Z. Wahrscheinlichkeitstheorie verw. Geb. 15, 177 – 179 (1970) © by Springer-Verlag 1970

A Dissipative Transformation with a Trivial Tail-Algebra

F.H. SIMONS

Summary. In [1], an example was given of a measure-preserving dissipative transformation T in a σ -finite measure space (X, \mathcal{R}, μ) , such that T is conservative in the measure space $(X, \mathcal{R}_{\infty}, \mu)$ where $\mathcal{R}_{\infty} = \bigcap_{n=0}^{\infty} T^{-n} \mathcal{R}$. Here we shall show that for this transformation we actually have $\mathcal{R}_{\infty} = \{\emptyset, X\} [\mu]$.

For every integer *n* let I_n be the set $\{(x, n) | 0 \le x < 1\}$, \mathcal{R}_n be the σ -algebra of Borelsets in I_n and μ_n be the Lebesgue measure on (X_n, \mathcal{R}_n) . Define

$$X = \bigcup_{n=-\infty}^{+\infty} I_n$$

$$\mathscr{R} = \{A \mid \forall_n (A \cap I_n \in \mathscr{R}_n)\}$$

$$\mu(A) = \sum_{n=-\infty}^{+\infty} \mu_n (A \cap I_n) \quad \text{for all } A \in \mathscr{R},$$

then (X, \mathcal{R}, μ) is a σ -finite measure space.

For $(x, n) \in X$ define

$$T(x,n) = \begin{cases} (2x, n+1) & \text{if } 0 \le x < \frac{1}{2} \\ (2x-1, n+2) & \text{if } \frac{1}{2} \le x < 1, \end{cases}$$

then T is a measurable measure-preserving transformation in (X, \mathcal{R}, μ) , and since each of the sets I_n is wandering, T is dissipative.

Let \mathscr{L} be the class of all functions f on X such that f is integrable on each interval I_n . If f is \mathscr{R}_{∞} -measurable, f is $T^{-k}\mathscr{R}$ -measurable for every $k \ge 0$; therefore for every $k \ge 0$ we must have for every sequence $(b_{k+1}, b_{k+2}, ...)$ with $b_i = 0$ or $b_i = 1$

$$f\left(\sum_{i=1}^{k} \frac{a_i}{2^i} + \sum_{i=k+1}^{\infty} \frac{b_i}{2^i}, n\right) = f\left(\sum_{i=1}^{k} \frac{a_i'}{2^i} + \sum_{i=k+1}^{\infty} \frac{b_i}{2^i}, n'\right)$$
(1)

as soon as $n + \sum_{i=1}^{k} a_i = n' + \sum_{i=1}^{k} a'_i$, where a_i and a'_i are 0 or 1.

We shall prove the triviality of \mathscr{R}_{∞} by showing that every \mathscr{R}_{∞} -measurable function $f \in \mathscr{L}$ necessarily must be constant almost everywhere on X. Because of (1) it is sufficient to show that such a function is almost everywhere constant on any of the intervals I_n .

Let $[a_1 \dots a_k]$ $(a_i = 0 \text{ or } a_i = 1)$ denote the dyadic interval of those points of I_n for which the dyadic expansion starts with $a_1 \dots a_k$. For any $f \in \mathscr{L}$ which is \mathscr{R}_{∞} -measurable we first show

$$\int_{[a_1...a_k 0]} f d\mu_n = \int_{[a_1...a_k 1]} f d\mu_n.$$
 (2)

12 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 15

For any natural number m we have

$$\begin{aligned} & \left| \int_{[a_1...a_k 0[} f d\mu_n - \int_{[a_1...a_k 1[} f d\mu_n] \right| \\ &= \left| \sum_{[a_1...a_k 0]} \int_{[a_1...a_k 0]} f d\mu_n - \sum_{[a_1...a_k 1]} \int_{[a_1...a_k 1]} f d\mu_n \right| \end{aligned}$$

where both sums have to be taken over all sequences $(b_{k+2} \dots b_{k+2m})$ with $b_i = 0$ or $b_i = 1$. Let j be given such that $0 \le j \le 2m$. In the first sum there are $\binom{2m-1}{j}$ intervals for which exactly j of the b_i are 1, and in the second sum there are $\binom{2m-1}{j-1}$ intervals for which exactly j-1 of the b_i are 1. Because of (1) the contribution of $2\min\left(\binom{2m-1}{j}, \binom{2m-1}{j-1}\right)$ of these intervals to the difference vanishes. Hence

$$\int_{[a_1\ldots a_k 0[} f d\mu_n - \int_{[a_1\ldots a_k 1[} f d\mu_n | \leq \int_{B_m} |f| d\mu_n$$

where B_m is the union of $\sum_{j=0}^{2m} \left| \binom{2m-1}{j} - \binom{2m-1}{j-1} \right|$ intervals of measure 2^{-k-2m} .

$$\mu_{n}(B_{m}) = \sum_{j=0}^{2m} \left| \binom{2m-1}{j} - \binom{2m-1}{j-1} \right| \frac{1}{2^{k+2m}}$$

$$= 2\sum_{j=0}^{m} \left(\binom{2m-1}{j} - \binom{2m-1}{j-1} \right) \frac{1}{2^{k+2m}}$$

$$= \frac{1}{2^{k-1}} \sum_{j=0}^{m} \frac{1}{2^{2m}} \binom{2m}{j} \left(1 - \frac{j}{m}\right)$$

$$= \frac{1}{2^{k-1}} \left(\frac{1}{2^{2m}} \sum_{j=0}^{m} \binom{2m}{j} - \frac{1}{m2^{2m}} \sum_{j=0}^{m} j \binom{2m}{j} \right)$$

$$= \frac{1}{m2^{2m}} \sum_{j=0}^{2m} i \binom{2m}{j} = 1$$

Since

and

$$\sum_{i=1}^{m} i \binom{2m}{i} = \sum_{i=m+1}^{2m} i \binom{2m}{i} \quad (\text{for } i \binom{2m}{i} = (2m-i+1)\binom{2m}{2m-i+1}, \quad i=1,\ldots,m),$$

the second sum between the brackets is $\frac{1}{2}$ for every *m*. For the first sum we have

$$\frac{1}{2^{2m}} \sum_{j=0}^{m} \binom{2m}{j} = \frac{1}{2^{2m+1}} \sum_{j=0}^{2m} \binom{2m}{j} + \frac{1}{2^{2m+1}} \binom{2m}{m} = \frac{1}{2} + \frac{\sqrt{m}(2m)!}{2^{2m}(m!)^2} \cdot \frac{1}{2\sqrt{m}}$$

which, because of Wallis's product, tends to $\frac{1}{2}$ if $m \to \infty$. This proves $\mu_n(B_m) \to 0$ if $m \to \infty$, and thereby (2).

Now let $f \in \mathscr{L}$ be \mathscr{R}_{∞} -measurable. If for some *n* we have $\int_{I_n} f(x, n) d\mu \neq 0$, without loss of generality we may assume $\int f d\mu_n = 1$.

For every $A \in \mathcal{R}_n$ define $P(A) = \int_A f d\mu_n$. Let F(x) = P([0, x[) be the distribution function of P on I_n , then it easily follows from (2) that we must have

$$F\left(\sum_{i=1}^{k} \frac{a_i}{2^i}\right) = \sum_{i=1}^{k} \frac{a_i}{2^i}$$

and therefore F(x) = x on I_n .

It follows that $P = \mu_n$ on (I_n, \mathcal{R}_n) and therefore f(x, n) = 1 μ_n -almost everywhere on I_n . This proves the triviality of \mathcal{R}_{∞} .

Reference

1. Helmberg, G., Simons, F. H.: On the conservative parts of the Markov processes induced by a measurable transformation. Z. Wahrscheinlichkeitstheorie verw. Geb. 11, 165-180 (1969).

F. H. Simons Technological University Eindhoven Department of Mathematics P. O. Box 513 Eindhoven, Netherlands

(Received June 9, 1969)