covariance as the covariance of 
B~-1/2(~ X~). Suppose T n satisfies (1.2) with a constant G n. Then 

i n n  

A, = sup [P(B 2 1/2 [] ~ Xi [I < t) - P( ]l Zn II < t) l= 0 (n 1/3 B24/9(68/9 q- aZ~ 0/27)). 
t i < n  

In the optimal case where B ~ n  and G n is bounded, then An=O(n-U9). 
We are now going to show that under stronger hypothesis, we can establish 

an estimate for A which will give a sharper order of convergence. Let us as- 
sume the following 

"There exists R' such that for each F-valued random variable X in 
L~, the unique Gaussian random variable T with the same covariance (5.10) 
as X satisfies EIIx]IE<R'EIITI[ 2'' 

From the proof of Proposition (3.3) in E6], one sees that this assumption is 
equivalent to say that F is of co-type 2. Hence by known results, F is isomor- 
phic to a Hilbert space. But since the definition of A heavily depends on the 



448 WanSoo Rhee and M. Talagrand 

norm there is some extra generality by not assuming F to be isometric to a 
Hilbert space. 

For  a Gaussian random variable satisfying (1.2) let G(T) be the smallest 
possible constant. We have, for a > 0 ,  G(aT)=a-~G(T). We have shown in the 
preceeding proof that GZ(T)E[IT[[2>= 1. It is easy to show, even in Hilbert spa- 
ces that GZ(T)EIIT][ 2 can be large. It is also possible to show in Hilbert space 
that GZ(T)E[ITI] 2 remains bounded when T belongs to a finite dimensional 
vector space. 

Let us keep the notations of Theorem 18 and its proof. For  i<q-1 ,  let Ci 
be a Gaussian random variable with the same covariance as A~, and such that 
the C~ are independent. Let us assume that there exists L such that 

for all 0~l,...,~q_lElR , 62( ~ ~iCi)El[ ~ ~iC~[la<=L. (5.11) 
i <=q--1 i <=q--1 

Theorem 19. Under these assumptions 

A <K'(N 1/2~l/s(Log Q)l/S (R13/8 R'3/4mS/8 cl/4 + R13/12R,7/24mS/12(d + e)1/6 

+ R3/2 R'l/3ml/3 Na/3 b 1/3) (5.12) 

where N = G 2 + LB- 1 

Q = 3 + (~1/8 N1/Z(mS/S cl/4 + m5/12(d + e)1/6))- 1 

and K' is a universal constant. 

Proof. From Lemmas 12 and 14 we can write Ai=Ai+A'i, where ]l.4ill [IA)[] =0, 
the (.3~) are independent and the (A'~) are independent, and such that 

E l[ A'r I[ 2 <=K3K4mRb (5.13) 
i<q 

~ E  11J~i 1[ 3 <K3K4m2R3/2c (5.14) 
i<q 

y" EII Ai II 7/2 < K3 K4mS/2RV/4 d (5.15) 
i<=q 

Z (g IIA;[I 2)7/4 =< K3 KcmS/2RV/4e. (5.16) 
i<q 

Let k be an integer such that 5 < k  and 5k<q, which will be specified later. 

,fi<=q; ai~ui<=q~k ~ a~t.r The choice of k will also be such that i~1~a~--<�89 ~_-<q Let I =  a i �9 

Then let i 1 . . . .  , i k the integers given by Lemma 17. Define Z i, Yi, Yi, Y/as in the 
proof of Theorem 18. We have for all e>0.  

A <=2eG+P(IIZ[[ ~ e)-I-P(HVI] ~ e ) + A '  
We have 

P(IIZ/I <8)<P(I[V[I <e)+A" 

where A"=supIP(llZ[[ <t)-P(][V][ <t)[. 
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t 

Let B=~ai ,  B=EII~XIll 2. Since the A i are 1-dependent, 
i<--q i<n 

B<=K3RB, and B<=K3mRB 

g/IZ[I 2= ~alz<Ks~B 
l < k  

EllZll2> g~ 1 -k/~ > (KaKs) -1  k_ e - l  B. 
q q 

By (5.10) one had E[IVII2~R'-IE][Z[] 2, so by hypothesis (5.11) 

we have 

G2(Z)<=K3K5RR'LB-I (k ). 

Now, from (4.23), (5.13) to (5.16) and Theorem 10, one sees that there exists 
a universal constant K17 such that 

A'  < K 1 .  7 R3/2 R' l /3ml/3(LB-1)l /3bl /3  + Rl l /6  R,1/2m2/3(LB-1)U2 cl/3 

+ ReS/18 R'V/tSmT/aS(gB- a)7/lS(d + e)2/9 (k )l/6 ) . (5.17) 

We have A <2Mv+A'+A". We have 

P( l l r l l>~)<exp  K2[IVll2 _-<exp' g2K3;  5 R " 

Let Kla=(KzK3Ks) 1/2. We have Mv<=Geo+P(ilV N >~o) for 

where N = G 2 + LB - 1 and 

Q = 3 + (/~ 1/8 N1/Z(ml/Z cl/4 + mT/24(d + e)l/6))- 1. 

Since R > I ,  R ' > I ,  we get by substitution, and from (5.7) and (5.17) (using 
Lemma 4 again), that there exists a universal constant K19 such that 

A <= K t9 ( (~ )1/2R1/2 " l/2 G(log Q)l/2 + Q- I + R 3/2 R'1/3ml/3 N I/3 b 1/3 

-Jc-R11/6R'l/2mZ/3N1/2cl/3 (k) l/6 (5.18) 

+ R25/18R, V/18mV/18N7/18(d_l_e)2/9 (~)t/6). 
Now let 

k = [q/3- 3/4(log Q)-  3/4"(R 2 R' 3/4mN3/4 G - 3/2 c 1/2 _~_ R4/3 R' 7/t 2 m7/12j~ 7/12 G -  7/6 

(d + e) 1/6]. (5.19) 
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Long and tedious computations show that if we suppose K' large enough, 
(5.12) is automaticly satisfied of k < 5  or 8k>=q. Still worse computations show 
that there exists a universal constant K 6 such that if the right-hand side of 
(5.1) is ~< 1 and if 

I={i<=q':ai>K6~B } wehave i~i~ai<�89 

Now we substitute (5.19) into (5.18) we use the facts that B<K3mRB and 
the function t--+tlog(3+at -~) is increasing in R +. Then we obtain 
(5.12). Q.E.D. 

To see what is the order of convergence obtained in the best cases let us for 
example suppose that X,  is a Hilbert-space valued sequence of m-dependent 
random variables, such that supE[lX, ll3/2<oo. Let B,=E][ 3-" X, II 2, and G, be 

n i < n  

the constant associated in (1.2) with the Gaussian random variable T. of the 
same covariance as B2 ~/2 ~ X  i. Suppose that there exists a Gaussian random 

i<=n p + m  

variable T' such that for all p, ~ X i has the same covariance as cqT (ei~lR). 

Then (5.11) holds, and Theorem 19 gives 

where 

A,=supIP(B21/2 II ~X/ll <t)-P(l[T,[I)<t)[ 
t i < n  

= O(G.(n 3/2 B; 1/2 + rt7/2,*Bn 10/24)(10g Q~/8) 

Q. = 3 + (G.(n3/S B21/2 + n7 /24Bn  10/24)  - 1).  

Hence in the good case where G. is bounded and B.>en, we get A. 
=O(n-1/8(logn)l/s). Hence, due to the use of an optimal blocking method, 
through Lemma 17, this result is comparatively sharp. 
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