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Summary. A critical branching random walk in a d-dimensional spatial ran- 
dom medium (environment) is considered. It is said to be "persistent" if 
there is no loss of particle intensity in the large time limit. A critical dimen- 
sion d~ is shown to exist such that the system is persistent if d >d~ and fails 
to be persistent if d < d  c. 

1. Introduction 

Random walks in a spatial random medium have been investigated by a num- 
ber of authors including Dobrushin, Kesten, Kozlov, Sinai and Spitzer (cf. [133 
for references to the recent literature). Examples of branching random walks in 
a random medium which determines the offspring distribution were introduced 
in Dawson and Fleischmann [1]. The objective of this paper is to obtain crite- 
ria for "persistence" (called "stability" in earlier papers) for a general random 
medium model starting with an initial Poisson random field. Persistence occurs 
if the tendency to local extinction of critical branching is offset by the spatial 
dispersion of the infinitely many particles. It is shown that there is a critical 
dimension d c where the behavior switches, that is, if the dimension d > d  c then 
the system is persistent whereas if d<dc then it is not. The results are proved 
for random walks in the domain of attraction of a stable law and for a large 
class of ergodic random media. The model includes the "classical" branching 
random walk, that is, a medium which is non-random and constant. But even 
in the latter case the result is of independent interest. The ideas and methods 
introduced in the paper [6] of Kallenberg in the context of the classical 
branching random walk play an important  role in the present approach. 

2. Preliminaries 

Let N denote the set of all counting measures defined on the d-dimensional 
( d > l )  lattice Z d, that is, non-negative measures such that ~b(x)=qS({x}) is in- 
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teger-valued for all xEZ ~. Equipped with the vague topology, N is a Polish 
space. The Dirac measure 6y concentrated at y s Z  ~ is interpreted as a particle 
situated at y. Hence each ~b in N can be interpreted as a system of particles. 
We adopt the convention that if a topological space is denoted by the boldface 
Roman capital letter A, then the corresponding script letter d always refers to 
the a-field of Borel subsets of A. 

Let D denote the set of all probability distributions on (N, Y) .  Furnished 
with the weak topology, D is a Polish space. The mapping x~(5 x associates 
with each distribution v on Z d a distribution Qv on D describing a one particle 
system with random position distributed by v. 

A clustering mechanism (often called a "cluster field") is a mapping x--,~c(x ) 
from Z e into D. For  a given clustering mechanism ~: and ~b~M we introduce 
the notation 

~ ( ~ =  ~< (K(x)) *~(~ 
x ~ Z  d 

where ~c*k(x) denotes the /c-fold convolution of ~:(x), provided that the infinite 
convolution exists in D (cf. [10, Sect. 2.1]). This means that each particle at 
each x ~ Z  ~ is replaced (independently) by a random number of particles distrib- 
uted via ~c(x) and that ~c(~) is given by the superposition of these. We interpret 
~c(~)=K(e) for ~ b=6  as the distribution of a random particle system generated 
by a particle 6~ and ~c(e) as the distribution of the progeny of qb if all particles 
in ~b are clustered independently according to ~c. 

The mapping qb~c(~) is a measurable mapping from (N, JV) to (D,~) (cf. 
[10; 4.1.3]). Thus if qb is a random element in N with distribution PED, then 
for B~W, 

P~ (/3) = ~ K(~)(B) P (d ~b) 

yields the distribution of the progeny of q~ (provided that the integral makes 
sense). A distribution P~D is said to be cluster invariant if P~ exists and 
coincides with P. 

In the following we shall use the translation group ( T / z ~ Z  ~) (actually three 
isomorphic groups denoted by the same symbol) defined by 

T~h(x)=h(x + z), h a function on Z d, x ~ Z  d, 

T~#(x)=#(x-z ) ,  # a measure on Z d, x~Z  d, 

TzH(B)=H({~EN: Tz4)eB}), H a measure on N, BsW.  

3. Branching Random Walks in a Spatially Varying Medium 

From now on let 2 be a fixed non-degenerate distribution on Z d, that is, 2#(5 z 
for any z~Z d. 2 is called the displacement distribution. The following hypothesis 
concerning 2 is used in the statement of the main results. 

Hypothesis D.1. Assume that the displacement distribution 2 belongs to the do- 
main of attraction of a truly d-dimensional stable distribution defined on R d with 
exponent 0<fi_<_2. In other words, there exist constants a, and c , > 0  such that 
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the normalized sums 

c, i~= ~ i - a ,  (3.1) 

of independent, identically distributed random variables ~i with common distribu- 
tion 2 converge in distribution and that the limiting stable distribution is not 
concentrated on a (d-1)-dimensional hyperplane. (Note that the value ~ = 2  cor- 
responds to the case of a limiting normal distribution.) 

Lemma3.1. (a) Under Hypothesis D.1 the normalizing sequences {c,: n 
= 1, 2, 3,...} are regularly varying at infinitely with index (-1/ f l ) ,  that is, 

lira %,1/c, = t -  1/~, 0 < t < 1, 
n ~ o o  

where Ix] denotes the largest integer less than or equal to x. 

(b) I f  2 satisfies Hypothesis D.1, then the sequence 

{c2 a sup 2*"(x): n = 1, 2, 3 .. . .  } 
X 

is bounded away from zero and infinity. 

Proof. (a) Refer to Siegmund-Schultze [12: Lemma 5.2]. 

(b) Refer to [12: Theorem 3.1]. 
2 is said to belong to the normal domain of attraction if the normalizing 

constants c, in (3.1) satisfy: 

c ,~cons tn  -1/~, as n---,oo, (3.2) 

(cf. Feller [2: 17.6]). (Here and below "const" denotes a positive constant 
which may vary from formula to formula.) 

Let F denote the set of all families f =  {f~: x e Z  a} of critical offspring gener- 
ating functions fx, 

f~(s) = ~ px(n)s", 0_<s_< 1, f~(1 - ) =  1 
n = 0  

corresponding to distributions p~ on Z+={0 ,1 ,2  .. . .  } with first moment 

~ p x ( n ) n = l .  We interpret f as a spatially varying medium. The smallest Or- 
n = 0  

field of subsets of F such that for each xEZ  a and s~[0, 1] the mapping f~f~(s)  
is measurable, is denoted by o% 

For each f ~ F  we introduce the clustering mechanism 

~C{x)=f~(T~Qa)= ~ p~(n)(TxQa)*", for x ~ Z  d. 
t l = 0  

Consequently, a particle situated at x generates with probability p~(n) exactly n 
particles which are displaced independently and spatially homogeneously ac- 
cording to 2. 
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Let (2o=N z+ and ~ =  {~t: t~Z+} denote the canonical process 

~t(co)=co(t) for coe~? o. 

go is defined to be the smallest a-algebra generated by {~, tGZ+}.  Let f sF .  A 
probability measure Ps on f2 o defines a branching random walk in the spatially 
varying medium f with Poisson initial field if under Pc: 

(a) ~t is Markov with transition function (o--*@?)(dO), and 

(b) ~o is a homogeneous Poisson random field with intensity one. 
Let Pj be the probability measure on N defined by ~(A)=Pc(q~,GA). In 

view of the Poisson initial field, P~ is an infinitely divisible measure on N for 
t>O. 

Lemma 3.2. For each f GF the probability measures P} converge weakly as t-~ 
to some limit Pc~ which is cluster invariant and satisfies: 

S~b(x)Pc~176 1 for all xGZ d. 
N 

Proof Refer to Liemant [8]. 
The branching random walk Pc (for a given feF)  is said to be persistent 

(called "stable" in earlier papers) if S~(x)Pi~(d~b)= 1 for each x~Z d. 
N 

Given a spatially varying cluster mechanism ~c I we need to determine 
whether or not it yields a persistent branching random walk. To accomplish 
this we next formulate a generalization of a persistence criterion due to Kallen- 
berg [6] for the case of a spatially homogeneous branching random walk. 

For each f e F  let 

f gx(s)= l- f j~(1-s) ,  x e Z  e, 0<s<=l,  

where f j  denotes the derivative if f~. The function g{(') is monotone increas- 
ing, convex and satisfies g{(0)=0. Consequently, 

ag{(s)<=gf~(as), O<_as<_s<_l, (3.3) 
or equivalently, 

g{(as)<ag{(s), O<_s<_as<_l. (3.4) 

Let f2w=(Zd) z+ and ~={~,: t eZ  +} denote the canonical process ~t(co)=~o(t) for 
coeO w. Let W~ denote the probability law on ~2 w of a random walk governed 
by the "reflected" displacement distribution )L-(x)=2(-x)  starting at ~o 
= z G Z  d. 

Theorem 3.1. Let fGF. Then the branching random walk PI in the spatially vary- 
ing medium f is persistent if and only if for all y, z~Z d, 

g/t0u*~(Y- (t)) < 0% (3.5) 
t = l  

holds almost surely with respect to W~. 

The proof of Theorem 3.1 is postponed to Sect. 7. 
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Let ( 2 = F  x g2 o. For  co =(f ,  OOo) , f e F ,  COo~f2o, t~Z +, fx(co) =fx and ~bt(co)=COo(t ). 
The branching random walk in the random medium is prescribed the probabil- 
ity measure PM on f2 defined by 

PM(AxB)=fPf (B)M(df )  , A e Y ,  B 6 f f  o. 
A 

We introduce three hypotheses on the random medium which are referred to 
in the statement of the results below. 

Hypothesis M.1. Assume that the probability measure M is ergodic with respect 
to the translation group {Tz: zcZd}. 

Hypothesis M.2. Let f = { f x :  x~Za} be a family of independent, identically dis- 
tributed random variables with respect to PM. 

Hypothesis M.3. Assume that the branching is non-degenerate, in the sense that 

P~({fo (s) =- s}) < 1. 

Proposition 4.1. Under Hypothesis M.1 the set 

{ f~F:  Pf is persistent} (4.1) 

has PM-probability either zero or one. 

Proof By Theorem 3.1 

A = { f~F:  PI is persistent} 

= f e F :  Wzl_(.'t=~lg[(2*t(y-(t))<ool=l for all z e Z  a . 

Since s2"T=Z--~ it follows that the event A is invariant, that is, A=TxA.  
Therefore by Hypothesis, PM(A) is either zero or one. [] 

Thus there exists a dichotomy between those ergodic random media which 
yield persistent branching random walks and those which do not. In this paper 
we obtain a characterization of those random media which yield persistence 
subject to Hypothesis M.2. 

The persistence or non-persistence of a branching random walk in an er- 
godic random medium depends both on the displacement distribution 2 and 
the random medium. We next obtain a necessary consequence of persistence. 

Let ~ denote the "symmetrized distribution 2-  * 2. It is said to be transient 
if the random walk on Z a governed by ~ is transient. 

Proposition 4.2. Assume that the random medium satisfies the hypotheses M.2 and 
M.3 and yields persistence. Then the symmetrized displacement distribution ~ is 
transient. 

Proof For co--(ool, oo2)~f2wX (2 w and t e Z  + let ((t)=col(t), ('(t)=co2(t) and let 
W2o = W o x W o (product measure). Under W2o, ( and ~' are independent ran- 
dom walks starting at 0 and governed by the reflected distribution 2- .  
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Lemma 4.3. I f  the symmetrized distribution ~ is recurrent, then the random sub- 
set of Z d defined by 

~={xsZd:  there exists t for which ~t=~'t=x} 

is infinite with Wo2o-probability one. 

Proof. For k a positive integer we introduce the stopping times: 

%=0,  %§ 1 =min{t_>_ % +2k: ~t= ~;}, n = l , 2  ..... 

By the recurrence of ~ W2o(%< oe)= 1 for each n. Since 2 is nondegenerate 
we can choose x ~ 0  such that ,~(-x)>0. Then 

WZo([ ~l l > 2k) > WZo(~ zk= ~'2k= 2kx) > (2( -- x))4k > O, 

and therefore, 
Wo2o ([ ~ I < 2k) < 1. (4.2) 

Therefore {ff~, +~ - ~,: n cZ + } is a family of independent, identically distributed 
random variables which satisfy 

Wo~o(I ~ . . . .  - ~ . l < 2 k ) < l .  
Therefore 

WoZo([~,+ -{ , ,1<2k for all nEZ+)=0, 
and consequently 

WoZo([~,l<k for all neZ+)=0.  
Therefore, 

WZo({{x: ~ , = x  for some n} is finite}) 

< ~ Wo2o([~J <k for all n~Z+)=0. 
k = l  

This completes the proof of the lemma. 

Completion of the Proof of Proposition 4.2. Assume that ~s is persistent PM- 
almost surely. By Theorem 3.1 

co 

g/~(2*t(-~t))< o% Wo-almost surely. 
t = l  

Then taking note of (3.3) this implies that 

2*~(-~t)g{,(1)<o% Wo-almost surely. (4.3) 
3 = 1  

Since 
4 " ( - ~ 3  = Wo~o(~, --- ~;1~(r tsz+)), 

(4.3) implies that 

141o2o • PM-almost surely, 
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where 1~o~(. ) denotes the indicator function of the point 0. Hence 

Z g{(1) < ~ ,  W20 x PM-almost surely, (4.4) 
xEN 

where ~ is the random set introduced in Lemma 4.3. If ~ is recurrent and 
Hypothesis M.2 is satisfied, then (4.4) is a sum of infinitely many non-negative, 
independent and identically distributed random variables. But such a series can 
be finite only if each term is zero, that is, 

g:o(1) = 1 - f~(0)=0,  Pu-almost surely. 

But this contradicts Hypothesis M.3 and therefore we must conclude that ~ is 
transient. This completes the proof of Proposition 4.2. [] 

For  a given displacement distribution which is transient the system can 
turn out to be either persistent or non-persistent depending on the tail be- 
havior of the offspring distributions. To investigate this dependence we in- 
troduce the following hypothesis. 

Hypothesis M.4. Let  0 < c~ <= 1. Assume that 

EMg:o(S ) is regularly varying at zero with index ~. 

(A measurable positive function R defined on a non-empty interval (0,So) is 
said to be regularly varying at zero with index - o o  < e <  oo if 

limR (c s)/R (s) = c ~, 0 < c < 1 .) 
s$O 

Hypothesis M.4 covers a large class of random critical offspring distri- 
butions. For  the sake of illustration we include an example which was intro- 
duced in [1]. 

Example 4.4. Let 0 < e =< 1 and set 

f~(s) = (1 - K - 1 ) + K - a s  K, 0_<s_< 1, 

where K is a random positive integer not identical to 1. If c~= 1, let K have a 
finite expectation. If 0 < c~ < 1, the tail probabilities are assumed to satisfy 

P ( K > k ) ~ c o n s t k  -~ as k--* oo. 

Then the function g:0(s) = 1 -f~(1 - s )  satisfies Hypothesis M.4, more precisely, 

Erg:o(S)~consts  ~ as s--*0. (4.6) 

Another family of examples is obtained by taking a random mixture of the 
offspring distribution given by E K f  r with one which has a finite variance. 

Example 4.5. Let 0 < e < 1. For each C > 0, 

1 --fc(1 - s )=(Cc~+s-~ )  -1/~, 0_<s_< 1, 
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defines a critical offspring generating function fc for which the corresponding 
offspring distribution does not have a finite second moment (cf. Zolotarev 
[14]). If C is chosen to be a positive random variable with finite expectation 
then fc satisfies Hypothesis M.4. 

5. The Critical Dimension 

In this section we assume that the displacement distribution belongs to the 
domain of attraction of a truly d-dimensional stable distribution of index fl 
(Hypothesis D.1) and that the random medium f is ergodic (Hypothesis M.1) 
and is such that g~o(s) is regularly varying at zero with index 
(Hypothesis M.4). 

The persistence or non-persistence of the branching random walk can de- 
pend on the indices 0 < e < l ,  0<fl<__2 and the dimension d. The positive in- 
teger d c is said to be the critical dimension if the branching random walk is 
persistent when d > dc and is non-persistent when d < d~. (We also show by ex- 
ample that the system can be either persistent or non-persistent when d=d~.) 
The main objective of this section is to prove that d~= [fl/e]. 

Theorem 5.1. Assume that 2 satisfies Hypothesis D.1 and that the random medium 
satisfies Hypotheses M.1 and M.4. Then 

(a) Pj- is persistent for PM-aImost every f provided that d> fl/c~; 
(b) /f in addition the random medium satisfies Hypothesis M.2, then the per- 

sistence of P~ for PM-almost every f implies that d > file. 

Proof. (a) Assume that d>fl/e and choose 0 such that d/fl>O> 1/e. Then by 
Lemma 3.1.b we have 

Mt=sup2*t(x)<=constcf for t>__l. 
x ~ Z  d 

By Lemma 3.1,a it can be shown that (cf. [2: Lemma 8.8.2]), 

ct e < c0nst t - 0, and therefore, 

M~ <__ const t -  0. (5.1) 

Choose p such that 0 e > p > 1. Then for fixed ~ and y and all sufficiently large t 
we obtain 

EMg~('~*t(Y -- ~)) = EMglo(2*t(Y -- ~t)) 

<Egglo(Mt) (since g is monotone increasing) 

<Eu(glo(constt-~ by (5.1), 

<cons t t  -p (by Hypothesis M.4). 

Since ~ t-" < oo, this implies that for each ~ and y 
t = l  

g/t(2*t(y-~t))< oe PM-almost surely. 
t = l  
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Thus, for all y and z, W z x P~t-almost surely, the finiteness condition (3.5) is 
satisfied. Therefore Proposition 3.4 implies that the branching random walk P~ 
is persistent for PM-almost every f and the proof of (a) is complete. 

(b) Assume that the random medium satisfies Hypothesis M.2 and that PI is 
persistent for PM-almost every f .  Then by Proposition 4.2 the symmetrized 
displacement distribution ~ is transient. By Theorem 3.1 

oo 

gs o% W o x PM-almost surely. 
t = l  

For each tcZ +, let 
A t = { ~ O w :  ~t,=t=~t for all t'>t}. 

Then (5.2) yields 

(5.2) 

~,, 1At(~)gf (2*t(-~t))< oo, W o x P~t-almost surely. (5.3) 
t = l  

Consider a fixed ~. Then the sum which appears in (5.3), for values of t for 
which 1A~(~)=I, the gs are independent, identically distributed, non-negative, 
and bounded random variables. We can then conclude (cf. Kolmogorov's 
Three Series Theorem) that 

1At(~)(E~gs Wo-ahnost surely. 
t = l  

Then by Hypothesis M.4, we can conclude that for any c(>e, 

~lA,(~)(2*t(--~t))a'< oa, Wo-almost surely. (5.4) 
t = l  

Let rS=2*t(-~t). Then r h < M  t where M t is as defined in the proof of (a). More- 
over, 

Eworlt=~ for all t~Z +. 

where Ewo denotes expectation with respect to W 0. 
The last inequality follows from a lemma of Esseen and Enger (cf. [-6: p. 20, 

formula (9)]). On the other hand by Lemma3.1.b, M2t>cons tM ~ for t_>_l. 
Therefore there is a 0 < 6 <  1/2 such that 

Eworlt>=2~SMt for t > l .  
Hence 

( 1 - 5 ) m ,  Wo(mt-q,>__(1-6)m,)<Ewo(m,-rh)<(1 - 2 6) M,, 

and therefore 

Wo(rlt>SMt)>=l-(1-25)(1-5)-1>c5, for all t__>l. 

Therefore for each positive integer to, 

to tO tO 

~, 5(3My'<= ~ Wo(r h > 6M,)(6Mt) ~' <= ~, Ewo [(q,)~']. 
t = l  t = l  t = l  
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Note that Ewolat(~)= Wo(Ao)=r>O by the transience of ~ Since 1a~(~ ) and t/t 
are independent, 

Ewo 1A,(~)(r/t) r = 
t =  1 / 

[0 tO 

r ~, Ewo((tlt)")>=r61+" Z Mr'. (5.5) 
t = l  t = l  

Let k be a positive integer and note that 

Therefore, 

tO tO 

1A,(~l(t/,)"------- Z M;'. 
t =  1 t =  1 

Ewo (t~ll a,(O(th)r ) <-k + Wo (,~ll a~(O(th)r > k ) ~= l(M,)~'. 

Then (5.5) and (5.6) imply that 

I41o 1A,(O(rlt)r >r61+r ~(M,) r 
t - -  L t =  i J 

(5.6) 

(5.7) 

oo 

Assume for the moment that ~ (Mr)C= oo. Letting to~OO and then k~oo 
in (5.7) we obtain t= i 

Wo (t~_ ll &(~)(rlt)~'= oo ) ~r ~l +~'>O 

which contradicts (5.4). Thus we must conclude that 

( M y ' <  oo. (5.8) 

Let O>d/fi. Then by (5.8) and Lemma 3.1 we obtain 

• t -0" '<  o0. 
t = l  

In other words, 0~ '>1 for every O>d/fi and ~'>~. But this implies that 
d~/fl> 1, that is, d>fl/~, and the proof of (b) is complete. [] 

We next demonstrate that under additional assumptions the persistence of 
the branching random walk is equivalent to the condition d >/3/,. 

Theorem 5.2. Assume that in addition to the hypotheses of Theorem 5.1 the fol- 
lowing two conditions are satisfied: 

(i) 5t belongs to a normal domain of attraction, and 
(ii) Eglo(S)~constsL as s~O. 

Under these assumptions the branching random walk is persistent if and only if 
d > ~f~. 
Proof. Assume that the branching random walk is persistent. Then proceeding 
as in the proof of Theorem 5.1 we obtain 
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• 1A~(()(2*t(--(~))~<0% Wo-almost surely, 
t = l  

and 

~, (M,) ~ < oe. 
t = l  

Since 2 is in a normal domain of attraction, 

ct e ~ const t -  d/~ 

Therefore by Lemma 3.1.b, 

M~ > const t -  dip 
Consequently, 

and therefore d > fi/c~. [] 

a s  t - ~  o0. 

for t_>l. 

oo 

~ t -~d/l~ < 00, 
t = l  

(5.9) 

(5.10) 

(5.11) 

6. The Classical Medium 

In this section we specialize the results of the previous section to the classical 
medium, that is, a spatially homogeneous and non-random medium. 

Let h be a critical offspring generating function and assume that 

PM(fx----h for all x )=  1. (6.1) 

We also impose the following hypothesis. 

Hypothesis C.1. Assume that the critical offspring generating function h has a 
representation of the form: 

h(s)=S+Rh(1 -s) ,  0<s_<l ,  (6.2) 

where R h is a regularly varying function at zero with index 7:= 1 + cc 

Consequently, under Hypothesis C.1, the critical offspring distribution de- 
termined by h belongs to the domain of attraction of a stable distribution 
(defined on the real line) with exponent 7- In the case ~, = 2, all critical offspring 
distributions with positive finite variance are covered. 

Theorem 6.1. Assume that the displacement distribution 2 satisfies Hypothesis D.1 
and that a classical medium satisfies Hypothesis C,1. Then the branching random 
walk is persistent if d > fl/~ whereas its persistence implies that d > fl/cc 

Lemma 6.1. Let R be a regularly varying fimction at zero with index 7. More- 
over assume that R has a monotone derivative R'. Then 

lira s R' (s)/ R (s) = 7. 
rlO 

Pro@ See Lamperti  [7]. 
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Proof of Theorem 6.1. By (6.2) we have 

h(1 - s )  - ( 1  --s)=Rh(s ), 
and 

g"(s) = R~(s) = 1 -h ' (1  -s ) ,  0 _<s _< 1, 

is monotone. Therefore by Lemma 6.1, 

gh(s)~(1 + ~)Rh(s)/s as s~0 .  (6.3) 

Consequently, gh is regularly varying with index c~. Therefore Hypothesis M.4 is 
satisfied and Theorem 6.1 follows from Theorem 5.1. [] 

Theorem 6.2. Assume that in addition to the hypotheses of Theorem 6.1, the dis- 
placement distribution 2 belongs to a normal domain of attraction and that the 
function R h satisfies: 

Rh(s)~consts:+L as s-~O. (6.4) 

Then the persistence of the branching random walk implies that d> fi/c~. 

Proof The asymptotic relations (6.3) and (6.4) imply that 

gh(s)~consts", s~O, that is, 

condition (ii) of Theorem 5.2. The Theorem then follows from Theo- 
rem 5.2. [] 

We next give an example to illustrate the fact that it is possible for a 
branching random walk to be persistent in the case d=fi/c~ when the hy- 
potheses of Theorem 6.2 are not satisfied even in the case of a classical me- 
dium. 

Example 6.3. Consider a classical medium in which the offspring distribution 
has positive finite variance, hence e =  1. By a well-known persistence criterion 
(cf. [10: Theorem 12.6.4]) PI is persistent if ~ is transient. Let d =  1. Then in 
order to exhibit a classical medium in which the branching random walk is 
persistent and for which fl = 1, it suffices to obtain a symmetric distribution 2 
which is transient and which also belongs to the domain of attraction of the 
Cauchy distribution. The following construction of such a distribution is relat- 
ed to the work of Siegmund-Schultze [11]. 

For  some e > 0  the function 

ko(x)=exp(-lxllog21xl), Ixl<e 

is convex on (0, ~). Choosing e sufficiently small, there is a continuation of k 0 to 
a symmetric function k: on R 1 with 

k l (0 )= l ,  k : (x )=0  for all x>rc, 

and such that k, is convex on (0, oo). Then by Polya's criterion (cf. [2: 
Example 15.3.b]), k 1 is the characteristic function of a distribution on R 1. Then 
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the periodic continuation, k, of kl[[;~,~] to R 1, is also the characteristic func- 
tion of a symmetric distribution (cf. [2:19.5 Theorem 2]) 2 on Z 1. Then 

and therefore 
1 - k ( x ) ~ x l o g 2 x  as x,~O, 

�89 
~(1 - k ( x ) )  - ~ dx  < ~ .  
0 

But the latter implies that 2 is transient ([2: 18.7, (6.7)]). On the other hand, 

Therefore, 
n E 1 - k (x(n log 2 n)- 1)] __+ x 

[k(x(n log 2 n)- 1)]"--+e-I~1 

as n - , ~  for x>0 .  

for all x e R  I. 

Consequently 2 belongs to the domain of attraction of the standard Cauchy 
distribution on R 1. Hence we have constructed 2 with the desired properties. 

7. Proof  of  Theorem 3.1. 

7.1. Preliminaries 

Let v be a symmetric probability distribution on Z d. Then 

(TQv)(x)-- rxQ~, x e Z  a 

defines a clustering mechanism TQ~ which describes independent displacements 
according to v. 

Fix a varying medium f e F .  For each t = 0 , 1 , 2  .. . .  , oo, let ~ denote the 
random counting measure obtained from q~t if all the particles in ~t are dis- 
placed independently according to v. In other words, the distribution of ~b[ is 
given by P] clustered with respect to TQ~. 

By Lemma 3.1, P~ converges in distribution to p oo as t~oo.  Therefore by a 
standard continuity theorem for clustering (cf. [10: Prop. 4.7.3]) we conclude 
that 

~b;~b~ in distribution as t~oo .  (7.1) 

where the distribution of ~ is obtained by PI ~ clustered with respect to TQv. 
Note that the expectations 

Es~ , ( x )= E~b2(x )= l  for t=0 ,1 ,2  .. . .  , and x e Z  e, 
and 

E s ~ ( X ) = I  for all x e Z  e if and only if E~b~o(x)=l for all x s Z  e. 

Therefore the branching random walk is persistent if and only if 

Eq~t(x)~E~b2(x) as t ~ ,  for all x s Z  e. (7.2) 

7.2. A Reformulation of  Persistence 

Since ~t is an infinitely divisible random counting measure, it has a cluster 
representation and this will be used to reformulate the persistence criterion. In 



328 D.A. Dawson and K. Fleischmann 

this subsection we review some relevant facts concerning the cluster representa- 
tion, canonical measure and Palm distributions. A systematic exposition of 
these topics can be found in [5] or [10]. 

If �9 is an arbitrary infinitely divisible random counting measure on Z e, 
then it has the cluster representation (cf. [5: Theorem 6.1 and Lemma 6.5]): 

~=5#~n(d# )  

where ~L is a Poisson random measure on N\{0} with intensity measure L 
where L is a uniquely determined measure on N\{0} satisfying ~(1 
-e-~(B))L(d#)<o% for every finite set B c Z  d. L is called the canonical mea- 
sure of ~. 

Consider the family of probability distributions {L~} on (N, ##) defined by 

#({x}) L(dl~) 
Lx(M)= M x ~ Z  a, M ~ Y .  

#({x)) L(d#) '  
N 

provided that 0 < ~ #({x}) L(d #) < oo. 
N 

L~ is referred to as the Palm distribution at x of the canonical measure of q). 
For  convenience we introduce random counting measures (43)~ distributed ac- 
cording to Lx. 

The random counting measures ~ are infinitely divisible and satisfy (7,1). 
Therefore, according to [5: Lemma 10.8] the convergence statement (7.2) hence 
persistence is equivalent to 

~v ~v  
(~bt)z---~(~boo)~ in distribution as t~oo ,  for all z~Z  a. 

Now assume for the moment the weaker condition, namely 

~v (~bt) ~ converge in distribution as t ~  

for all z~Z  d in the sense of weak convergence in D. Combined with the fact 

l imE(b~(x)=l for all x ~ Z  a 
t ~  oo 

we conclude (cf. [5: Exercise 10.7]) 

Eeb~(x) = 1 for all x ~ Z  a, 

that is, the persistence of Ps' Thus we have derived the following lemma. 

Lemma 7.2.1. The branching random walk in a spatially varying environment Ps is 
persistent if and only if 

(~[)~ converge in distribution as t~oo ,  for all z e Z  a. 

7.3. Kallenberg's Backward Tree Method 

In this subsection we apply Kallenberg's (cf. [6]) backward tree method to 
identify the distribution of ~~ (~,)~. 
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We begin with an informal description of the ideas. Consider an augmented 
branching model in which all family relations are recorded and which therefore 
yields a family tree. Consider a particle in ~ "chosen at random" and assume 
that this particle, called ego, is located at z e Z  a. The ego 0o =6~ has brothers 
described by a counting measure 01, that is, particles which have the same 
father as ego. Moreover it has cousins described by a counting measure 02, etc. 
It turns out that (~t)~ can be identified with (~0+~0~ + 0 2 + . . .  +0t)- 

We now formalize the construction of the sequence of counting measures 
0o, 01, Oz, -... Let ~={~,: teZ+} be a random walk governed by 2-  but start- 
ing at ~o which is distributed according to T~ v. We denote by W] the probabil- 
ity measure on (2 w associated with ~. Note that 

W; = ~ v(y) W~+, (7.3) 
y~Z  a 

where W~ denotes the probability measure associated with the random walk ( 
with (o--X. 

For x e Z  a, let ba~ denote the Dirac measure concentrated at the particle 8~. 
We introduce a notation for repeated clustering according to tr162 as follows: 

/r = ~ a~, 

~cfEt+ 11 _ , . f [ th  for t =0, 1, 2, and x ~ Z  d. (x) - -  t " (x )  &s" . . .  

The Palm distribution of ~c{~) at y e Z  a is given by 

, t 
(~C/x)), = ha, f'(T~Q.a). 

Now let ~] denote the location of ego's ancestor j >  1 generations back. Then 
f{j(7~jQ~) is the distribution of that ancestor's children except the one situated 
at ~j_ ~. Then after ( j -1 )  fold-clustering according to lcs as well as independent 
v-displacements, we obtain ego's relatives of order j, denoted by 0~. For a 
given sequence {~j}, the 0o, ~1, 02, 03 . . . .  form a sequence of independent 
random counting measures. If we assume that the ~j are distributed according 
to the measure W], then the joint distribution of {~j,0j} is given by a proba- 
bility measure V~ defined on (Zax N) z+ which is given by: 

oo 

' T ,  V~(d[~, 0] )=  VV~(d ~) 8a=(d0o) I~ ((f~,( r Qz))~Jt,-1,)re~(d0~). 
j = l  

Lemma 7.3.1. For all z~Z  d and t~Z +, the distribution of (~)~ is given by 

v~(Oo +01 + ... +0,~') .  

Proof Refer to Liemant [9: Satz 8.2]. 

Lemma 7.3.2. Pc is persistent if and only if for all z e Z  d, Vz(0o+01 + ... +~ te . )  
converges as t~o~. 

Proof This follows from Lemmas 7.2.1 and 7.3.1. 
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7.4. A Further Reformulation of Persistence 

Lemma 7.4.1. Pf is persistent if and only if for all y and z~Z a, 

c~ 

~g[~(Bt(~t;{#~N:#(y)>O}))<~ , W~-almost every ~, (7.4) 
t = l  

where 
Bt(x;M)=((TxQ~)~Et_,~)rQv(M) for xEZ a, M s Y .  

Proof. The partial sums 01+ . . .  +0 t  are monotone increasing in t. Thus the 
convergence assertion in Lemma 7.3.2 is equivalent to 

V~ 0,(y)<oo =1 for all y,z~Z e. (7.5) 
t 

This follows since almost sure convergence implies weak convergence whereas 
unboundedness contradicts weak relative compactness. But (7.5) is equivalent 
to 

V~ t(Y) < ool = 1, V~-almost surely, 
t = 0  

where ~,~ = a { ~t: t > 0}, or equivalently, 

Vd0,(y)>0 infinitely often [-~)=0, V~-almost surely. 

Conditioned on the a-field ~ ,  the events {Ot(Y) >0} form a sequence of inde- 
pendent events. Therefore by the Borel-Cantelli lemma (7.5) is equivalent to 

V~(Ot(y)>OIJ~), V~-almost surely. 
t = O  

But from the definition of V~, there is a regular conditional distribution which 
for a given sequence ~ gives: (using again {#(y)>0} as a shorthand for 
{#eN: ~(y) > 0}) 

V~(Ot(Y) > OI (~}) = (f~(Tr ({#(Y) > 0}) 

= 1 -f~' (1 - ((Tc, Qz)~sE, '~)TO.({#(Y) > 0})) 

= g f  (Bt(~,; #(y) > 0})). 

This completes the proof of Lemma 7.4.1. [] 

7.5. Proof of Sufficiency 

For a random counting measure, ~, we have P(O(y)>O)<EO(y). Therefore, 

((T~ Q~)~f~_ '~)rav({~(Y) > 0}) < Tx2 * 2 *~'- ~) * v(y) 

=)~, t ,  v(y -x) ,  (7.6) 

where we have used the fact that ~c(~) corresponds to a critical offspring distri- 
bution. If we set v = 6o, then by the monotonicity of g{, 
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g~(B~(x; {#(y) > 0}))~ g{(2*t(y -x)). (7.7) 

If condition (3.5) is satisfied, then (7.7) and Lemma 7.4.1 immediately imply 
that Pf is persistent. 

7.6. Proof of Necessity 

We now assume that PI is persistent and that v is a symmetric probability 
measure on Z d with v(x)>0 for all x s Z  d. 

For x ~ Z  ~ let B~(x)6D be defined as in the statement of Lemma 7.4.1. If 
{~t: teZ+} is a sequence in Z a, then for each teZ+ let )If be a random counting 
measure whose probability distribution is given by Bt(~t). Then we have (cf. 
(7.6)), 

Exf(y)  = ~#({y})B,(~t ;d#)  = ~ * ' ,  v(y-  ~,). 

But by assumption on v, 2*3, v(y-(~)>0.  Therefore the Palm distribution at y 
of Bt((t) , denoted by (B~((t))y can be computed by: 

('f ) (Bt(~t)) , = Vy 0i ~" {~,= ~} (cf. [9: Satz 8.2J). (7.8) 
i = 0  

Note that in (7.8) { ~ = ~ }  denotes the event 

Actually, this event is in ~ t +  =o_{~s: s>t}. We also define 

co 

We note that by the Hewitt-Savage zero-one law every event in ~oo has W~ ~ 
and therefore V~ probability either zero or one. Using this fact together with 
(7.5) we can conclude that persistence implies that for each y~Z  a, 

Vy 0 i ( y ) < o o [ ~  | =1,  Vy-almost surely. (7.9) 
l 0 

Lemma 7.6.1. Let y, z~Z e. Then 

lim liminf(Bt(~,))y({#:#(y)<k})=l , for W~ ~ almost every ~. (7.10) 
k ~ o o  t ~ o o  

Proof Let Ak= {#: #(y)<k}. By (7.8), 

('f ) 
\ i =  0 

(using the regular conditional probability) 

>V~ O~(y)<kl~ ~+ (~). (7.11) 
i = O  
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Since the ~-fields ~,~t+ ] , ~ ,  

c~ oo 

for V~-almost every ~, by the reverse martingale convergence theorem. 
But by the positivity assumption on v it follows that the measures W~ ~ and 

W] are mutually absolutely continuous. Therefore, 

(i0 t 0 ), limVy i(y)<k[,,~+ (~)=Vy ~(y)<kIJ~ | ~) (7.13) 
t ~  oo i =  0 i =  

for W]-almost every (. Therefore, by (7.9), 

lim lim Vy i(y)<k]~r t+ 
k ~  co t ~  ca) i =  

= l i m  Vy ~= ~h(y)<k]~  ~176 (:)=Vy ~oq*i(Y)<~176176 

for W[-almost every {. Consequently by (7.11) we conclude 

lim liminf(B,(e,))y(Ak)= 1, for Wj-almost every ~. [] 
k + o o  t ~ o o  

Lemma 7.6.2. For WT-almost every ~, there exists ko(~ ) and to(~) such that for 
all t>to({) , 

EZ~(y) <2ko(r {#: #(y) >0}) < 1. 

Proof By Lemma 7.6.1, for given y and W]-almost every ~, there exists a ko(~ ) 
and to({ ) such that 

((Bt(r #(y)<=ko(~)})> l/2 for t >to( O. (7.14) 

Recalling that Bt((t) is the distribution of X~(Y) and the definition of the Palm 
measures (Bt((t))y, we obtain 

(Bt(~t)),({#(y) = i}) = iBt({t; {#(y) = i})/(E Z~(Y)). 

Then for t>to({), 

k o ( 0  

ko(r ; {#(y) > 0}) ~ Z iBt((t; {#(Y) = i}) 
i = 1  

ko({) 
= Y~ (B,(~3),({#(y) = i}). (~z~(y)) 

i = 1  

= (B,((t))y({#(y) <= ko(()})" (E Zf (y)) 

>= 1/2Ez~(y) by (7.14). 
Since 

~ z f ( y ) = , ~ * ' ,  v(y-~,), (7.15) 
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we have 

and the last 
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Bt ((t; {# (Y) > 0}) < E Z~ (Y) = 2 * t ,  v (y - (,) < sup 2*'(x) 
x 

term converges to zero as t--*oo. Therefore, increasing t o suf- 
ficiently we can insure that  2koBt( ( t ;  { # ( y ) > 0 } ) <  1. This completes the p roof  of 
the lemma. [ ]  

Using L e m m a  7.6.2, (7.15) and (3.4) we conclude that for t> to( ( ) ,  

gs (2 *t * v (y - ~t)) < gs (2 k o (~) B t ((t; {# (Y) > 0})) < 2 k o (() gs (B t ((t; {# (Y) > 0})). 
(7.16) 

By L e m m a  7.4.1 persistence implies that 

co 

g s  o% for W]-almost  every ~. 
t = l  

This together with (7.16) yields 

oo 

gs v ( y - ~ t ) ) <  o% for W]-almost  every ~. 
t = l  

Finally, using (3.3), 

g~(2 *t �9 v(y - ~t)) > g~ (2*t(Y - ~t) v(0)) > v(0) g~ (2*t(y - ~t)). 

Hence we have shown that  persistence implies that  for W~'-almost every {, 

g{~(A*t(Y-~t)) < oo. (7.17) 
t = l  

Finally note that in view of  (7.3) and the positivity assumpt ion on v, (7.17) is 
also true for W~-almost every (. This completes the p roof  of  Theorem 3.1. [ ]  
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