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1. Introduction 

Let  R ~ denote  the d-dimensional  Eucl idean space and let Z d be the d-dimen- 
sional square lattice of  points  ("sites") x = (x 1 . . . .  , xd), where each x i is an integer 
(d > 1). Points  x and y in Z d are called neighbours (we write x ~ y) iff IIx-y I I --1 
where II" I[ denotes the Eucl idean norm.  Wri te  N x for the set of  all ne ighbours  of  
x e Z  d. I f A  is any set, denote  by IAI or ~ A  the number  of  elements in A (finite or 
infinite). By I A we denote  the indicator  function of A. Let ~ be the family of  all 
subsets of  Z e. Each ~ e Z  can be identified with a m a p  ~: Z d ~  {0, l} where ~(x) 
= 1  iff xe~ ,  x e Z  ~. ( Interpreta t ion:  Site x e Z  e is occupied (" infec ted") in  ~ e Z  if 
~(x) = 1, and vacant  (not infected) otherwise.) The elements of  3 are also called 
co@'gurations. Put  

~0={dl~S, 0<1~1<oo} and ~={~l~S, ~_=t=~}. 

The class of  contac t  interact ion processes we would like to study in this 
paper  can now intuitively be described as follows. Consider  any Ceff 1 and any 
x e Z  d such that  at t ime t ~ ( x ) = 0  and y N x c ~ [ = i >  1. Then the probabi l i ty  that  
during a short  t ime interval (t, t +h)  x becomes  occupied (infected) is given by 
c~ h + o(h). The constants  c i (1 < i <  2d) which can be interpreted as infection rates 
are assumed to depend only on i but  nei ther  on x nor  on r We exclude the 
possibil i ty for occupied sites to become  vacant  again. Such a process is a special 
case of neares t -ne ighbour  interact ions which were in t roduced by Harr i s  in [5] 
(in Harr i s '  no ta t ion  we assume #o = #1 . . . .  = #2e = 0 and addi t ional ly 2 o = 0). We 
assume th roughou t  0 < c~ < o% i =  1 . . . . .  2d, and put  

(1.1) c ' =  rain % c " =  max  % 
t~<i_<2~ 1_<~_<2d 

The mono ton ic i ty  p roper ty  

(M) 0<C1~C2~...~C2d<00 
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plays a central role in what follows (we always indicate when a result is proved 
under (M)). 

Harris showed in [5] by using results of Holley [6] and Liggett [9] that the 
processes in consideration can be constructed as Hunt processes with state space 
(~,g) where g denotes the family of Borelian subsets of ~ with respect to the 
product topology of ~. Following the notation of Blumenthal/Getoor I-2] as 
closely as possible we designate such Hunt processes more explicitly by 
(f2, Jr d//t, ~t, 0t, Pc)' The expectation taken with respect to P~ is denoted by Er 
We write Po and E o instead of P~o~ and E~ol, respectively. 

Let 

(1.2) z(x)=~(co, x)=inf{tl~(co, x)=~O}, x ~ Z  a, 6o~f2, 

i.e. z(x) is the first instant at which x is occupied (we put r(x)= oe if no such 
instant exists, and the same convention holds for all similar definitions). Clearly 
z(x) is a stopping time. It is useful to extend ~(') to all of R e as follows. 
Introduce the cubes 

(1.3) Qx={ylyeR a, x i 1 i< i 1 - ~ < y  = x  +7,  i= l , . . . , d} ,  x ~ Z  a. 

Then put 

(1.4) z(y)=z(x) if YeQx, xeZa, 

and 
/ v \  

(1.5) ZA(X)=AZ[A),  A>O, x 6 R  d. 

Using a coupling argument (see Harris [5], p.978) it can be shown that under 
(M) {it} has the following "isotonicity" property: If J # ~  is any finite or 
countable index set, we have for all configurations 4, t/6S such that ~ c  t/, 

Pr x F R  a, tj>O, j~J, (1.6) 

and 

(1.7) Pr x f i R  d, t j>0,  j 6 J  

(these inequalities are used in the case IJI > 1 only near the end of this paper). 
The purpose of the present paper is to study the asymptotic behaviour of 

za(x ) (for small A) and that of it (for large t). The main result proved under (M) 
says that there exists a norm N(-) (on R d) independent of ~6~o such that for all 
0 < 8 < 1  and all ~6~o we have a.s. (Pc) for all sufficiently large t 

(1.8) {xlN(x) < (1 - ~) t} ~ {xlz(x) < t} ~ {xlX(x) < (1 + ~) t} 

(it is understood that these sets are subsets of R a and not merely of Za). This 
result might be called a "strong law of large configurations". It shows that under 
(M) the set of all sites xER a, which are occupied at time t grows in a very regular 
geometric manner. An easy consequence of (1.8) is (as t ~ oo) 
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(1.9) ~l~]~ga{x lX(x)~l}  a.s. (P~), ~es 

(L d denoting the d-dimensional Lebesgue measure). 
Richardson studied in [12] a stochastic growth process for which he posed 

five axioms ([12], p. 517), and he showed that they are sufficient for (1.8) to hold 
in probability. Examining Richardson's proofs more closely, one sees that his 
first axiom (A1) may be replaced by the axioms 

(AI.1) EzA(Xl + X2)~E'cA(Xl)+Er~(x2)+O(1), Xl,X2ffR d, 

and (V denoting variance) 

(A1.2) VzA(2x)<=2V~(x)+ox(1), x~R ~ 

(we write % instead of Richardson's tA). Here and in the sequel o(1) denotes a 
real function depending on A > 0  in such a way that l imo(1)=0 (if o(1) also 

AI0 
depends on ~ 3  and xeR ~ (say), we indicate this by writing o~,~(1) instead of 
o(1)). In the process studied in the present paper it is not difficult to verify (AI.1) 
as well as Richardson's axioms (A2)-(A 5). Except for (A 1.1) the condition (M) is 
not needed. Instead of verifying (A1.2), we prove (using (M)) another inequality 
(see (3.28)). The latter allows the application of a result of Kesten [7] and 
Hammersley ([4], p. 674), which together with a more careful examination of 
error terms (in proving axiom (A3) of Richardson) yields 

2 n ~( rex) . . . .  

(1.10) lira ~ =l'~tx) a.s. (Po), xeR d, m=1,2 , . . .  
n ~ o o  

Finally Richardson's reasoning is still applicable to derive from (1.10) the above 
strong law of large configurations. This, in turn, implies that for all ~eZo, 

(1.11) limz~(x)=N(x) a.s. (P~), xeR ~, 
AI, O 

which is stronger than the analogous "in probability" result (for ~ = {0}) due to 
Richardson. 

Mollison studied in [11] certain classes of spread processes in R a. He looked 
at the convex hull H t of the set of all points inhabited at time t, and gave bounds 
for H t in terms of the so-called front velocities (compare also Biggins [1] for 
branching random walks). Finally we would like to mention that the present 
study was stimulated by thinking about a more complicated process described in 
Schiirger/Tautu [13], [14] (the latter process, in turn, being a generalization of a 
process introduced in Williams/Bjerknes [15]). 

2. Results Not Assuming (M) 

In this section certain extensions of the axioms (A2), (A3) and (A4) of [12] are 
proved. First we introduce some additional notations and terminology. Call a 
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sequence xa , . . . , x ,  ( n> l )  of mutually distinct sites a chain (of length n) if 
x~x~+~,  i=  1 . . . .  , n - 1 .  Comparing the process in consideration with a process 
in which all infection rates are equal to c", one can show (see Harris [5], p. 973) 
that for all ~eS~ 

(2.1) P~(O<z(x l )< . . .<z(x , )< t )<F, ( t ) ,  

where 

(c")" fu "-I  e -~''"du (2.2) F.(t)=(n -1 ) ' . o  J 

t >0, 

t>0 ,  n =  1,2,... ,  

is the n-fold convolution of the exponential distribution function with parameter 
c" defined by (1.1). 

A chain Xl, . . . ,x ,  (n> 1) such that x 1 =x,  is called a contact chain for x with 
respect to e)~t2 ([5], p. 973) if-c(co, Xl)=0 in case n =  1, and 

0 = ~(c~, x,) <'c(co, x,_ 1)< ... < ~(o), Xl) < o0 

in case n>2.  We say that a contact chain x 1 .. . .  ,x ,  for x with respect to co 
reaches x by (time) t_> 0 if 

O~-'C((D, Xn)<72(c20, Xn_ 1)<[ . . .  <T(fD, Xl)  ~_ t. 

Let the event H(x, t), x e Z  a, t>0 ,  be defined by 

H(x, t )= {for some n > 1 there exists a contact chain 

xl,  . . . ,x ,  reaching x by t}. 

It is easy to show I - I ( x , t ) ~ ,  x ~ Z  a, t>0 .  We have ([5], p.973) 

(2.3) P~(H(x,t)l~(x)<t)=l, ~ 5 1 ,  x c Z  a, t>0 .  

The following lemma shows that axiom (A2) of [12] is also valid for higher 
moments. 

(2.4) Lemma. For all C > 2 c " d e  and m=1,2 , . . .  

_ I l x l l  '~ , , ,  
(2.5) E~r162 ~e5  o, x~R  a. 

Proof. Proceed as in the proof of Theorem 3 of [12], p. 524, and use (2.3), (2.1) 
and (2.2). 

Now we show that also axiom (A4) of [12] is valid for higher moments. Put 

(2.6) p ( t ) = l - e  -c't, 0 < t < o o ,  p=p(1)  

(c' being defined in (1.1)). Comparing our process with one in which all infection 
rates are equal to c', we easily get 

(2.7) Lemma. For all x ~ Z  a and all ~e51 such that ~C~Nx.i=fJ , 

(2.8) P~(z(x)<t)>p(t), 0 < t <  oo. 



On the Asymptotic Behaviour of Contact Interaction Processes 39 

Using this result we derive upper bounds for E~z'j(x), ~ t ,  x~Ra, A>0, m 
= 1, 2,... To this end consider any ~ S a  and any chain X o,Xl,. . . ,  x, such that 
x0s and x,q~. By Lemma (2.7) we have for m=0,  1,2, ... 

(2.9) Pr j=O, 1 , . . . , n -  1. 

We may now think of an auxiliary particle occupying x 0 at time 0 and 
displaying the following behaviour given the particle occupies xj at time m: At 
time m+ 1 it jumps to xj+ t with probability p, or at time m+ 1 it stays at xj with 
probability 1 - p  ( 0 < j < n - 1 ,  m>0), where jumps are only possible at times t 
-- 1, 2,... Comparing z(x,) with the first instant at which the particle reaches x,, 
and taking into account (2.9) we deduce 

(2.10) P~(z(x,)<= t)>= ~ ~ + n -  i )  o__<j__<t-. J p"(1 -p)J, t~O 

(void sums being defined as zero). Since negative binomial distributions are 
convolutions of geometric distributions, (2.10) implies 

m~ 
Er m, r e= l ,2 , . . .  

This reasoning (see also [12], p. 525) yields 

(2.11) Eo~m(x)<~,~s (i~=l,xi,)m , x~Za, m=l ,2  .... , 

and furthermore 

(2.12) Lemma. For m= 1, 2 .... and all ~ 1  we have 

E~z"j(x)<rn [ (1~t  m ]]x]rm+o~ ~ ,,(1), x~R a, 
- \ p  / -,, (2.13) 

and 

(2.14) Ee~(x)~m!  I[Xllm+O~,m(1), x~R e. 
\ P l 

This shows that for the process in consideration the axiom (A4) of [12] is also 
valid for higher moments. Another consequence of the above reasoning is given 
by 

(2.15) Lemma. Let Xo,Xl, ...,x, (n> 1) be any chain. Then for all ~ 1  such that 
Xoff~ 

"1(7 ) (2.16) P~(r(x,)>m)<= ~ pi(1--p)m-i, m=0,1,2 , . . .  
i=0 

it was observed by Richardson (Theorem 4 of 1-12], p. 524) that his axiom 
(A3) is a consequence of our next result (2.18). Examining more carefully the 
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function o(1) occurring in (2.18), we arrive at (2.19). This allows the application 
of the Borel-Cantelli lemma which yields (2.21) being stronger than the axiom 
(A3) of [12]. Theorem (2.20) roughly says that for all ~@"~1 w e  have a.s. (Pc) that 
asymptotically (i.e. for A $0) ZA(X) is uniformly continuous as a function of x. 

(2.17) Lemma. There exists a constant s>O such that for all x, yER a and ~F.  1 

(2.18) Pe(lza(x)- za(Y)l <-- I lx-  yl[ + l/A ) > l -  

For all x, y sR  d and ~ 1  we may choose 

{ 1 ,2d/~ O < A < I  11  
(2.19) ~ ~e~!  ' =d" 

6p 
Proof. Choose s-~ 

(1 - p ) V ~  
where 0 < 6 <  d'l ( - p )  is any number for which 

- d + l  

1 (1-P)/(P~)<C~ex ( - -p )  =~ p ( -3 ( l+ l /d ) ) .  

Then apply the strong Markov property, Lemma (2.15) and use estimations 

similar to those in the proof of Theorem 5 of [12], p. 525 (consider the 
I 

cases 
\ 

A > A  
Ilx- yhl < ~  and Ilx-yH = ~ ) .  

Now we can prove 

(2.20) Theorem. There exists a constant r > 0  such that for all ~ E 1 ,  zeR  e and 
e>0 

(2.21) limsup sup Iz~(x)-~(z)l~ a.s. (Pe). 
zl$O x : b l x - z l l < r e  

S 
Proof. Fix ~ Z  1, z~R d and e>0. Put r = ~  where s is the constant occurring in 

Lemma (2.17). It follows from Lemma (2.17) (compare the reasoning in the proof 
of Theorem4 of [12], p. 524) that 

( [%(x)-'cA(z)l>(Y ) / /l\2dV~\ 
1 <_A<_lx : l l x_z l l<re  gl 

n + l  - - n  

Hence the Borel-Cantelli lemma implies (2.21). 

3. Results about the Asymptotic Behaviour Valid under (M) 

First we prove an inequality (see (3.3) below) containing the axiom (AI.1) (see 
Introduction) as a special case. Define the translations tx: S--. E, x~Z  d, by 

(3.1) tx(~)(y)=~(y-x), ~EE, x, y eZ  d. 



On the Asymptotic Behaviour of Contact Interaction Processes 41 

(3.2) Lemma.  Under (M)for  m =  1, 2, ... and x, yER d 

3din 
(3.3) (E ~ zm(x + y))l/m < (E ~ zm(x))l/m + (E ~ zm(y))l/,, + _ _  

2p 

Proof First we show that for m = 1, 2 . . . .  

(3.4) Eo(l~(x+y)-~(x)lm)<go~m(y), x , y ~ Z  ~. 

To prove (3.4) fix x, yEZ  e. Then for m =  1, 2 . . . .  we get using the strong Markov 
property, (2.13), the right continuity of the sample paths as well as (1.6), 

Eo((~(x + y) - ~(x)) m I ~ x  +,,~ > ~)  

= ~ Zo(I(~(x +y)> ,(x)} Pt_ x ~(x,(r~(Y) > t)) dt <= Po(z(x + y) > z(x)) E o rm(y). 
0 

Similarly 

E0((~(x ) - ~(x + y))~ I~(~ > ~(x + s)~) < Po(z(x) > r(x + y)) E o r'~( - y). 

Since by reasons of symmetry Eorm(-y)=Eor~(y) ,  addit ion of the obtained 
inequalities yields (3.4). Now fix x, y eR  a and let xeQ~, yeQ;,  x + y e Q ~ .  Appli- 
cation of Minkowski 's  inequality together with (3.4) gives for m = 1, 2 . . . .  

(Eo < ( x  + y))~/~ = (E0 <(~)Y/~ 

< (Eo['C (z ~ - v(5 - x)[m) TM + (E o g,@)),/m + (EoJZ( 5 _  2) -- r @)1") 1/" 

< (Eo 72re(X)) TM -~ (E 0 "cm(y)) 1/m + (E o 72m(z --  2 --  ~)) l/re. 

By (2.11) 

3dm 

P~=I = 2p 

which proves (3.3). 
Our next result (a consequence of L e m m a  (3.2)) extends Lemma 4 of [12] 

(p. 518) and Theorem 1 of [12] (p. 521). 

(3.5) Theorem. Under (M) for all ~e~o, x~R  a and m= 1,2 . . . .  the limit 

(3.6) lira (E~ C~(x)) TM = N(m)(x) 
a$O 

exists and is independent of d ~  o. We also have for m= 1, 2 .... 

m ~/m 3dmA\  
(3.7) N(~)(x)=inf  ~ (Eor~(x)) + ~ - p )  

= i n f l - ( ( E ~  x~Ra" 
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For m = 1, 2,... N(m)(  " ) is a norm o n  R cl (hence equivalent to the Euclidean norm), 
for which 

(3.8) -Hx[[ _ < N ( m ) ( x i < m ~  Ilxll, x ~ e  a. 
2c"de . . . .  p 

It will turn out later that N(~)(.) is independent of m> 1 (see Theorem (3.31) 
below). 

Proof of Theorem (3.5). Fix x~R a and m> 1. It follows from (3.3) and (2.13) that 
the function 

3dm 
t~-~(Eo'cm(tx))l/m+ - t>O, 

2 p '  

is subadditive. Hence (3.6) (for r = {0}) and (3.7) follow from a classical theorem 
on subadditive functions (cf. Hammersley [3]), The norm properties and (3.8) 
(still in the case 4={0}) are immediate from (3.3), (2.13) and Lemma (2.4). The 
fact that the limit in (3.6) exists for all ~ S  o and is independent of ~ follows from 
(3.10) and Lemma (3.11) given below. 

Let 

(3.9) zr ~ Ct}, ~e~o. 

Clearly z~ is a stopping time, and the reasoning leading to (2.10) shows that 
(without using (M)) we have for m = 1, 2,... 

(3.10) sup E,z'~<oo, ~e~o, x 6 Z  d. 
q ~ l :  XEt/ 

(3.11) Lemma. Under (M) we have for all ~ o ,  flaY,1 and x~Z  a 

(3.12) Entre(x)< i m-i 
i = 0  

Using (3.12) together with (3.10) one can easily finish the proof of Theorem (3.5). 
Furthermore Lemma (3.11) will enable us later to apply an almost sure con- 
vergence result due to Kesten (see [7]), which was generalized by Hammersley 
(in I-4], p. 674). 

Proof of Lemma (3.11). Fix echo,  ~E~I, x e Z  a and m=> 1. Clearly 

(3.13) E, ~m(x) <=E, z'~ + ~ Pn(z(x) > t l/m, T,~ <_~ t l/m) dt. 
0 

For the rest of the proof we assume ~r  (otherwise (3.12) is an immediate 
consequence of (1.6)). Put (for the moment) 

t _> 0 and _ d(t)_ ~(~(x)  __< t), t>_0 
G(t) =[0_(~--<t)' t<0 - [ 0 ,  t<0. 
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It follows 

(3.14) G(0)=0. 

Using the strong Markov property. (3.14), the right continuity of sample paths, 
(1.6) and (3.10), we find for t > 0  and n=1,2,  ... 

(3.15) P, ( z (x )>t , z~<t )<=~ ( G ( ~ ) - G ( ~ ) ~ t ) ) ( 1 - G ( t - ~ ) ) .  
i = 1  

Letting n ~oo  in (3.15) we get 

co 

~(~(x)>t" ,  ~=<t")dt__<y ~ (1-d(t'm-u))G(du)dt 
0 0 [O,t 1/m] 

= m  ' dv C(du). 
0 0 

Integration by parts and (3.13) together yield (3.12). 
In the sequel we put 

(3.16) N(x)=N(1)(x),  xER  a, 

N(1)(.) being given by (3.6) (N(.) is the norm figuring in (1.8)). 

(3.17) Lemma. Under (M) for all x , y ~ R  e 

(3.18) IN(x) -N(y) I  < ~ d  [Ix-yl[. 
p 

Proof. Immediate from (3.16), (3.8) and the norm properties of N(') .  

Examining the error term ox(1 ) in (A1.2) (see Introduction) more carefully 
Kesten arrived at an interesting almost sure convergence result in which no 
assumptions concerning stationarity were made (see [7]). Kesten's result was 
later generalized by Hammersley ([4], p. 674). Instead of trying to apply these 
results directly to sequences of the form {r(n x)ln = 1, 2 . . . .  }, 0 :~ x ~ Z  a, we observe 
that the following theorem (which suffices for our purposes) is implicitly 
contained in Hammersley's proof of his generalization. 

(3.19) Theorem. Let  X1, X 2 . . . .  be a sequence of nonnegative random variables on 
some probability space, having finite second moments. Assume that 

(3.20) lira 1 E X ,  = 
n ~ c o n  

and 

lira (3.21) , ~ c o ~ E X ~ = f i  

(-  oo__<c~< oo) 

(o__<p<~) 

exist. Furthermore let for k = 1, 2 . . . .  
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(3.22) V(X2k ) + E2(X2k) <= 2 V(Xk) + 4E2(Xk) 

( V  denoting variance). Then we have 

(3.23) 

(3.24) 

and 

(3.25) 

1 
lim ~g-~m X2,,~ = e 
n ~ o o  

a.s., m= 1,2, ..., 

1 
lim - X~ = c~ in quadratic mean. 
n ~ c o  n 

(Observe that c~ is finite by (3.21) and (3.23).) 

(3.26) Remark. If additionally X1, X 2 .... is almost surely a monotone sequence, 
instead of (3.24) we even have 

(3.27) lim 1Xn=cr a.s. 
n ~ c o n  

(see Remark2 of [4], p. 675). Unfortunately for all x s Z  d (x=t=O) {r(nx)ln 
=1,2, . . .}  is not a.s. (P0) monotone. We can overcome this difficulty by first 
proving our strong law of large configurations for indices of the form 2"m (m 
being fixed) and then constructing certain random diameters (see (3.40) and 
(3.44)) which are monotone. 

Now we show that Theorem (3.19) is applicable to the sequences {z(nx)ln 
= 1, 2,. . .},  0 ~ x e Z  a. To this end fix x ~ Z  a (x =t= 0) and k, l>  1. Putting t/= {0} and 

= {lx} we get under (M), using (3.12), 

(3.28) E o r 2 ( ( k + l ) x ) <  ~ (Eo~i(kx))(Eoz2-i( lx))  
i=0  

which implies (3.22) if we define X , = r ( n x ) ,  n=  1, 2 .... It follows from Theorem 
(3.5) and (2.11) that (under (M)) Theorem (3.19) is applicable to the sequence X, 
= ~(n x), n = 1, 2,... Hence (3.24) and (3.25) imply 

1 
(3.29) lim ~S?..z(2"mx)=N(x) a.s. (Po), 

, ~ 2  m 

and 

x ~ Z  a, m = l , 2 , . . .  

(3.30) lim E o z ( n x ) - N ( x  =0, x ~ Z  ~. 
n ~ o 3  

Using (3.30), (3.4), (2.11), (2.13), (3118) and (1.6) it is not difficult to prove the next 
result generalizing Lemma 8 of [-12] (p. 519). 

(3.31) Theorem. Under (M)for all ~ o  and m= 1, 2, ... we have 

(3.32) l im~A(x )=g(x  ) in L"(P~), x ~ R  e, 
~.~o 
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and 

(3.33) N(~)(-) =N( . ) .  

The following theorem (being the almost sure analogon of Lemma 9 of [12], 
p. 520) shows that the almost sure results obtained so far on all half-lines (see 
(3.29)) can be nicely combined to give uniform convergence on compact subsets 
of R e . More precisely we have 

(3.34) Theorem. Under (M) for all k, m = 1, 2 .... 

(3.35) ,~:,~N~klim sup r(2~mx)2,rn N(x) =0  a.s. (P~),_ ~E~ o. 

Proof Using (3.29), Theorem (2.20) and (3.18) one first shows that 

(3.36) l imr(2"mx~-N(x)~ a.s. (Po), x~R ~, m = l , 2 , . . .  
,-oo 2"rn 

Let us now prove that (3.36) remains valid if P0 is replaced by any Pc, ~ Z  o. 
First observe that (3.36) together with (1.7) implies that for m = 1, 2,... 

(3.37) l imP~(r(2~mx)<(N(x)+O2"m, n > / ) = l ,  e>0,  x~R ~, if 0 ~ Z  0. 
l ~ o o  

Now fix x6R ~ (x#:O) and m > l .  Let e>0.  Using the strong Markov property 

(1.7) we get for all ~E~ 0 (0 r  + l~tx)] and /=1 ,2 , . . .  and 
\ 

Pr x) <-_(N(x) + e) 2"m, n > l) 

> ~=1 j P~ ~i-1)(N(x)+e)2'm_ <'C{o} =<i(N(x)+e)Ztm). 

i= 3 3 

�9 Po(~(2"mx)<(N(x)+c) (2" - ;~)m,n>l )  

>p~(r{o} 2Zmg\ / n l ) .  _ N T )  Po [r(2 mx)N (N(x)+2)2"rn,  n-> 

Similar calculations (using (1.6)) show that for 0<e<N3(--~ )x) and l=  1, 2, ... 

Po('C(2"m x) > (N(x ) -  O 2"m, n > l) 

_-<2P o(rr 21me\ > - ~ )  +P~(r(2"mx)>=(N(x)-2e)2"m, n>l) if {0} #~.~Z o. 

Letting 1~oo in the above inequalities and using (3.10), (3.36) and (3.37) we get 
for all ~ S  o 

r(2" m x) 
lira 2"m - N(x) a.s. (Pc), x~R e, re=l ,2  .... 

n ~ o o  

This together with Theorem (2.20) and (3.18) yields (3.35). 
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Now we can prove an almost sure version of Richardson's main theorem 
(Theorem 2 of [-12], p. 521). 

(3.38) Lemma. Under (M)for  all ~ E o ,  0 < e <  1 and m=-1, 2 .... we have a.s. (P~) 
for all sufficiently large n 

(3.39) {xlN(x) < (1 - ~) 2" m} c {xlz(x) < 2" m} ~ {xlN(x) < (1 + e) 2" m}. 

Proof. Use Theorem (3.34), (3.8), (3.33) as well as (2.3) and apply Richardson's 
reasoning (in the proof of Lemma 10 in [12], p. 520). 

In order to prove the strong law of large configurations in full generality, let 
for t > 0  

(3.40) Dt(oo)=sup{rlVx~Ra: N(x)<r  implies z(co, x)<t},  oo~f2. 

Clearly 

(3.41) Dt(co)T as tToo , coeQ. 

By (3.39) for all {eEo, 0 < e < l  and re= l ,  2,... we have 

De,m>=(1-c) 2nm a.s. (Pg) 

for all sufficiently large n implying 

1 
(3.42) l iminf~z. ,  D2,m_>l a.s. (P~), {eEo, r e = l , 2  .... 

,4oo 2 m  

But (3.41) and (3.42) together imply 

(3.43) l iminfl-Dn>l a.s. (Pc), geEo. 
n ~ o o  n 

Similarly let for t > 0 

(3.44) /St(e))=inf{rlVx~Rd: z(oo, x)<=t implies N(x)<r},  roof2. 

Clearly 

(3.45) /5,(co)]" as tTov, oJeO. 

By (3.39) and (3.45) 

1~  
(3.46) l imsup-Dn=<l a.s. (P~), {e-~o. 

n ~ o o  n 

Since obviously D~(co)</)t(co), t > 0, coef2, it follows from (3.43), (3.46), (3.41) and 
(3.45) 

(3.47) l i m l - D t = l i m l / 5 , = l  a.s. (Pc), {~Eo. 
t ~ o o  t t ~ m  t 
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But (3.47) is equivalent to 

(3.48) Theorem. Under (M)for  all ~ Z  o and 0 < e < l  we have a.s. (P~)for all 
sufficiently large t 

(3.49) {xlN(x) <: (1 - e) t} ~ {xlz(x) < t} c {xlN(x) < (1 + e) t}. 

This is the desired strong law of large configurations in full generality (compare 
the corresponding "in probability" result of Richardson (Theorem 2 of 1-12])). 

Let us formulate three simple consequences of Theorem (3.48). Denote by 
co(i), ~E~, the convex hull (in R ~) of 4. For A ~ R  d and t > 0  let t .A  ={tx lx~A}.  
Then we derive from Theorem (3.48) the following weaker result: 

(3.50) Theorem. Under (M) for all ~eZ o and 0 < ~ < 1  we have a.s. (Pc) for all 
sufficiently large t 

1 
(3.51) {xlN(x)< l-~}~7.co(~)~{xlN(x)< l +~ } 

(3.52) Theorem. Under (M) for all ~ Z  o we have 

(3.53) limzA(X)=N(x ) a.s. (P~), x~R d. 
A$O 

Finally we have (L d denoting the d-dimensional Lebesgue measure) 

(3.54) Theorem. Under (M) for all ~ Z  o we have, as t ~ ,  

(3.55) ~[~,l~ga{xlN(x)<l} a.s. (Pc) 

Proof. Fix ~eE o and 0 < e <  1. By Theorem (3.48) we have a.s. (P~), as t--,o% 

<= # {xlx~Z a, N(x) < (1 + ~) t} ~ ga{xlN(x ) < (1 + e) t} 

= (1 + e) a taLd{xlN(x) < 1}. 

Since 0 < e <  1 was arbitrary, we get 

1 
l imsup~l~ l<La{x lN(x)< 1} a.s. (Pc)' 

The desired converse inequality is proved similarly. 

4. Open Problems 

An interesting question concerns the shape of the convex set {xlN(x)< 1}. Is it 
under (M) a circle (say) or does its shape depend on the infection rates 
e l ,  . . .  ~ C2d ? 

We wonder what can be said about the asymptotic geometrical behaviour of 
~, in case (M) is violated. 
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Let (for the sake of simplicity) d = 2 and define the crinkliness (proposed in 
Mollison [10]) of ~ 0  by 

1 
(4.1) C ( r  y ~ x ,  yr ~eZ 0 

(observe that square arrays have crinkliness 1 and that all other configurations 
in Z 0 have crinkliness >1). The following conjecture was formulated in 
Schtirger/Tautu [14] (for a different process though). 

(4.2) Conjecture. Let d=2.  Under (M) there exists an absolute constant c >_ 1 
depending only on the infection rates c i such that for all ~eZ o 

(4.3) limC(~t)=c a.s. (P~). 
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Note Added in Proof. In a paper entitled "On the asymptotic geometrical behaviour of percolation 
processes" (to appear), the author has shown recently that a strong law of large configurations also 
holds for percolation processes on Z a, satisfying a weak moment condition. 


