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Some Almost Sure Convergence Theorems 
for Branching Processes 

C. C. HEYDE 

1. Introduction 

In this paper, we shall be concerned with a super-critical Galton-Watson 
process {Zo=I ,  Z1,Z2,  ...} whose non-degenerate offspring distribution has 
1 < m = EZ1 < ~ and vat Z1 = a 2 < oo. The Galton-Watson process evolves in such 
a way that the probability generating function of Z,  is the n-th functional iterate 
of the probability generating function of Z1. 

It is well-known that, for the process in question, m-" Z,  converges almost 
surely (a. s.) to a non-degenerate random variable W as n ~ ~ (e. g. Harris [2], 
p. 13). Also, a central limit analogue holds, namely that, conditional on Z , > 0 ,  
( m 2 - m ) ~ a - l z ~ ( m " W - Z , )  converges in distribution to the unit normal 
(Heyde [3]). It is an important question as to whether there is, in addition, an 
iterated logarithm analogue and it is the object of this paper to show that this is 
the case. Corresponding results also hold for continuous time Markov branching 
processes and can be obtained by minor modifications of the present arguments. 
In this connection, we mention that an iterated logarithm analogue for the pure 
birth process has been obtained by Kendall [5] but his methods are quite different. 
We make extensive use of results on rates of convergence to normality which were 
established in [4]. 

2. Results 

Theorem. Suppose that EZ~ < ~ .  Then, on the non-extinction set {W>0} we 
have almost surely, 

Z ,  + r - m r Z ,  Z ,  + r - mr Z ,  
lira sup (2a~ Z,  log n) ~ - 1, lira ~oinf (2a2 Z,  log n) ~ - - 1 (1) 

and m" W -  Z ,  

lira sup (2 a 2 (m 2 - m)-i  Z,  log n) ~ = 1, 

m" W -  Z,  (2) 
lira inf (2 a z (m 2 - m)-i  Z,  log n) ~ = - 1, 

where r >__ 1 is any f i xed  integer and 

a~ = var Zr = a 2 m" (m r -  1)(m 2 - m ) - l .  

Proof  We shall just obtain the results for lira sup; those for lira inf require 
only minor modifications to the arguments given. There is also no essential loss 
of generality in giving the proof  for the case P (Z1 = 0)= 0 in which case Z , -~  
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with probabil i ty one as n---, oo. We shall do this for the sake of convenience. 
When P ( Z i = 0 ) > 0 ,  it is well known that  Z , - *  oo a.s. on the set {W>0} .  

Firstly we shall work on (1). We have, using Theorem 2 of [4], that  

sup IP(o-21 Z~- �89 (Zr + , -  m ~ Z,,) < x ) -  4~(x)]< c~, (3) 
n = l  x 

(x) being the distr ibution function of the unit normal.  Thus, for any 6 > O, 

p (o-i- i Z~- ~ (Zr +, - m r Z,) > (1 + 6)(2 log n) § < oo, 
n=2  

since ~ [ 1 - ~ ( ( 1  +8)(21og n)~)] < oo and hence, from the Borel-Cantelli  lemma, 
n= 2  

Z r +, - rn r Z ,  
lim sup (2 o.ff Z ,  log n) ~ < 1 (4) 

with probabil i ty one. 

Next, we shall fix at tention on the part icular  case r =  1. For  0 < 8 <  1, define 

A,= {Z,-mZ,_I>(1-6)o.(2Z,_l  l o g ( n -  1))~}, 

n = 2 ,  3, ... and note  that  A,e~(Z1, ..., Z,), the o.-field generated by Z1 . . . . .  Z , .  
We make use of an extension of the Borel-Cantelli  lemma which gives P(A, i. o.) = 1 

if and only if ~ P(A,+~IZ,, . . . ,  Z 0  = oo with probabil i ty  one (e. g. Breiman [1], 
n = l  

Corol lary 5.29, p. 96). 

N o w ,  

P(A,+I[Z,, ..., Z1) 

=P(Z,+~-mZ,>(1-6)  o.(2Z, log n)�89 . . . . .  , Z1) 

= P ((Z(1 i) - m) + . . .  + (Z~ z") - m) > (1 - 6) o- (2 Z ,  log n) ~ ] Z,) ,  

where the Z(~ i) are independent  and identically distr ibuted each with the distribu- 
t ion of Z~ and are independent  of Z1 . . . .  , Z , .  Thus, using the Berry-Esseen 
inequality, 

P((Z~ l) - m) + .. . .  + (Z(1 z") - m) > (1 - 8) o. (2 Z ,  log n)~ I Z,) 

> 1 - ~b ((1 - 6)(2 log n) ~) - c Z~- ~ 

c being a positive constant.  Also, 

~ [ 1 - ~ ( ( 1 - 6 ) ( 2 1 o g n ) ~ ) ] = o o  and ~Z:~<oo  a.s. 
n= 2  n = l  

since 

( E z ; ' )  < oo 
n ~ l  n = l  

using Theorem 2 of [4]. Thus, 

~ P(A,+I]Z .. . . . .  Z1)= oo 
n = l  
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with probabi l i ty  one, from which we deduce that  P(A ,  i. o.) = 1. This gives 

Z n + l - m Z n  
lim sup (2 0.2 Z ,  log n) ~ > 1 (5) 

with probabil i ty  one and the part icular  case r = 1 of the lira sup part  of (1) follows 
from (4) and (5). 

To  deal with the case r >  1, we write Z* for Zr , ,  n =0 ,  1, 2, . . . .  The process 
{Z*} is a super-critical Ga l ton-Watson  process with offspring distr ibution that  
of Zr. Thus, applying the lim sup part  o f ( l )  with t*= 1 to the process {Z*}, we have 
with probabi l i ty  one, 

Z * +  1 - m r Z *  
lira sup 2 , ~ - 1 

, ~  (2 a~ Z~ log  n) ' 
which gives 

Z,,r + r -- m r Z,,r 
lim sup (20 .2 Z,~ log n r) * = 1 

with probabil i ty  one. But, 

Z , + r - m " Z ,  _>limsup Z"~+r-m~Z"r  
lim~soouP (20- 2 Z ,  log n) r - ,~ oo (20- 2 Z,~ log n r) r  

which together  with (4) gives the lim sup part  of (1). The lira inf part  follows 
similarly. 

In order  to obtain (2) we firstly use Theorem 2 of [4J to deduce that  
o9 

sup jP((rn2 - m)  ~I- 0- -1  1_ i, Z~ -~ (Z, - m W) < x) - q0 (x)] < oo, (6) 
~ 1  x 

from which we obtain, for any 6 > 0, 

P(IZ,  - m ~ WI >(1 + 6)(2 0-2 (m 2 _ m)-1 Z ,  log n) ~) < oo 

since ~ [ 1 - # ( ( l + b ) ( 2 1 o g n ) ~ ) + q ) ( - ( l + 6 ) ( 2 1 o g n ) ~ ) ] < o o .  Thus, from the 
n = 2  

Borel-Cantelli  lemma, 
IZ,,- m" Wl 

lim sup . 2 2 ( l (7) 
.~oo (20- (m - m ) - l Z .  logn) ~ =  

with probabil i ty  one. 

Next,  making use of (1) we have with probabil i ty  one and for any fixed integer 

r>  1, Z ~ + . - m " Z .  

1 = lira sup (2 0 .2 rn~(m ~ -  1)(m 2 - -m)  -1 Z .  log n) ~ '  

so that  

1 ~ (1 --__~ t = l i ra  sup ( m - ~ Z ' + " -  W m " ) + ( W m " - Z , )  
\ m / ,~oo ( 2 0 - 2 ( m 2 - m ) - l Z .  logn)  �89 

(8) 
m -  r Z r  + .  - Wm" Win" - Z .  

< lim sup (20_ 2 (m e _ m)_ a Z ,  log n) ~ k lim+sup (20- 2 (m 2 _ I n ) - '  Z n log  rt) } 
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with probability one. But, 

m -r  Zr+ n -  W r n  ~ 
liT22P (2 2(m2- m) z. log 

(9) 
1 Z~+~-Wrn  ~+" [Z~+.log(r+n))~<__ 1 

- rn,/2 l imsup (2o_2(m2_m)_ 1Z~+.log(r+n))  ~ \ ~Z~-~i~ogn . m ~/2 

with probability one in view of (7) and since m~Zf tZ , .+ .  ~'~', 1 as n---,co. 
Therefore, using (9) in (8), we have with probability one that 

Wm"-Z~ ( 1 
lim sup (2 ~2 (m z _ m)-' Z,, log n) ~ --> 1 - m~ ] m~/2. (10) 

Now, (10) holds for any integer r >  1 so we must have 

W m " - Z ,  
lim sup (2~r 2 (m 2 _ m) -~ Z,  log n) ~- => 1 (11) 

with probability one. (7) and (11) then give the required lira sup part of (2). Similar 
reasoning gives the lim inf part. 

3. Concluding Remark 

The condition EZS~ < oo in the theorem can at least be weakened to EZ~ +8 < oc, 
some 3 > 0. This is a simple consequence of the fact that (3) and (6) and a minor 
modification of the Berry-Esseen bound continue to hold under the condition 
EZ~§ oo. See the remarks after the proof of Theorem2 of [4] concerning 
geometric bounds on the rate of convergence to normality for the case EZ~ § 6< co. 

Note Added in Proof Subsequent research has revealed that the theorem of this paper continues 
to hold under the condition EZf  < or. This result will appear in a paper of Heyde and Leslie in Bull. 
Austral. math. Soc. 5 (1971). 
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