On Berry-Esseen Type Bounds for m-Dependent Random Variables Valued in Certain Banach Spaces

WanSoo Rhee^ and Michel Talagrand **
${ }^{1}$ Ohio State University, Faculty of Management Sciences, Columbus, Ohio 43210, USA
${ }^{2}$ Equipe d'Analyse, Tour 46, Université Paris VI, 4 Place Jussieu, F-75230 Paris Cedex 05, France

1. Introduction

Throughout this paper F will denote a separable Banach space. We shall assume that F satisfies the following condition:
"The norm $\|\|$ of F, as a function $F-\{0\} \rightarrow \mathbb{R}$, is three times continuously Fréchet-differentiable, and its differentials satisfy $\sup \left\{\left\|D_{x}^{1}\right\|\right.$, $\left.\left\|D_{x}^{2}\right\|,\left\|D_{x}^{3}\right\|:\|x\|=1\right\}=R<+\infty$ where D_{x}^{i} denotes the differential of order i of $\|\| .$.

Let (Ω, Σ, P) be a fixed probability space. An F-valued random variable X is a Bochner measurable map $\Omega \rightarrow F$. We denote L_{F}^{p} the set of F-valued random variables X such that $\|X\|^{p}$ is integrable. An F-valued random variable T is said to be Gaussian if for each $x^{*} \in F^{*}, x^{*} \circ T$ is a real-valued Gaussian random variable. It is known that if F is a Hilbert space, then each F-valued Gaussian random variable T satisfies the following condition.
"There exist a constant G such that for $s, \delta \geqq 0$ we have $P(s \leqq\|T\| \leqq s$ $+\delta) \leqq G \delta$."

Known examples (in l^{∞}) show that this is not true in general for an arbitrary Banach space. However, we don't know what is the situation when (1.1) is satisfied.

We denote by $E(Z)$ or $E Z$ for the expectation of the real valued random variable Z.

Suppose $\left(X_{i}\right)_{i \leqq n}$ is a sequence in L_{F}^{2}. Since (1.1) implies that F is of type 2, there exists a Gaussian random variable T which has same covariance as X, (the covariance being the bilinear functional of F^{*} given by

[^0]$\left(x^{*}, y^{*}\right) \rightarrow E\left(x^{*}(X) y^{*}(X)\right) \quad$ where $X=\sum_{i \leq n} X_{i}$. In [9], [11], bounds of Δ $=\sup |P(\|X\| \leqq t)-P(\|T\| \leqq t)|$ are estimated under the hypothesis (1.1) and $(1.2)^{t}$, when the $\left(X_{i}\right)$ are independent random variables with mean zero and in L_{F}^{3}. In this work, under the assumption of (1.1) and (1.2) we shall find the bounds of Δ for m-dependent sequences $\left(X_{i}\right)_{i \leqq n}$ of random variables with mean zero, i.e. sequences such that for $a, b \in[1, n]$, the sequences $\left(X_{i}\right)_{i \in[a, b]}$ and $\left(X_{i}\right)_{i \in A}$ are independent, where $A=[1, a-m-1] \cup[b+m+1, n]$ (with the convention $[p, q]=\emptyset$ if $q<p$). Using truncation ideas of Feller [3] we obtain these results assuming only $X_{i} \in L_{F}^{2}$. It is noted that, in contrast with the independent case, the covariance of X is not simply related to the covariance of the X_{i}. We find it is worthy to work out universal bounds, bounds which depend only on universal constants and the parameters. We have tried to get sharp bounds of Δ. However, we have not tried to find numerical values of the universal constant in the bound since the values obtained by our methods are too large to be interesting.

Part 2 recalls some elementary facts. In part 3, we establish bounds for independent random variables. The reward of having the courage to work out the explicit computations is that we improve a result of Kuelbs and Kurtz [9]. In part 4, we gather some technical tools. In part 5, we find bounds of Δ for m dependent random variables case by using blocking techniques and combinatorial ideas.

2. Some Preliminaries

The results of this section are either well known or easy. Hence most of them are stated without proofs.
Lemma 1. For $x \in F, x \neq 0, \lambda \neq 0$, we have $D_{\lambda x}=D_{x}, D_{\lambda x}^{2}=\lambda^{-1} D_{x}^{2}, D_{\lambda x}^{3}=\lambda^{-2} D_{x}^{3}$. Hence $\left\|D_{x}\right\| \leqq R,\left\|D_{x}^{2}\right\| \leqq R\|x\|^{-1},\left\|D_{x}^{3}\right\| \leqq R\|x\|^{-2}$.

Lemma 2. F is of type 2 with constant R, i.e. for all independent F-valued random variables X_{1}, \ldots, X_{n} of mean zero in $L_{F}^{2}, E\left\|\Sigma X_{i}\right\|^{2} \leqq R \Sigma E\left\|X_{i}\right\|^{2}$.

In fact, F is a "type G " in the terminology of [4], i.e. there exists a mapping g (given by $g(0)=0, g(x)=\|x\|^{2} D_{x}$ for $x \neq 0$) with the properties $\|g(x)\|_{F^{*}}$ $=\|x\|_{F},\langle g(x), x\rangle=\|x\|_{F}^{2},\|g(x)-g(y)\|_{F^{*}} \leqq R\|x-y\|_{F}$.
Lemma 3. There exists a universal constant K_{1} such that for $\delta>0, s>0$ there exists $f: \mathbb{R} \rightarrow[0,1], f(t)=0$ if $t \leqq s, f(t)=1$ if $t \geqq s+\delta, f$ is three times continuously differentiable, $\left\|f^{(3)}\right\|_{\infty} \leqq \bar{K}_{1} \delta^{-3}$.

Lemma 4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is three times continously differentiable and $f(t)=0$ if $t \leqq 0$. Let $x, y \in F, h(\lambda)=f(\|x+\lambda y\|)$. Then h is three times continuously differentiable. If $x+\lambda y=0, h(\lambda)=h^{\prime}(\lambda)=h^{\prime \prime}(\lambda)=h^{(3)}(\lambda)=0$. If $\|x+\lambda y\| \neq 0$,

$$
\begin{aligned}
h^{\prime}(\lambda) & =D_{x+\lambda y}(y) f^{\prime}(\|x+\lambda y\|) \\
h^{\prime \prime}(\lambda) & =\left(D_{x+\lambda y}(y)\right)^{2} f^{\prime \prime}(\|x+\lambda y\|)+D_{x+\lambda y}^{2}(y, y) f^{\prime}(\|x+\lambda y\|)
\end{aligned}
$$

$$
\begin{aligned}
h^{(3)}(\lambda)= & \left(D_{x+\lambda y}(y)\right)^{3} f^{(3)}(\|x+\lambda y\|)+3 D_{x+\lambda y}(y) D_{x+\lambda y}^{2}(y, y) \\
& \cdot f^{\prime \prime}(\|x+\lambda y\|)+D_{x+\lambda y}^{3}(y, y, y) f^{\prime}(\|x+\lambda y\|) .
\end{aligned}
$$

The following lemma will be used many times without quoting.
Lemma 5 (c_{r}-inequality [10]). For $a_{1}, a_{2}, \ldots, a_{n} \geqq 0$ and $r \geqq 0$

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{r} \leqq A_{n, r} \sum_{i=1}^{n} a_{i}^{r}
$$

where $A_{n, r}=n^{r-1}$ if $r \geqq 1, A_{n, r}=1$ if $r \leqq 1$. Hence if X_{1}, \ldots, X_{n} are random variables in $L_{\mathbb{R}}^{r}$,

$$
E\left|\sum_{i=1}^{n} X_{i}\right|^{r} \leqq A_{n, r} \sum_{i=1}^{n} E\left|X_{i}\right|^{r}
$$

Lemma 6. Let $A,\left(B_{i}\right)_{i \leqq n},\left(r_{i}\right)_{i \leqq n}$ be positive numbers. Then

$$
\operatorname{lnf}_{\delta>0}\left(A \delta+\Sigma B_{i} \delta^{-r_{i}}\right) \leqq(n+1) \sum_{i \leqq n} A^{\frac{r_{i}}{1+r_{i}}} B^{\frac{1}{1+r_{i}}}
$$

Proof. It is of course true if $A=0$. If $A \neq 0$, let i_{0} such that $\gamma_{i_{0}}=\operatorname{Sup}\left\{\gamma_{i}, i \leqq n\right\}$ where $\gamma_{i}=\left(B_{i} A^{-1}\right)^{\frac{1}{1+r_{i}}}$. Then for all i,

$$
B_{i} \gamma_{i_{0}}^{-r_{i}} \leqq B_{i} \gamma_{i}^{-r_{i}}=A \gamma_{i} \leqq A \gamma_{i_{0}}=A^{\frac{r_{i_{0}}}{1+r_{i_{0}}}} B^{\frac{1}{1+r_{i_{0}}}}
$$

so

$$
A \gamma_{i_{0}}+\sum_{i \leqq n} B_{i} \gamma_{i_{0}}^{-r_{i}} \leqq(n+1) A \gamma_{i_{0}} \leqq(n+1) \sum_{i \leqq n} A^{\frac{r_{i}}{1+r_{i}}} B^{\frac{1}{1+r_{i}}} \quad \text { Q.E.D. }
$$

The following is an easy consequence of the method of Fernique in [2].
Lemma 7. There exists a universal constant K_{2} such that for all Banach space valued Gaussian random variable X, one has:
a) for all $u \in \mathbb{R} \quad P(\|X\| \geqq u) \leqq \exp \left(-\frac{u^{2}}{K_{2}\|X\|_{2}^{2}}\right)$
b) For all $1 \leqq p \leqq 4 \quad\|X\|_{p} \leqq K_{2}\|X\|_{2}$.

3. Bounds for Independent Random Variables

Let $X=\left(X_{i}\right)_{i \leqq n}$ be a sequence of independent F-valued random variables in L_{F}^{2} with mean zero. Let T_{1}, \ldots, T_{n} be independent F-valued Gaussian random variables such that for each i, T_{i} has the same covariance as X_{i}. The existence of T_{i} is shown in [6], Proposition 3.3 since F is of type 2, and moreover it is shown that $E\|T\|^{2} \leqq R E\left\|X_{i}\right\|^{2}$. We want to find a bound for $\Delta=\Delta(X)$ $=\operatorname{Sup}_{t}\left|P\left(\left\|\sum_{i \leqq n} X_{i}\right\|<t\right)-P\left(\left\|\sum_{i \leqq n} T_{i}\right\|<t\right)\right|$.

The method will follow the Theorem 2.1 in [9]. However, since we don't assume that the T_{i} have same covariance, the computations have to be done with somewhat more care.

Suppose that for $i \leqq n$ we have a decomposition $X_{i}=\bar{X}_{i}+X_{i}^{\prime}$, where $\left\|\bar{X}_{i}\right\| \cdot\left\|X_{i}^{\prime}\right\|=0, \bar{X}_{i} \in L_{F}^{7 / 2}$, and each of the sequences $\left(\bar{X}_{i}\right)_{i \leqq n}$ and $\left(X_{i}^{\prime}\right)_{i \leqq n}$ is independent. (such a decomposition is a generalization of truncations in the realvalued case). Set

$$
\begin{aligned}
& b=\sum_{i \leqq n} E\left\|X_{i}^{\prime}\right\|^{2} ; c=\sum_{i \leqq n} E\left\|\bar{X}_{i}\right\|^{3} ; \quad d=\sum_{i \leqq n} E\left\|\bar{X}_{i}\right\|^{7 / 2} ; \quad e=\sum_{i \leqq n}\left(E\left\|X_{i}^{\prime}\right\|^{2}\right)^{7 / 4} \\
& c_{1}=c+\sum_{i \leqq n} E\left\|T_{i}\right\|^{3} \quad d_{1}=d+\sum_{i \leqq n} E\left\|T_{i}\right\|^{7 / 2} .
\end{aligned}
$$

In order to get an interesting bound for Δ, it is reasonable to assume that $P\left(\left\|\sum_{i \leqq n} T_{i}\right\|<t\right)$ does not vary too wildly as a function of t. We write $\sum_{i \leqq n} T_{i}=W$ $-V$, where W and V are Gaussian, such that there exists a constant G such that

$$
\sup _{s \geqq 0} P(s \leqq\|W\| \leqq s+\delta) \leqq G \delta .
$$

Let $M_{V}=\operatorname{Inf}_{\varepsilon>0}\{G \varepsilon+P(\|V\| \geqq \varepsilon)\}$.
The following lemma is the key of the method of successive improvements of the bound of Δ.
Lemma 8. Let $\left(X_{i}\right)_{i \leq n}$ be a sequence of L_{F}^{2}. Suppose that for each sequence \tilde{X} $=\left(\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right)$, where $\tilde{X}_{i}=X_{i}$ or $\tilde{X}_{i}=T_{i}$, we have $\Delta(\tilde{X}) \leqq \Delta^{n}(X)$, where Δ^{n} is a function of $b, c_{1}, d_{1}, e, G, M_{V}, R$. Let $s \geqq 0, \delta \geqq 0$, and let $f: \mathbb{R} \rightarrow[0,1]$ be a three times continuously differentiable function, with $f(\tau)=0$ for $\tau \leqq s, f(\tau)=1$ for $\tau \geqq s+\delta,\left\|f^{(3)}\right\|_{\infty} \leqq K_{1} \delta^{-3}$, and let

$$
\Delta f(X)=\left|E f\left(\Sigma X_{i} \|\right)-E f\left(\left\|\Sigma T_{i}\right\|\right)\right| .
$$

Then for all sequences \tilde{X}, where $\tilde{X}_{i}=X_{i}$ or $\tilde{X}_{i}=T_{i}$, we have

$$
\begin{equation*}
\Delta f(\tilde{X}) \leqq K_{11} R\left(\delta^{-2}\left(c_{1} G+b\right)+\delta^{-3} c_{1}\left(\Delta^{n}(X)+M_{V}\right)+\delta^{-7 / 2}\left(d_{1}+e\right)\right) \tag{3.1}
\end{equation*}
$$

where K_{11} is a universal constant.
Proof. We are going first to prove (3.1) for $\tilde{X}=X$. It is of course possible to suppose that the T_{i} are independent of the \bar{X}_{i} and of the X_{i}^{\prime}. For $i \leqq n$, let

$$
U_{i}=\sum_{j<i} X_{i}+\sum_{j>i} T_{i}
$$

so

$$
f\left(\left\|\Sigma X_{i}\right\|\right)-f\left(\left\|\Sigma T_{i}\right\|\right)=\sum_{i \leqq n} f\left(\left\|U_{i}+X_{i}\right\|\right)-f\left(\left\|U_{i}+T_{i}\right\|\right)
$$

and hence $\Delta f(X) \leqq \sum_{i \leqq n} V_{i}$, where $V_{i}=\left|E\left(f\left(\left\|U_{i}+X_{i}\right\|\right)-f\left(\left\|U_{i}+T_{i}\right\|\right)\right)\right|$. We fix i and evaluate V_{i}. For $\lambda \in \mathbb{R}$, set $g(\lambda)=f\left(\left\|U_{i}+\lambda X_{i}\right\|\right), h(\lambda)=f\left(\left\|U_{i}+\lambda T_{i}\right\|\right)$. From Lemma $4, g$ and h are three times continuously differentiable. It is shown in [8] or [11] that $E\left(g^{\prime}(0)\right)=E\left(h^{\prime}(0)\right), E\left(g^{\prime \prime}(0)\right)=E\left(h^{\prime \prime}(0)\right)$ so we get $V_{i} \leqq V_{i}^{1}+V_{i}^{2}$, where

$$
V_{i}^{1}=E\left|g(1)-g(0)-g^{\prime}(0)-\frac{1}{2} g^{\prime \prime}(0)\right| ; \quad V_{i}^{2}=E\left|h(1)-h(0)-h^{\prime}(0)-\frac{1}{2} h^{\prime \prime}(0)\right| .
$$

Now set

$$
g_{1}(\lambda)=f\left(\left\|U_{i}+\lambda \bar{X}_{i}\right\|\right), \quad g_{2}(\lambda)=f\left(\left\|U_{i}+\lambda X_{i}^{\prime}\right\|\right)
$$

Since $\left\|\bar{X}_{i}\right\|\left\|X_{i}^{\prime}\right\|=0$, we have $g_{1}(\lambda)+g_{2}(\lambda)=g(\lambda)+g(0)$ and for $j=1,2 g_{1}^{(j)}(\lambda)$ $+g_{2}^{(j)}(\lambda)=g^{(j)}(\lambda)$. So we get $V_{i}^{1} \leqq V_{i}^{3}+V_{i}^{4}+V_{i}^{5}$ where

$$
\begin{aligned}
& V_{i}^{3}=E\left|g_{1}(1)-g_{1}(0)-g_{1}^{\prime}(0)-\frac{1}{2} g^{\prime \prime}(0)\right|=E\left|\frac{1}{6} g_{1}^{(3)}\left(\tau_{1}\right)\right| \\
& V_{i}^{4}=E\left|g_{2}(1)-g_{2}(0)-g_{2}^{\prime}(0)\right|=E\left|\frac{1}{2} g_{2}^{\prime \prime}\left(\tau_{2}\right)\right| \\
& V_{i}^{5}=E\left|\frac{1}{2} g_{2}^{\prime \prime}(0)\right| .
\end{aligned}
$$

Note that for $1 \leqq j \leqq 3, f^{(j)}(t) \leqq K_{1} \delta^{-3} t^{3-j} \chi_{[\mathrm{s}, s+\delta]}(t)$ and $\left\|D_{x}^{j}\right\| \leqq R\|x\|^{-j+1}$. It follows then from Lemma 4, and since $\tau_{1} \leqq 1$, that

$$
V_{i}^{3} \leqq K_{1} R \delta^{-3} E\left(\left\|\bar{X}_{i}\right\|^{3} \chi_{[s, s+\delta]}\left(\left\|U_{i}+\tau_{1} \bar{X}_{i}\right\|\right)\right)
$$

We have

$$
\chi_{[s, s+\delta]}\left(\left\|U_{i}+\tau_{i} \bar{X}_{i}\right\|\right) \leqq \chi_{[s-\delta, s+2 \delta]}\left(\left\|U_{i}\right\|\right)+\chi_{[\delta, \infty[}\left(\left\|\bar{X}_{i}\right\|\right) .
$$

So, since U_{i} and \bar{X}_{i} are independent, and since $\left\|\bar{X}_{i}\right\|^{3} \chi_{[\delta, \infty I}\left(\left\|\bar{X}_{i}\right\|\right) \leqq \delta^{-1 / 2}\left\|\bar{X}_{i}\right\|^{7 / 2}$, we have:

$$
\begin{equation*}
V_{i}^{3} \leqq K_{1} R \delta^{-3}\left(E\left(\left\|\bar{X}_{i}\right\|^{3}\right) E \chi_{[s-\delta, s+2 \delta]}\left(\left\|U_{i}\right\|\right)+\delta^{-1 / 2} E\left(\left\|\bar{X}_{i}\right\|^{7 / 2}\right)\right) \tag{3.2}
\end{equation*}
$$

We have:

$$
\chi_{[s-\delta, s+2 \delta]}\left(\left\|U_{i}\right\|\right) \leqq \chi_{[s-2 \delta, s+3 \delta]}\left(\left\|U_{i}+X_{i}\right\|\right)+\chi_{[\delta, \infty[}\left\|X_{i}\right\| .
$$

Now if \tilde{X} denotes the sequence $\left(X_{1}, \ldots, X_{i}, T_{i+1}, \ldots, T_{n}\right)$, we have by hypothesis $\Delta(\tilde{X}) \leqq \Delta^{n}(X)$, so

$$
E \chi_{[s-2 \delta, s+3 \delta]}\left(\left\|U_{i}+X_{i}\right\|\right) \leqq 2 \Delta^{n}(X)+E \chi_{[s-2 \delta, s+3 \delta]}\left(\left\|\sum_{i \leqq n} T_{i}\right\|\right)
$$

Moreover, for each $\varepsilon>0$

$$
\chi_{[s-2 \delta, s+3 \delta]}\left(\left\|\sum_{i \leqq n} T_{i}\right\|\right) \leqq \chi_{[s-2 \delta-\varepsilon, s+3 \delta+\varepsilon]}(\|W\|)+\chi_{[\varepsilon, \infty[}[\|V\|) .
$$

Since $\chi_{[\delta, \infty \subseteq}\left\|X_{i}\right\| \leqq \delta^{-1 / 2}\left\|X_{i}\right\|^{1 / 2}$, we get, by substituting these relations into (3.2).

$$
\begin{align*}
V_{i}^{3} \leqq & K_{1} R \delta^{-3}\left(E \| \overline { X } _ { i } \| ^ { 3 } \left(2 \Delta^{n}(X)+5 \delta G+2 \varepsilon G+P(\|V\| \geqq \varepsilon)\right.\right. \\
& \left.\left.+\delta^{-1 / 2} E\left\|X_{i}\right\|^{1 / 2}\right)+\delta^{-1 / 2} E\left\|\bar{X}_{i}\right\|^{7 / 2}\right) \tag{3.3}
\end{align*}
$$

Now, notice that $\left\|X_{i}\right\|^{1 / 2}=\left\|\bar{X}_{i}\right\|^{1 / 2}+\left\|X_{i}^{\prime}\right\|^{1 / 2}$. By Hölder's inequality, $E\left\|\bar{X}_{i}\right\|^{3} E\left\|\bar{X}_{i}\right\|^{1 / 2} \leqq E\left\|\bar{X}_{i}\right\|^{7 / 2}$. Moreover, since for $p, q \geqq 1, \frac{1}{p}+\frac{1}{q}=1$, we have $a b \leqq \frac{a^{p}}{p}+\frac{b^{q}}{q} \leqq a^{p}+b^{q}$, we get $\quad E\left\|\bar{X}_{i}\right\|^{3} E\left\|X_{i}^{\prime}\right\|^{1 / 2} \leqq\left(E\left\|\bar{X}_{i}\right\|^{3}\right)^{7 / 6}$ $+\left(E\left\|X_{i}^{\prime}\right\|^{1 / 2}\right)^{7} \leqq E\left\|\bar{X}_{i}\right\|^{7 / 2}+\left(E\left\|X_{i}^{\prime}\right\|^{2}\right)^{7 / 4}$. Since (3.3) is true for all $\varepsilon>0$, we get
$V_{i}^{3} \leqq 5 K_{1} R \delta^{-3}\left(E\left\|\bar{X}_{i}\right\|^{3}\left(A^{n}(X)+\delta G+M_{V}\right)+\delta^{-1 / 2}\left(E\left\|\bar{X}_{i}\right\|^{7 / 2}+E\left\|X_{i}^{\prime}\right\|^{2}\right)^{7 / 4}\right)$.
A very similar computation yields

$$
\begin{equation*}
V_{i}^{2} \leqq 5 K_{1} R \delta^{-3}\left(E\left\|T_{i}\right\|^{3}\left(\Delta^{n}(X)+\delta G+M_{V}\right)+\delta^{-1 / 2} E\left\|T_{i}\right\|^{3}\right) . \tag{3.5}
\end{equation*}
$$

Moreover, easier computations give, using the fact that $f^{(2)}(t) \leqq K_{1} \delta^{-2}$, $f^{\prime}(t) \leqq K_{1} \delta^{-2} t:$

$$
\begin{equation*}
V_{i}^{4} \leqq K_{1} R E\left\|X_{i}^{\prime}\right\|^{2} ; \quad V_{i}^{5} \leqq K_{1} R E\left\|X_{i}^{\prime}\right\|^{2} \tag{3.6}
\end{equation*}
$$

and the result follows from (3.4), (3.5), (3.6), with $K_{11}=5 K_{1}$.
To see that the result still holds for \tilde{X} instead of X, just note that if $\tilde{X}_{i}=T_{i}$, the corresponding V_{i} is zero. Q.E.D.
Lemma 9. Suppose, under the same hypothesis as Lemma 8, that for each sequence $\tilde{X}=\left(\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right)$ where $\tilde{X}_{i}=X_{i}$ or $\tilde{X}_{i}=T_{i}$ we have $\Delta(\tilde{X}) \leqq \Delta^{n}(X)$, where Δ^{n} is a function of $b, c_{1}, d_{1}, e, G, M_{V}, R$. Then we have $\Delta(\tilde{X}) \leqq \Delta^{n+1}(X)$, where

$$
\begin{align*}
\Delta^{n+1}(X)= & K_{12}\left(R^{1 / 3}\left(c_{1} G+b\right)^{1 / 3} G^{2 / 3}+R^{1 / 4} c_{1}^{1 / 4}\left(\Delta^{n}(X)+M_{V}\right)^{1 / 4} G^{3 / 4}\right. \\
& \left.+R^{2 / 9}\left(d_{1}+e\right)^{2 / 9} G^{7 / 9}\right)+2 M_{V} \tag{3.7}
\end{align*}
$$

and K_{12} is a universal constant.
Proof. Let $f: \mathbb{R} \rightarrow[0,1]$ be three times continuously differentiable and $f(t)=0$ for $t \leqq s, f(t)=1$ for $t \geqq s+\delta$ and $f^{(3)}(t) \leqq K_{1} \delta^{-3}$. We have, if $h=1-f$:

$$
\begin{aligned}
p\left(\left\|\Sigma X_{i}\right\| \leqq s\right) & \leqq E h\left(\left\|\Sigma X_{i}\right\|\right) \\
& \leqq \Delta f(X)+E h\left(\left\|\Sigma T_{i}\right\|\right) \\
& \leqq \Delta f(X)+P\left(\left\|\Sigma T_{i}\right\| \leqq s+\delta\right) \\
& \leqq \Delta f(X)+P(\|W\| \leqq s+\delta+\varepsilon)+P(\|V\| \geqq \varepsilon) \\
& \leqq \Delta f(X)+P(\|W\| \leqq s-\varepsilon)+G(\delta+2 \varepsilon)+P(\|\bar{V}\| \geqq \varepsilon) \\
& \leqq \Delta f(X)+P\left(\left\|\Sigma T_{i}\right\| \leqq s\right)+G \delta+2 \varepsilon G+2 P(\|V\| \geqq \varepsilon) .
\end{aligned}
$$

Since this is true for all $\varepsilon>0$,

$$
P\left(\left\|\Sigma X_{i}\right\| \leqq s\right)-P\left(\left\|\Sigma T_{i}\right\| \leqq s\right) \leqq \Delta f(X)+G \delta+2 M_{V}
$$

A similar computation yields

$$
P\left(\left\|\Sigma T_{i}\right\| \leqq s\right)-P\left(\left\|\Sigma X_{i}\right\| \leqq s\right) \leqq \Delta f(X)+G \delta+2 M_{V}
$$

So $\Delta(X) \leqq \Delta f(X)+G \delta+2 M_{V}$. This is true for all $\delta>0$. If we substitute the bound for $\Delta f(X)$ given by Lemma 8 and use Lemma 6, the result follows with $K_{12}=4 K_{11}^{1 / 3}$. Q.E.D.
Theorem 10. Under the same hypothesis as Lemma 8, we have

$$
\begin{equation*}
\Delta \leqq K_{0}\left(M_{V}+R^{5 / 6} c^{1 / 3} G+R^{5 / 6} b^{1 / 3} G^{2 / 3}+R^{11 / 18}(d+e)^{2 / 9} G^{7 / 9}\right) \tag{3.8}
\end{equation*}
$$

where $K_{0} \geqq 1$ is a universal constant.
Proof. Consider the sequence $\Delta^{n}(X)$ defined by (3.7) and $\Delta^{0}(X)=1$. Let $\Delta^{\infty}(X)$ $=\operatorname{Inf}_{n} \Delta^{n}(X)$. We have $\Delta(X) \leqq \Delta^{\infty}(X)$. Moreover, since $K_{12} \geqq 3$ and if we set

$$
\begin{aligned}
& Y=\Delta^{\infty}(X)+M_{V} \\
& A=K_{12}\left(M_{V}+R^{1 / 3}\left(c_{1} G+b\right)^{1 / 3} G^{2 / 3}+R^{2 / 9}\left(d_{1}+e\right)^{2 / 9} G^{7 / 9}\right) \\
& B=K_{12} R^{1 / 4} c_{1}^{1 / 4} G^{3 / 4}
\end{aligned}
$$

then we have for all n :

$$
Y \leqslant A+B\left(A^{n}(X)+M_{y}\right)^{1 / 4}
$$

and hence $Y \leqslant A+B Y^{1 / 4}$. Since $B Y^{1 / 4} \leqq \frac{3}{4} B^{4 / 3}+\frac{1}{4} Y$, we get $Y \leqq \frac{4}{3} A+B^{4 / 3}$, so, with $K_{13}=2 \sup \left(\frac{4}{3} K_{12}, K_{12}^{4 / 3}\right)$, and since $\left(c_{1} G+b\right)^{1 / 3} \leqq\left(c_{1} G\right)^{1 / 3}+b^{1 / 3}$

$$
\Delta \leqq K_{13}\left(M_{V}+R^{1 / 3} c_{1}^{1 / 3} G+R^{1 / 3} b^{1 / 3} G^{2 / 3}+R^{2 / 9}\left(d_{1}+e\right)^{2 / 9} G^{7 / 9}\right) .
$$

It is possible to assume $b G^{2} \leqq 1$. Otherwise, since $K_{13} \geqq 1, R \geqq 1$ (3.8) is automatically satisfied. Using Lemmas 5, 7 and Schwartz's inequality, we get

$$
\begin{aligned}
E\left\|T_{i}\right\|^{3} & \leqq K_{2}^{3 / 2}\left(E\left\|T_{i}\right\|^{2}\right)^{3 / 2} \leqq K_{2}^{3 / 2} R^{3 / 2}\left(E\left\|X_{i}\right\|^{2}\right)^{3 / 2} \\
& \leqq K_{2}^{3 / 2} R^{3 / 2}\left(\left(E\left\|\bar{X}_{i}\right\|^{3}\right)^{2 / 3}+E\left\|X_{i}^{\prime}\right\|^{2}\right)^{3 / 2} \\
& \leqq K_{2}^{3 / 2} R^{3 / 2} \sqrt{2}\left(E\left\|\bar{X}_{i}\right\|^{3}+E\left\|X_{i}^{\prime}\right\|^{2} b^{1 / 2}\right)
\end{aligned}
$$

so

$$
G \sum_{i \leqq n} E\left\|T_{i}\right\|^{3} \leqq K_{2}^{3 / 2} R^{3 / 2} \sqrt{2}\left(c G+b^{3 / 2} G\right) \leqq K_{2}^{3 / 2} R^{3 / 2} \sqrt{2}(c G+b)
$$

Similar computation gives

$$
\sum_{i \leqq n} E\left\|T_{i}\right\|^{7 / 4} \leqq K_{2}^{7 / 4} R^{7 / 4} 2^{3 / 4}(d+e)
$$

hence we get (3.8) with $K_{0}=K_{13}\left(1+K_{2}^{3 / 2} \sqrt{2}\right)^{1 / 3}$.
Example: Let $\left(Y_{n}\right)$ be a sequence of independent F-valued random variables with $E\left(\left\|Y_{n}\right\|^{7 / 2}\right) \leqq M$ for all n. Suppose that all the Y_{n} have the same covariance, and let T be a Gaussian random variable with this covariance. Suppose that $P(s \leqq\|T\| \leqq s+\delta) \leqq G \delta$, for $s, \delta \geqq 0$. Then Theorem 10 shows that

$$
\begin{aligned}
& \sup _{t}\left|P\left(\left\|n^{-1 / 2} \sum_{i \leqq n} Y_{i}\right\| \leqq t\right)-P(\|T\| \leqq t)\right| \\
& \quad \leqq K_{13} n^{-1 / 6}\left(R^{5 / 6} M^{6 / 7} G+R^{11 / 18} M G^{7 / 6}\right)=O\left(n^{-1 / 6}\right)
\end{aligned}
$$

(we take $\bar{X}_{i}=n^{-1 / 2} Y_{i}, X_{i}^{\prime}=0, V=0$).
This shows that Theorem 10 is stronger than Theorem 2.1.0 in [9] for the case $r=3$. Moreover, it is more precise since the bound includes all the parameters explicitly. Hence this bound can be used when the parameters vary (i.e. triangular arrays). The term M_{V} in Theorem 10 will be used later.

It should be noted that V. Paulauskas [11] shows that for independent identically distributed Hilbert space valued random variables with third moments, the rate of convergence of Δ is of order $n^{-1 / 6}$. His proof relies heavily on the fact that the variables are identically distributed. However, there is some hope that his method gives a bound similar to the bound of Theorem 10 for non-identically distributed random variables with only third moments involved. We have not been able to achieve this goal.

4. Some More Lemmas

Lemma 11. For $p \geqq 2$ and a sequence $\left(X_{i}\right)$ of independent F-valued random variables in L^{p} we have

$$
E\left\|\sum_{i \leqq n} X_{i}\right\|^{p} \leqq N_{p} R^{p / 2} E\left[\left(\sum_{i \leqq n}\left\|X_{i}\right\|^{2}\right)^{p / 2}\right]
$$

where N_{p} is a universal constant.
Proof. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be a Rademacher sequence independent of the X_{i}. To be more clear, we assume that the probability space is a product, and that the ε_{i} depends on the first coordinate ω_{1} and the X_{i} on the second ω_{2}. A result of Kahane [7] asserts that for each elements x_{1}, \ldots, x_{n} of any Banach space,

$$
\int\left\|\sum_{i \leqq n} \varepsilon_{i}(\omega) x_{i}\right\|^{p} \leqq N_{p}^{\prime}\left(\int\left\|\sum_{i \leqq n} \varepsilon_{i}(\omega) x_{i}\right\|^{2}\right)^{p / 2}
$$

where N_{p}^{\prime} is a universal constant. So we get

$$
\begin{aligned}
& \int\left\|\sum_{i \leqq n} \varepsilon_{i}(\omega) X_{i}(\omega)\right\|^{p} d \omega \leqq \int\left(\int\left\|\Sigma \varepsilon_{i}\left(\omega_{1}\right) X_{i}\left(\omega_{2}\right)\right\|^{p} d \omega_{1}\right) d \omega_{2} \\
& \quad \leqq N_{p}^{\prime} \int\left(\int\left\|\Sigma \varepsilon_{i}\left(\omega_{1}\right) X_{i}\left(\omega_{2}\right)\right\|^{2}\right)^{p / 2} d \omega_{2} \leqq N_{p}^{\prime} R^{p / 2} \int\left(\Sigma\left\|X_{i}\left(\omega_{2}\right)\right\|^{2}\right)^{p / 2} d \omega_{2} \\
& \quad \leqq N_{p}^{\prime} R^{p / 2} E\left[\left(\Sigma\left\|X_{i}\right\|^{2}\right)^{p / 2}\right]
\end{aligned}
$$

since F is of type 2 with constant R. But it follows from Corollary 4.2 in [5] that $E\left\|\sum_{i \leqq n} X_{i}\right\|^{p} \leqq 2^{p} E\left\|\sum_{i \leqq n} \varepsilon_{i} X_{i}\right\|^{p}$, whence the result with $N_{p}=2^{p} N_{p}^{\prime}$.

The following lemma is an extension to Banach spaces of a lemma of Ego$\operatorname{rov}[1]$.

Lemma 12. Let X_{1}, \ldots, X_{n} be m-dependent F-valued random variables, with $m \geqq 1$. Then

$$
E\left\|\sum_{i \leqq n} X_{i}\right\|^{p} \leqq N_{p}^{1} n^{p / 2-1} m^{p / 2} R^{p / 2} \sum_{i \leqq n} E\left\|X_{i}\right\|^{p}
$$

where N_{p}^{1} is a universal constant and R is defined in the introduction. We set K_{3} $=\sup \left(N_{2}^{1}, N_{3}^{1}, N_{7 / 2}^{1}\right)$.
Proof. Write $\sum_{i \leqq n} X_{i}=\sum_{j \leqq m+1} Y_{j}$, where $Y_{j}=\sum_{1 \leqq q+(m+2) l \leqq n} X_{q+(m+2) l}$. From Lemma 5 and 11 we get

$$
\begin{aligned}
& E\left\|\sum_{i \leqq n} X_{i}\right\|^{p} \leqq(m+1)^{p-1} \sum_{j \leqq m+1} E\left\|Y_{j}\right\|^{p} \\
& \quad \leqq N_{p}(m+1)^{p-1} R^{p / 2} \sum_{j \leqq m+1} E\left[\left(\sum_{q+(m+2) l \leqq n}\left\|X_{q+(m+2) l}\right\|^{2}\right)^{p / 2}\right] .
\end{aligned}
$$

Now for each j, l runs over at most $1+\frac{n}{m+2} \leqq \frac{2 n}{m+1}$ integers since we can suppose $n \geqq m+1$ and hence by Lemma 5 again we have

$$
E\left\|\sum_{i \leqq n} X_{i}\right\|^{p} \leqq N_{p}(m+1)^{p / 2} 2^{p / 2} n^{p / 2-1} R^{p / 2} \sum_{i \leqq n} E\left\|X_{i}\right\|^{p}
$$

whence the result with $N_{p}^{1}=N_{p} 2^{p}$. Q.E.D.

Lemma 13. Let $Y, Z, X=Y+Z$ be F-valued random variables in L^{2}. Then there exist $U, V, T=U+V$ Gaussian F-valued random variables with the same covariance as Y, Z and X respectively.

Proof. Let W be the $F \times F$-valued random variable $\omega \rightarrow(Y(\omega), Z(\omega))$. Since $F \times F$ is also a type 2, there exist a Gaussian random variable $\omega \rightarrow(U(\omega), V(\omega))$ with the same covariance. It is easy to check that for $\alpha, \beta \in \mathbb{R}, \alpha Y+\beta Z$ has the same covariance as $\alpha U+\beta V$. Q.E.D.

Lemma 14. Suppose the probability space is diffuse. Let $p \geqslant 2, U \in L_{F}^{p}, V \in L_{F}^{2}$, $W=U+V$. Then we can write $W=\bar{W}+W^{\prime}$ with $\|\bar{W}\| \cdot\left\|W^{\prime}\right\|=0$ and

$$
\begin{equation*}
E\|\bar{W}\|^{p} \leqslant 2^{p+2} E\|U\|^{p}, \quad E\left\|W^{\prime}\right\|^{2} \leqslant 2^{p+2} E\|V\|^{2} . \tag{4.1}
\end{equation*}
$$

Proof. Suppose we can write $\|U\|+\|V\|=\bar{T}+T^{\prime}$ where $E|\bar{T}|^{p} \leqslant 2^{p+2} E\|U\|^{p}$, $E^{\prime}\left|T^{\prime}\right|^{2} \leqslant 2^{p+2} E\|V\|^{2}$. If one set $\bar{W}=0$ for $\bar{T}=0$ and $\bar{W}=W$ otherwise, and W^{\prime} $=W-\bar{W}$, then $\|\bar{W}\| \leqq \bar{T},\left\|W^{\prime}\right\| \leqq T^{\prime}$ and hence \bar{W} and W^{\prime} satisfy (4.1). Hence one can assume $F=\mathbb{R}, U, V \geqslant 0$.

If $E\left(W^{2}\right) \leqq 2^{p+2} E\left(V^{2}\right)$, one can take $\bar{W}=0, W^{\prime}=W$. It is hence possible to suppose $E\left(W^{2}\right)>2^{p+2} E\left(V^{2}\right)$. Define

$$
\lambda=\operatorname{Inf}\left\{\tau \geqq 0 ; E\left(W^{2} \chi_{\{W \geqq \tau\}}\right) \leqq 2^{p+2} E\left(V^{2}\right)\right\}
$$

We have $E\left(W^{2} \chi_{\{W>\lambda\}}\right) \leqq 2^{p+2} E\left(V^{2}\right)$, and hence $\lambda>0$ (if $\lambda=0, W^{2} \chi_{\{W>\lambda\}}=W^{2}$). For $\tau<\lambda$, we have by definition of $\lambda E\left(W^{2} \chi_{\{W \geqq \tau\}}\right) \geqq 2^{p+2} E\left(V^{2}\right)$ and hence

$$
\begin{equation*}
E\left(W^{2} \chi_{\{W \geqq \chi\}}\right) \geqq 2^{p+2} E\left(V^{2}\right) . \tag{4.2}
\end{equation*}
$$

It follows that there exists a measurable set A such that $\{W>\lambda\} \subset A \subset\{W \geqq \lambda\}$ and $E\left(W^{2} \chi_{A}\right)=2^{p+2} E\left(V^{2}\right)$. In fact,
so from (4.2)

$$
E\left(W^{2} \chi_{\{W \geqq \lambda\}}\right)=\lambda^{2} P(W=\lambda)+E\left(W^{2} \chi_{\{W>\lambda\}}\right)
$$

$$
\begin{equation*}
\lambda^{2} P(W=\lambda) \geqq 2^{p+2} E\left(V^{2}\right)-E\left(W^{2} \chi_{\{W>\lambda\}}\right) \tag{4.3}
\end{equation*}
$$

and it is enough to take $A=\{W>\lambda\} \cup B^{\prime}$, where $B^{\prime} \subset\{W=\lambda\}$ and $\lambda^{2} P\left(B^{\prime}\right)$ $=2^{p+2} E\left(V^{2}\right)-E\left(W^{2} \chi_{\{W>\lambda\}}\right)$. (It is to ensure the existence of B^{\prime} that we assume there are no atoms.)

We are going to show that $E\left(W^{p} \chi_{A^{c}}\right) \leqq 2^{p+2} E\left(U^{p}\right)$ and hence that it is enough to take $\bar{W}=W \chi_{A^{c}}, W^{\prime}=W \chi_{A}$.

Suppose

$$
E\left(W^{p} \chi_{A^{c}}\right)>2^{p+2} E\left(U^{p}\right)
$$

From Lemma 5, we have $W^{2} \leqq 2\left(U^{2}+V^{2}\right)$, $W^{p} \leqq 2^{p-1}\left(U^{p}+V^{p}\right)$. Hence

$$
\begin{gather*}
2^{p+2} E\left(V^{2}\right)=E\left(W^{2} \chi_{A}\right) \leqq 2 E\left(U^{2} \chi_{A}+V^{2} \chi_{A}\right) \leqq 2 E\left(V^{2}\right)+2 E\left(U^{2} \chi_{A}\right) \tag{4.4}\\
\left(2^{p+1}-1\right) E\left(V^{2}\right) \leqq E\left(U^{2} \chi_{A}\right) .
\end{gather*}
$$

Similarly

$$
2^{p+2} E\left(U^{p}\right) \leqq E\left(W^{p} \chi_{A^{c}}\right) \leqslant 2^{p-1} E\left(U^{p} \chi_{A^{c}}+V^{p} \chi_{A^{c}}\right) \leqslant 2^{p-1} E\left(U^{p}\right)+2^{p-1} E\left(V^{p} \chi_{A^{c}}\right)
$$

So

$$
\begin{equation*}
7 E\left(U^{p}\right) \leqq E\left(V^{p} \chi_{A^{c}}\right) \tag{4.5}
\end{equation*}
$$

Now define

$$
B=A \cap\{U \geqq V\} \quad \text { and } \quad C=A^{c} \cap\{V \geqq U\} .
$$

So

$$
\begin{aligned}
& E\left(U^{2} \chi_{A \backslash B}\right) \leqq E\left(V^{2}\right) \\
& E\left(V^{p} \chi_{A^{c} \backslash C}\right) \leqq E\left(U^{p}\right)
\end{aligned}
$$

Hence, from (4.4) and (4.5)

$$
\begin{gather*}
\left(2^{p+1}-2\right) E\left(V^{2} \chi_{C}\right) \leqq\left(2^{p+1}-2\right) E\left(V^{2}\right) \leqq E\left(U^{2} \chi_{B}\right) \tag{4.6}\\
6 E\left(U^{p} \chi_{B}\right) \leqq 6 E\left(U^{p}\right) \leqq E\left(V^{p} \chi_{C}\right) \tag{4.7}
\end{gather*}
$$

On B, since $U \geqq V, U \geqq \frac{1}{2}(U+V)=\frac{1}{2} W$.
On C, since $V \geqq U, V \geqq \frac{1}{2}(U+V)=\frac{1}{2} W$.
Hence from (4.6) and (4.7)

$$
\begin{align*}
&\left(2^{p-1}-1\right) E\left(W^{2} \chi_{C}\right) \leqq\left(2^{p-1}-2\right) E\left(V^{2} \chi_{C}\right) \leqq E\left(U^{2} \chi_{B}\right) \leqq E\left(W^{2} \chi_{B}\right) \tag{4.8}\\
& 2^{-p+2} E\left(W^{p} \chi_{B}\right) \leqq 4 E\left(U^{p} \chi_{B}\right) \leqq E\left(V^{p} \chi_{C}\right) \leqq E\left(W^{p} \chi_{C}\right) . \tag{4.9}
\end{align*}
$$

Since $C \subset A^{c}$, we have $W \leqq \lambda$ on C and since $B \subset A, W \geqq \lambda$ on B. From (4.9) we get

$$
2^{-p+2} \lambda^{p-2} E\left(W^{2} \chi_{B}\right) \leqslant 2^{-p+2} E\left(W^{p} \chi_{B}\right) \leqq E\left(W^{p} \chi_{C}\right) \leqslant \lambda^{p-2} E\left(W^{2} \chi_{C}\right)
$$

So $2^{-p+2} E\left(W^{2} \chi_{B}\right) \leqq E\left(W^{2} \chi_{C}\right)$. Since $\left(2^{p-1}-1\right) 2^{-p+2}>1$, together with (4.8), this implies that $E\left(W^{2} \chi_{C}\right)=0$. Hence $V \leqq U$ on $A^{c} \cap\{W>0\}$, so $E\left(W^{p} \chi_{A^{c}}\right)$ $\leqq 2^{p} E\left(U \chi_{A^{c}}\right) \leqslant 2^{p} E\left(U^{p}\right)$ and this contradiction concludes the proof.

The following two lemmas prepare the basic Lemma 17.
Lemma 15. Let p and k be two integers. Let $\left(I_{i}\right)_{i \leqq k}$ be a disjoint family of sets such that $\frac{3}{5} p \leqq$ card $I_{i} \leqq 3 p$ for all i. Let $I=\bigcup_{i \leqq k} I_{i}$. Let $\left(a_{j}\right)_{j \in I}$ be a family of nonnegative real numbers. Let $\theta \geqq 0$. Suppose $\operatorname{Sup}_{j \in I} a_{j} \leqq \theta \mu$ where $\mu=\left(\sum_{j \in I} a_{j}\right) / p k$. Then there exist for $i \leqq k$ an element $j_{i} \in I_{i}$ such that $k \mu / 3 \leqq \sum_{i \leqq k} a_{j_{i}} \leqq(\theta+2 k) \mu$.
Proof. Let us pick by induction on $i \leqq k$ an element $j_{i} \in I_{i}$, such that

$$
\begin{align*}
& \text { If } \sum_{i<i} a_{j^{\prime}}<k \mu / 3, \quad \text { then } a_{j_{i}}=\operatorname{Sup}\left\{a_{j}: j \in I_{i}\right\} \tag{4.10}\\
& \text { If } \sum_{i<i} a_{j_{i^{\prime}}} \geqq k \mu / 3, \quad \text { then } a_{j_{i}}=\operatorname{Inf}\left\{a_{j} ; j \in I_{i}\right\} \tag{4.11}
\end{align*}
$$

Let i_{0} be the greatest integer such that $\sum_{i^{\prime}<i_{0}} a_{j_{i}}<k \mu / 3$. If $i_{0}<k$, then
$a_{i} \geq k \mu / 3$. If $i_{0}=k$, then $\sum_{i \leqq k} a_{j_{i}} \geqq k \mu / 3$. If $i_{0}=k$, then

$$
\sum_{i \leqq k} a_{j_{i}}=\sum_{i \leqq k} \sup \left\{a_{j} ; j \in I_{i}\right\} \geqq \frac{1}{3 p} \sum_{j \in I} a_{j} \geqq \frac{\mu k}{3}
$$

On the other hand,

$$
\begin{aligned}
\sum_{i \leqq k} a_{j_{i}} & =\sum_{i<i_{0}} a_{j_{i}}+a_{j_{i_{0}}}+\sum_{i>i_{0}} a_{j_{i}} \leqq \frac{k \mu}{3}+\theta \mu+\sum_{i \leqq k} \operatorname{Inf}\left\{a_{j} ; j \in I_{j}\right\} \\
& \leqq \frac{k \mu}{3}+\theta \mu+\frac{5}{3 p} \sum_{j \in I} a_{j} \leqq(\theta+2 k) \mu
\end{aligned}
$$

which concludes the lemma.
For $t \in \mathbb{R}$ we denote $[t]$ the largest integer $\leqslant t$.
Lemma 16. Let p and k be two integers. Let $\left(I_{i}\right)_{i \leq k}$ be a disjoint family of sets such that $p \leqq$ card $I_{i} \leqq 3 p$ for all i, and let $I=\bigcup_{i \leqq k} I_{i}$. Let $\left(a_{j}\right)_{j \in I}$ be a family of non-negative integers such that $\sup _{j \in I} a_{j} \leqq \theta \mu$, where $\mu=\left(\sum_{j \in I} a_{j}\right) / p k$. Then, if $r=\left[\frac{p}{2(\theta / k+2)}\right]$, there exist for each $i<k$ a family $\left(j_{i,}\right)_{l \leqq r}$ of $\stackrel{j \in I}{\text { distinct elements of }}$ I_{j} such that for all $l \leqq r$

$$
\frac{k \mu}{6} \leqq \sum_{i \leqq k} a_{j_{i, l}} \leqq(\theta+2 k) \mu
$$

Proof. The construction goes by induction on $l \leqq r$. Note that $r \leqq p / 4 \leqq \frac{2}{5} p$. If the points $j_{i, l^{\prime}}$ have been constructed for all $i \leqq k$ and $l^{\prime}<l$, set I_{i}^{l} $=I_{i} \backslash\left\{\dot{j}_{i, l}, \ldots, j_{i, l-1}\right\}$ and $I^{l}=\bigcup_{i \leq k} I_{i}^{l}$. We have

$$
\frac{3 p}{5} \leqq p-l \leqq \operatorname{card} I_{i}^{l} \leqq 3 p
$$

Moreover

$$
\frac{\mu p k}{2} \leqq \mu p k-\mu(\theta+2 k) r \leqq \sum_{j \in I} a_{j}-\sum_{\substack{l \leq l \\ i \leqq k}} a_{j_{i, i}}=\sum_{j \in I^{l}} a_{j} \leqq \mu p k
$$

hence, if $\mu^{\prime}=\left(\sum_{j \in I^{I}} a_{j}\right) / p k, \frac{\mu}{2} \leqq \mu^{\prime} \leqq \mu$. Then the existence of the family $\left(j_{i, l}\right)_{i \leqq k}$ follows from Lemma 5 which concludes the proof.

The following lemma will be essential to sharpen the blocking methods. It is one of the main ideas of this paper.
Lemma 17. Let q and k be two integers, with $8 k \leqq q$ and $k \geqq 5$. Let $\left(a_{i}\right)_{i \leqq q}$, $\left(f_{i}^{\tau}\right)_{i \leq q}, \tau=1,2,3,4$ five families of non-negative real numbers. Let θ be a real, $\theta \geqq k$. Set $\mu=q^{-1}\left(\sum_{i \leqq q} a_{i}\right)$. Suppose

$$
\begin{equation*}
\sum_{a_{i} \geqq \theta \mu} a_{i} \leqq \frac{1}{2} \sum_{i \leqq q} a_{i} . \tag{4.12}
\end{equation*}
$$

Then there exist integers $j_{1}, \ldots, j_{k} \in[1, q]$ such that the following properties are satisfied if we set $j_{0}=1, j_{k+1}=q$.

$$
\begin{gather*}
\text { For all } 0 \leqq l \leqq k, \quad j_{l+1}-j_{l} \geqq 2 \tag{4.13}\\
\text { For all } 0 \leqq l \leqq k, \tag{4.14}
\end{gather*} j_{l+1}-j_{l} \leqq \frac{3 q}{k} .
$$

$$
\begin{gather*}
\frac{k \mu}{18} \leqq \sum_{l=1}^{k} a_{j_{l}} \leqq 3(3 \theta+2 k) \mu . \tag{4.15}\\
\text { For } \tau=1,2,3,4, \quad \sum_{i \leqq k} f_{j_{l}}^{\tau} \leqq \frac{30(3 \theta+2 k)}{q} \sum_{i \leqq q} f_{i}^{\tau} . \tag{4.16}
\end{gather*}
$$

Proof. 1st Step: We are going to show that there exist $I_{1}, I_{2}, \ldots, I_{k}$ such that if $p=\left[\frac{q-q / k}{2 k-1}\right]$ the following conditions are satisfied:

$$
\begin{align*}
& \text { For } 1 \leqq i \leqq k-1, \quad l \in I_{i}, l^{\prime} \in I_{i+1} \Rightarrow l^{\prime}-l \geqq 2 \tag{4.17}\\
& \text { For } 1 \leqq i \leqq k-1, \quad l \in I_{i}, l^{\prime} \in I_{i+1} \Rightarrow l^{\prime}-l \leqq \frac{3 q}{k} \tag{4.18}
\end{align*}
$$

$$
\begin{gather*}
\text { For } 1 \leqq i \leqq k-1, \quad p \leqq \operatorname{card} I_{i} \leqq 3 p \tag{4.19}\\
\qquad \sum_{i \in I} a_{i} \geqq \frac{\mu q}{3}, \quad \text { where } I=\bigcup_{i=1}^{k} I_{i} . \tag{4.20}\\
i \in I \Rightarrow a_{i} \leqq \theta \mu . \tag{4.21}
\end{gather*}
$$

It is easily checked that $\frac{q}{3 k} \leqq p \leqq \frac{q}{2 k}$ (and hence $p \geqq 3$).
Let $J=\left\{i \in[1, q] ; a_{i} \leqq \theta \mu\right\}$. Since $\theta \geqq k$, it follows that $\operatorname{card} J \geqq q-\frac{q}{k}$. Moreover (4.12) implies that $\sum_{i \in J} a_{i} \geqq \frac{\mu q}{2}$. Since $p(2 k-1) \leqq$ card J, we can enumerate in a increasing way the first $p(2 k-1)$ elements of J by $n_{1}, \ldots, n_{p(2 k-1)}$. For $1 \leqq l \leqq k-1$, let $J_{l}=\left\{n_{i}, p(2 l-1) \leqq i<2 p l\right\}$. For each $1 \leqq l \leqq k-1$, let $i_{l} \in J_{l}$ such that $a_{i_{1}}=\operatorname{Inf}\left\{a_{i} ; i \in J_{l}\right\}$.

Then $p a_{i_{1}} \leqq \sum_{i \in I_{l}} a_{i}$ and hence $\sum_{l=1}^{k-1} a_{i_{1}} \leqq \frac{1}{p} \sum_{i \in J} a_{i}$. Now set $i_{0}=0, i_{k}=q$, set I_{l} $=] i_{l-1}, i_{l}\left[\cap J\right.$ for $1 \leqq l \leqq k, I=\bigcup_{l} I_{l}$ and let us check (4.17) to (4.20). First, (4.17) is obvious. If $1 \leqq s \leqq k-1 ; l \in I_{s}, l^{\prime} \in I_{s+1}$, we have, since $i_{s} \in J_{s}, i_{s-1} \in J_{s-1}$:

$$
l^{\prime}-l \leqq i_{s}-i_{s-1} \leqq n_{2 p s}-n_{p(2 s-3)}
$$

But since card $\{[1, q] \backslash J\} \leqq q / k$ it is clear that $n_{2 p s}-n_{p(2 s-3)} \leqq 3 p+\frac{q}{k} \leqq \frac{3 q}{k}$ which shows (4.19). It is obvious that $p \leqq \operatorname{card} I_{l} \leqq 3 p$ for each l. Finally, (4.20) comes from the fact that $\sum_{i \in I} a_{i}=\sum_{i \in J} a_{i}-\sum_{l=1}^{k} a_{i} \geqq \sum_{i \in J} a_{i}-\frac{1}{p} \sum_{i \in J} a_{i} \geqq \frac{2}{3} \sum_{i \in J} a_{i} \geqq \frac{\mu q}{3}$. 2nd Step: Let $\mu^{\prime}=\frac{1}{k p} \sum_{i \in J} a_{j}$. Then $\frac{\mu}{3} \leqq \mu^{\prime} \leqq 3 \mu$ since $k p \geqq \frac{q}{3}$. For each $j \in J$, we have $a_{j} \leqq \theta \mu \leqq 3 \theta \mu^{\prime}$. Set $r=\left[\frac{q}{6(3 \theta+2 k)}\right]$. If $r \leqq 4$ then (4.16) is automatically satisfied and it is easy to conclude. If $r \geqq 1$, then it follows from Lemma 16 that for all
$i \leqq k$, there exists a family $\left(j_{i, t}\right)_{l \leqq r}$ of distinct elements of I_{i} such that for all $l \leqq r$

$$
\frac{k \mu}{18} \leqq \sum_{i \leqq k} a_{j_{i, i}} \leqq 3(3 \theta+2 k) \mu
$$

Let $A_{\tau}=\left\{l \leqq r, \quad \sum_{i \leqq k} f_{j i, l}^{\tau}>\frac{4}{r} \sum_{i \leqq n} f_{i}^{\tau}\right\}$. Then card $A_{\tau}<\frac{r}{4}$. Hence there exist $l_{0} \leqq r$ such that $l_{0} \notin A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$. If we set $j_{l}=j_{i, l_{0}}$ for $i \leqq k$, then it is clear that (4.15) and (4.16) are satisfied, since $r \geqq\left[\frac{q}{6(3 \theta+2 k)}\right] \geqq 4$ and hence $\frac{1}{r} \leqq \frac{15(3 \theta+2 k)}{2 q}$.

We gave rather precise bounds in Lemma 17, because we feel that it is of independant interest, and that this can be done at a negligable extra cost. In the sequel we shall use it with $\theta=K_{6} k$, where K_{6} is a universal constant to be defined later. Hence there is a universal constant K_{5} such that (4.15) and (4.16) become

$$
\begin{gather*}
\quad K_{5}^{-1} \frac{k}{q} \sum_{i \leqq q} a_{i} \leqq \sum_{l \leqq k} a_{i_{l}} \leqq K_{5} \frac{k}{q_{i \leqq q}} \sum_{i \leqq} a_{i} \tag{4.22}\\
\text { for } \tau=1,2,3,4, \quad \sum_{l \leqq k} f_{i_{l}}^{\tau} \leqq K_{5} \frac{k}{q_{i \leqq q}} \sum_{i \leqq} f_{i_{l}}^{\tau} . \tag{4.23}
\end{gather*}
$$

5. Bounds for \boldsymbol{m}-Dependent Random Variables

Let X_{1}, \ldots, X_{n} be a sequence of m-dependent random variables with mean zero. Suppose that for each i we have a decomposition $X_{i}=\bar{X}_{i}+X_{i}^{\prime}$ as in Sect. III. Let

$$
\begin{gathered}
b=\sum_{i \leqq n} E\left\|X_{i}^{\prime}\right\|^{2}, \quad c=\sum_{i \leqq n} E\left\|\bar{X}_{i}\right\|^{3}, \quad d=\sum_{i \leqq n} E\left\|\bar{X}_{i}\right\|^{7 / 2}, \\
e=\sum_{i \leqq n}\left(E\left\|X_{i}^{\prime}\right\|^{2}\right)^{7 / 4}, \quad \bar{B}=\sum_{i \leqq n} E\left\|X_{i}\right\|^{2}, \quad B=E\left\|\sum_{i \leqq n} X_{i}\right\|^{2} .
\end{gathered}
$$

Let T be a Gaussian random variable with the same covariance as $X=\sum_{i \leqq n} X_{i}$. Suppose that for $s, \delta \geqq 0, \quad P(s \leqq\|T\| \leqq s+\delta) \leqq G \delta$. Set $\quad A=\sup \mid P(\|X\| \leqq t)$ $-P(\|T\| \leqq t) \mid$.

Theorem 18.

$$
\begin{aligned}
\Delta \leqq & K\left(R^{4 / 3} m^{1 / 3} G^{2 / 3} b^{1 / 3}+R^{10 / 9} m^{4 / 9} G^{8 / 9} \bar{B}^{1 / 9} c^{2 / 9}\right. \\
& \left.+R^{8 / 9} m^{10 / 27} G^{20 / 27} \bar{B}^{1 / 9}\left(d+f^{\prime}\right)^{4 / 27}\right)
\end{aligned}
$$

where K is a universal constant.
Proof. Let $q=[n / m]+1$. For $1 \leqq i \leqq q-1$, let $A_{i}=\sum_{j=m(i-1)+1}^{m i} X_{j}, \quad A_{q}$ $=\sum_{j=m(q-1)+1}^{n} X_{j}$. Let $a_{i}=E\left\|A_{i}\right\|^{2}$. Let k be an integer, which will be chosen
later, such that $5 \leqq k$ and $8 k \leqq q$. By a much simpler form of Lemma 17, which is used by Egorov [1], and that we leave to the reader, there exist $i_{1}, \ldots, i_{k} \leqq q$ satisfying (4.17) and (4.18) and $\sum_{l \leqq k} a_{i_{i}} \leqq K_{5} \frac{k}{q_{i \leqq q}} a_{i}$. Let, for $j \leqq k, Z_{j}=A_{i_{j}}$ and for $j \leqq k+1, Y_{j}=\sum_{i_{j-1}<l<i_{j}} A_{l^{\prime}}$. Since the X_{i} are m-dependent, the $\left(Z_{j}\right)_{j \leqq k}$ and the $\left(Y_{j}\right)_{j \leqq k+1}$ are independent. Let $Z=\sum_{j \leqq k} Z_{j}, Y=\sum_{j \leqq k+1} Y_{j}$. Since $X=Y+Z$, it follows from Lemma 13 that one can write $T=U+V$, where U and V are Gaussian and have the same covariance as Y and Z respectively.

For $t \in \mathbb{R}$ one has
$P(\|X\| \leqq t)-P(\|T\| \leqq t) \leqq P(\|Y\| \leqq t+\varepsilon)+P(\|Z\| \leqq \varepsilon)-P(\|U\| \leqq t-\varepsilon)+P(\|V\| \leqq \varepsilon)$
so

$$
P(\|X\| \leqq t)-P(\|T\| \leqq t) \leqq 2 \varepsilon G+P(\|Z\| \leqq \varepsilon)+P(\|V\| \leqq \varepsilon)+\Delta^{\prime}
$$

where $A^{\prime}=\sup |P(\|Y\| \leqq t)-P(\|U\| \leqq t)|$. Similar estimates in the other direction give

$$
\begin{equation*}
\Delta \leqq 2 \varepsilon G+P(\|Z\| \leqq \varepsilon)+P(\|V\| \leqq \varepsilon)+\Delta^{\prime} \tag{5.2}
\end{equation*}
$$

From Lemmas 12 and 14, it is clear that one can write for all $j Y_{j}=\bar{Y}_{j}+Y_{j}^{\prime}$, where $\left\|\vec{Y}_{j}\right\|\left\|Y_{j}^{\prime}\right\|=0$, and

$$
\begin{gather*}
\sum_{j \leqq k+1} E\left\|Y_{j}^{\prime}\right\|^{2} \leqq K_{3} K_{4} m R b \tag{5.3}\\
\sum_{j \leqq k+1} E\left\|\bar{Y}_{j}\right\|^{3} \leqq 3^{1 / 2} K_{3} K_{4}\left(\frac{q}{k}\right)^{1 / 2} m^{3 / 2} R^{3 / 2} c \tag{5.4}\\
\sum_{j \leqq k+1} E\left\|\bar{Y}_{j}\right\|^{7 / 2} \leqq 3^{3 / 4} K_{3} K_{4}\left(\frac{q}{k}\right)^{3 / 4} m^{7 / 4} R^{7 / 4} d . \tag{5.5}
\end{gather*}
$$

With some easy computations using Lemma 5:

$$
\begin{equation*}
\sum_{j \leqq k+1}\left(E\left\|Y_{j}^{\prime}\right\|^{2}\right)^{7 / 4} \leqq 3^{3 / 4} K_{1}^{7 / 4} K_{2}^{7 / 4}\left(\frac{q}{k}\right)^{3 / 4} m^{7 / 4} R^{7 / 4} e \tag{5.6}
\end{equation*}
$$

Hence Theorem 10 shows that there exists a universal constant K_{14} with

$$
\begin{align*}
\Delta^{\prime} \leqq & K_{14}\left(M_{V}+\left(\frac{q}{k}\right)^{1 / 6} m^{1 / 2} R^{4 / 3} c^{1 / 3} G+m^{1 / 3} R^{4 / 3} b^{1 / 3} G^{2 / 3}\right. \\
& \left.+\left(\frac{q}{k}\right)^{1 / 6} m^{7 / 18} R(d+e)^{2 / 9} G^{7 / 9}\right) \tag{5.7}
\end{align*}
$$

Let $\tilde{B}=\sum_{i \leqq q} a_{i}$. We have $E\|Z\|^{2} \leqq K_{5} \frac{k}{q} \tilde{B}$. Moreover, since V is Gaussian with the same covariance as $Z, E\|V\|^{2} \leqq R E\|Z\|^{2}$. Hence

$$
P(\|V\| \leqq \varepsilon) \leqq \frac{K_{5}}{\varepsilon^{2}} \frac{k}{q} R \tilde{B}
$$

So we get

$$
M_{V}=\operatorname{Inf}_{\varepsilon}(G \varepsilon+P(\|V\| \leqq \varepsilon)) \leqq 2 K_{5}^{1 / 3}\left(\frac{k}{q}\right)^{1 / 3} R^{1 / 3} \tilde{B}^{1 / 3} G^{2 / 3}
$$

by taking $\varepsilon^{3}=K_{5} \frac{k}{q} m R \bar{B} G^{-1}$.
Since (5.1) is true for all ε; and $P(\|Z\| \leqq \varepsilon) \leqq \frac{K_{5}}{\varepsilon^{2}} \frac{k}{q} \tilde{B}$ we get, with K_{15} $=2 K_{5}^{1 / 3} K_{14}$

$$
\begin{align*}
\Delta \leqq & K_{15}\left(\left(\frac{k}{q}\right)^{1 / 3} R^{1 / 3} \tilde{B}^{1 / 3} G^{2 / 3}+\left(\frac{q}{k}\right)^{1 / 6} m^{1 / 2} R^{4 / 3} c^{1 / 3} G\right. \\
& \left.+\left(\frac{q}{k}\right)^{1 / 6} m^{7 / 18} R(d+e)^{2 / 9} G^{7 / 9}+m^{1 / 3} R^{4 / 3} b^{1 / 3} G^{2 / 3}\right) \tag{5.8}
\end{align*}
$$

Let

$$
\begin{equation*}
k=\left[q\left(m^{1 / 2} R \tilde{B}^{-1 / 3} c^{1 / 3} G^{1 / 3}+m^{7 / 18} R^{2 / 3} \tilde{B}^{-1 / 3} G^{1 / 9}(d+e)^{2 / 9}\right)^{2}\right] . \tag{5.9}
\end{equation*}
$$

We shall not prove in details that if K_{15} is large enough one can suppose $k \geqq 5$ and $8 k \leqq q$. The argument is rather tedious. The method is to show that if $k<4$ or $8 k>q$ the right-hand side of (5.1) is $\geqslant 1$, which needs a lot of calculations. It uses the fact that since $P\left(\|T\|^{2} \geqq 2 E\|T\|^{2}\right) \leqq \frac{1}{2}$ we have

$$
\frac{1}{2} \leqq P\left(\|T\| \leqq\left(2 E\|T\|^{2}\right)^{1 / 2}\right) \leqq\left(2 E\|T\|^{2}\right)^{1 / 2} G
$$

and hence $1 \leqq 8 E\|T\|^{2} G^{2}$.
We have $\tilde{B} \leqq K_{3} m R \dot{B}$. If $t \geqq 4$, then $\frac{4 t}{5} \leqq[t] \leqq t$. Moreover, for $a, b>0$, we have $(a+b)^{-1} \leqq a^{-1}+b^{-1}$. If we use these elementary inequalities it is easy to substitute (5.9) into (5.8) to get (5.11). Q.E.D.

Let us now specialize this result. Suppose that we have a sequence $\left(X_{i}\right)$ of m-dependent random variables, with $\sup _{i} E\left\|X_{i}\right\|^{7 / 2}<\infty$. Let $B_{n}=E\left\|\sum_{i \leqq n} X_{i}\right\|^{2}$. Let T_{n} be a Gaussian random variable with same covariance as the covariance of $B_{n}^{-1 / 2}\left(\sum_{i \leqq n} X_{i}\right)$. Suppose T_{n} satisfies (1.2) with a constant G_{n}. Then

$$
\Delta_{n}=\sup _{i}\left|P\left(B_{n}^{-1 / 2}\left\|\sum_{i \leqq n} X_{i}\right\|<t\right)-P\left(\left\|T_{n}\right\|<t\right)\right|=O\left(n^{1 / 3} B_{n}^{-4 / 9}\left(G_{n}^{8 / 9}+G_{n}^{20 / 27}\right)\right) .
$$

In the optimal case where $B_{n} \geqq \alpha n$ and G_{n} is bounded, then $\Delta_{n}=O\left(n^{-1 / 9}\right)$.
We are now going to show that under stronger hypothesis, we can establish an estimate for Δ which will give a sharper order of convergence. Let us assume the following
"There exists R^{\prime} such that for each F-valued random variable X in L_{F}^{2}, the unique Gaussian random variable T with the same covariance as X satisfies $E\|X\|^{2} \leqq R^{\prime} E\|T\|^{2}$ "

From the proof of Proposition (3.3) in [6], one sees that this assumption is equivalent to say that F is of co-type 2 . Hence by known results, F is isomorphic to a Hilbert space. But since the definition of Δ heavily depends on the
norm there is some extra generality by not assuming F to be isometric to a Hilbert space.

For a Gaussian random variable satisfying (1.2) let $G(T)$ be the smallest possible constant. We have, for $a>0, G(a T)=a^{-1} G(T)$. We have shown in the preceeding proof that $G^{2}(T) E\|T\|^{2} \geqq \frac{1}{8}$. It is easy to show, even in Hilbert spaces that $G^{2}(T) E\|T\|^{2}$ can be large. It is also possible to show in Hilbert space that $G^{2}(T) E\|T\|^{2}$ remains bounded when T belongs to a finite dimensional vector space.

Let us keep the notations of Theorem 18 and its proof. For $i \leqq q-1$, let C_{i} be a Gaussian random variable with the same covariance as A_{i}, and such that the C_{i} are independent. Let us assume that there exists L such that

$$
\begin{equation*}
\text { for all } \alpha_{1}, \ldots, \alpha_{q-1} \in \mathbb{R}, \quad G^{2}\left(\sum_{i \leqq q-1} \alpha_{i} C_{i}\right) E\left\|\sum_{i \leqq q-1} \alpha_{i} C_{i}\right\|^{2} \leqq L \tag{5.11}
\end{equation*}
$$

Theorem 19. Under these assumptions

$$
\begin{align*}
\Delta \leqq & K^{\prime}\left(N ^ { 1 / 2 } \overline { B } ^ { 1 / 8 } (\operatorname { L o g } Q) ^ { 1 / 8 } \left(R^{13 / 8} R^{\prime 3 / 4} m^{5 / 8} c^{1 / 4}+R^{13 / 12} R^{1 / 24} m^{5 / 12}(d+e)^{1 / 6}\right.\right. \\
& \left.+R^{3 / 2} R^{\prime 1 / 3} m^{1 / 3} N^{1 / 3} b^{1 / 3}\right) \tag{5.12}
\end{align*}
$$

where $N=G^{2}+L B^{-1}$

$$
Q=3+\left(\bar{B}^{1 / 8} N^{1 / 2}\left(m^{5 / 8} c^{1 / 4}+m^{5 / 12}(d+e)^{1 / 6}\right)\right)^{-1}
$$

and K^{\prime} is a universal constant.
Proof. From Lemmas 12 and 14 we can write $A_{i}=\bar{A}_{i}+A_{i}^{\prime}$, where $\left\|\bar{A}_{i}\right\|\left\|A_{j}^{\prime}\right\|=0$, the $\left(\bar{A}_{i}\right)$ are independent and the $\left(A_{i}^{\prime}\right)$ are independent, and such that

$$
\begin{gather*}
\sum_{i \leqq q} E\left\|A_{i}^{\prime}\right\|^{2} \leqq K_{3} K_{4} m R b \tag{5.13}\\
\sum_{i \leqq q} E\left\|\bar{A}_{i}\right\|^{3} \leqq K_{3} K_{4} m^{2} R^{3 / 2} c \tag{5.14}\\
\sum_{i \leqq q} E\left\|\bar{A}_{i}\right\|^{7 / 2} \leqq K_{3} K_{4} m^{5 / 2} R^{7 / 4} d \tag{5.15}\\
\sum_{i \leqq q}\left(E\left\|A_{i}^{\prime}\right\|^{2}\right)^{7 / 4} \leqq K_{3} K_{4} m^{5 / 2} R^{7 / 4} e \tag{5.16}
\end{gather*}
$$

Let k be an integer such that $5 \leqq k$ and $5 k \leqq q$, which will be specified later. Let $I=\left\{i \leqq q ; a_{i} \geqq \frac{k}{q} \sum_{i \leqq q} a_{i}\right\}$. The choice of k will also be such that $\sum_{i \in I} a_{i} \leqq \frac{1}{2} \sum_{i \leqq q} a_{i}$. Then let i_{1}, \ldots, i_{k} the integers given by Lemma 17. Define $Z_{i}, Y_{i}, Y_{i}, Y_{i}^{\prime}$ as in the proof of Theorem 18. We have for all $\varepsilon>0$.

$$
\Delta \leqq 2 \varepsilon G+P(\|Z\| \leqq \varepsilon)+P(\|V\| \leqq \varepsilon)+\Delta^{\prime}
$$

We have

$$
P(\|Z\| \leqq \varepsilon) \leqq P(\|V\| \leqq \varepsilon)+\Delta^{\prime \prime}
$$

where $\Delta^{\prime \prime}=\sup |P(\|Z\| \leqq t)-P(\|V\| \leqq t)|$.

Let $\tilde{B}=\sum_{i \leqq q}^{t} a_{i}, \quad B=E\left\|\sum_{i \leq n} X_{i}\right\|^{2}$. Since the A_{i} are 1-dependent, we have $B \leqq K_{3} R \tilde{B}$, and $\tilde{B} \leqq K_{3} m R R^{i \leq n}$

$$
\begin{aligned}
& E\|Z\|^{2}=\sum_{l \leqq k} a_{i_{1}} \leqq K_{5} \frac{k}{q} \tilde{B} \\
& E\|Z\|^{2} \geqq K_{5}^{-1} \frac{k}{q} \tilde{B} \geqq\left(K_{3} K_{5}\right)^{-1} \frac{k}{q} R^{-1} B
\end{aligned}
$$

By (5.10) one had $E\|V\|^{2} \geqq R^{\prime-1} E\|Z\|^{2}$, so by hypothesis (5.11)

$$
G^{2}(Z) \leqq K_{3} K_{5} R R^{\prime} L B^{-1}\left(\frac{q}{k}\right)
$$

Now, from (4.23), (5.13) to (5.16) and Theorem 10, one sees that there exists a universal constant K_{17} such that

$$
\begin{align*}
\Delta^{\prime} \leqq K_{17} & \left(R^{3 / 2} R^{1 / 3} m^{1 / 3}\left(L B^{-1}\right)^{1 / 3} b^{1 / 3}+R^{11 / 6} R^{\prime 1 / 2} m^{2 / 3}\left(L B^{-1}\right)^{1 / 2} c^{1 / 3}\left(\frac{q}{k}\right)^{1 / 6}\right. \\
& \left.+R^{25 / 18} R^{7 / 18} m^{7 / 18}\left(L B^{-1}\right)^{7 / 18}(d+e)^{2 / 9}\left(\frac{q}{k}\right)^{1 / 6}\right) \tag{5.17}
\end{align*}
$$

We have $\Delta \leqq 2 M_{V}+\Delta^{\prime}+\Delta^{\prime \prime}$. We have

$$
P(\|V\| \geqq \varepsilon) \leqq \exp \left(-\frac{\varepsilon^{2}}{K_{2}\|V\|_{2}}\right) \leqq \exp \left(-\frac{\varepsilon^{2}}{K_{2} K_{3} K_{5} \frac{k}{q} R \tilde{B}}\right)
$$

Let $K_{18}=\left(K_{2} K_{3} K_{5}\right)^{1 / 2}$. We have $M_{V} \leqq G \varepsilon_{0}+P\left(\|V\| \geqq \varepsilon_{0}\right)$ for

$$
\varepsilon_{0}=K_{18}\left(\frac{k}{q}\right)^{1 / 2} R \tilde{B}^{1 / 2}(\log Q)^{1 / 2}
$$

where $N=G^{2}+L B^{-1}$ and

$$
Q=3+\left(\tilde{B}^{1 / 8} N^{1 / 2}\left(m^{1 / 2} c^{1 / 4}+m^{7 / 24}(d+e)^{1 / 6}\right)\right)^{-1}
$$

Since $R \geqq 1, R^{\prime} \geqq 1$, we get by substitution, and from (5.7) and (5.17) (using Lemma 4 again), that there exists a universal constant K_{19} such that

Now let

$$
\begin{align*}
\Delta \leqq K_{19} & \left(\left(\frac{k}{q}\right)^{1 / 2} R^{1 / 2} \tilde{B}^{1 / 2} G(\log Q)^{1 / 2}+Q^{-1}+R^{3 / 2} R^{1 / 3} m^{1 / 3} N^{1 / 3} b^{1 / 3}\right. \\
& +R^{11 / 6} R^{1 / 2} m^{2 / 3} N^{1 / 2} c^{1 / 3}\left(\frac{q}{k}\right)^{1 / 6} \tag{5.18}\\
& \left.+R^{25 / 18} R^{17 / 18} m^{7 / 18} N^{7 / 18}(d+e)^{2 / 9}\left(\frac{q}{k}\right)^{1 / 6}\right)
\end{align*}
$$

$$
\begin{align*}
k= & {\left[q \tilde { B } ^ { - 3 / 4 } (\operatorname { l o g } Q) ^ { - 3 / 4 } \left(R^{2} R^{3 / 4} m N^{3 / 4} G^{-3 / 2} c^{1 / 2}+R^{4 / 3} R^{17 / 12} m^{7 / 12} N^{7 / 12} G^{-7 / 6}\right.\right.} \\
& \left.(d+e)^{1 / 6}\right] . \tag{5.19}
\end{align*}
$$

Long and tedious computations show that if we suppose K^{\prime} large enough, (5.12) is automaticly satisfied of $k \leqq 5$ or $8 k \geqq q$. Still worse computations show that there exists a universal constant K_{6} such that if the right-hand side of (5.1) is $\leqslant 1$ and if

$$
I=\left\{i \leqq q^{\prime}: a_{i} \geqq K_{6} \frac{k}{q} \tilde{B}\right\} \quad \text { we have } \sum_{i \in I} a_{i} \leqq \frac{1}{2} \tilde{B}
$$

Now we substitute (5.19) into (5.18) we use the facts that $\tilde{B} \leqq K_{3} m R \bar{B}$ and the function $t \rightarrow t \log \left(3+a t^{-1}\right)$ is increasing in R^{+}. Then we obtain (5.12). Q.E.D.

To see what is the order of convergence obtained in the best cases let us for example suppose that X_{n} is a Hilbert-space valued sequence of m-dependent random variables, such that $\sup _{n} E\left\|X_{n}\right\|^{3 / 2}<\infty$. Let $B_{n}=E\left\|\sum_{i \leqq n} X_{i}\right\|^{2}$, and G_{n} be the constant associated in (1.2) with the Gaussian random variable T_{n} of the same covariance as $B_{n}^{-1 / 2} \sum_{i \leqq n} X_{i}$. Suppose that there exists a Gaussian random variable T^{\prime} such that for all $p, \sum_{1=p}^{p+m} X_{i}$ has the same covariance as $\alpha_{i} T\left(\alpha_{i} \in \mathbb{R}\right)$. Then (5.11) holds, and Theorem 19 gives

$$
\begin{aligned}
A_{n} & \left.=\sup _{t} \mid P\left(B_{n}^{-1 / 2}\left\|\sum_{i \leqq n} X_{i}\right\|<t\right)-P\left(\left\|T_{n}\right\|\right)<t\right) \mid \\
& =O\left(G_{n}\left(n^{3 / 2} B_{n}^{-1 / 2}+n^{7 / 24} B_{n}^{-10 / 24}\right)\left(\log Q_{n}^{1 / 8}\right)\right.
\end{aligned}
$$

where

$$
Q_{n}=3+\left(G_{n}\left(n^{3 / 8} B_{n}^{-1 / 2}+n^{7 / 24} B_{n}^{-10 / 24}\right)^{-1}\right)
$$

Hence in the good case where G_{n} is bounded and $B_{n} \geqq \alpha n$, we get Δ_{n} $=O\left(n^{-1 / 8}(\log n)^{1 / 8}\right)$. Hence, due to the use of an optimal blocking method, through Lemma 17, this result is comparatively sharp.

References

1. Egorov, V.A.: Some limit theorems for m-dependent random variables. Litovsk. Math. Sb .10 , 51-59 (1970) (in Russian)
2. Fernique, X.: Intégrabilité des vecteurs gaussiens, C.R. Acad. Sci. Paris, Série A, 270, 16981699 (1970)
3. Feller, W.: On the Berry Esseen theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 10, 261268 (1968)
4. Fortet, R., Mourier, E.: Les fonctions aléatoires comme éléments aléatoires dans les espaces de Banach. Studia Math. 19, 62-79 (1955)
5. Hoffman-Jørgensen, J.: Sums of independent Banach space valued random variables. Studia Math. 52, 159-185 (1974)
6. Hoffman-Jørgensen, J., Pisier, G.: The law of large numbers and the central limit theorem in Banach spaces. Ann. Probability 4, 587-599 (1976)
7. Kahane, J.P.: Seminaire Maurey-Schwartz, 1972/1973
8. Kuelbs, J.: An inequality for the distribution of a sum of certain Banach space valued random variables. Studia Math. 52, 69-87 (1974)
9. Kuelbs, J., Kurtz, T.: Berry-Esseen estimates in Hilbert space and an application to the law of the iterated logarithm. Ann. Probability 2, 387-407 (1973)
10. Loève, M.: Probability theory, 4th edition. Princeton: Van Nostrand, 1973
11. Paulaskas, V.I.: On the rate of convergence in the central limit theorem in certain Banach spaces. Theor. Probability Appl. 21, 754-769 (1976)
12. Rhee, W.: Studies on the rate of convergence in the central limit theorem. Dissertation, Kent State University 1979

Received May 7, 1980

[^0]: * This work contains a sharpened version of part of the results of the doctoral dissertation of the first author.
 ** The contribution of the second author to this work was made while he held a grant from NATO to visit Ohio State University.

