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A Factorization Problem and the Problem 
of Predicting Non-Stationary Vector-Valued 

Stochastic Processes 

J. RISSANEN and L. BARBOSA 

Summary. In this paper a prediction theory is developed under the general idea that the infinite 
dimensional covariance matrix is a self-adjoint element in a symmetric Banach algebra. The usual 
Wiener's spectral factorization method for solving stationary Wiener-Hopf equations has been 
extended to this algebra. Finally, a theorem for factoring a positive definite covariance matrix into 
upper and lower triangular factors with similar inverses has been proved. 

1. Introduction 

The prediction theory of stationary processes, first scalar-valued and then 
more recently vector-valued ones, has reached certain degree of completeness, 
[ 1 -  7]. Behind this success has been the rich and well established machinery 
of harmonic analysis. 

The central problem turned out to be a certain factorization of the spectral 
density function into two factors, one consisting of positive and the other of 
negative powers of e i~ This problem was solved first for scalar valued functions 
by Szego, [8], and then successively for finite and infinite matrix valued funct ions 
by a series of authors, [-5, 9 -  11]. The factorization permits a one-sided moving 
average representation of the process with a simple solution to the prediction 
problem as the result. 

In this paper we show that an analogous approach can be developed for solving 
the prediction problem of both stationary and non-stationary processes alike. 
We consider the infinite-dimensional covariance matrix associated with a process 
as a self-adjoint element of B ( ~ ) ,  the symmetric Banach algebra of bounded 
linear operators on an appropriate Hilbert space into itself. Then, we prove by 
construction a factorization of self-adjoint operators into upper and lower 
triangular factors, after which the solution to the prediction problem is obtained 
without difficulties. 

The class of processes with covariance matrices belonging to B ( ~ )  has 
special importance in engineering applications. In this class, the predictor, 
defined by an infinite dimensional matrix, itself belongs to B ( ~ ) .  Therefore, it 
can be compound with other elements of B ( ~ )  by the product rule. This in appli- 
cations corresponds to the cascade connection of linear systems with preservation 
of stability - to use an engineering language. 

Because of the importance of the above type of processes, we in this paper 
investigate them only. Yet, the problem of how to remove the requirement that 
the covariance funct ionbe a bounded operator is an important one. It is conceiv- 
able that the powerful factorization results in [ 9 -  11] can be applied to perform 
18" 
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even the type of factorization needed here, which would permit a harmonic 
analysis treatment of non-stationary processes. 

For other approaches to prediction problems of non-stationary processes, 
we refer to [12] and [13]; special cases have also been discussed in [14]. 

2. Preliminaries 

To make this paper more self-contained, we give a brief summary of vector- 
valued stochastic processes. A more thorough treatment can be found in [5]. 

Let t2 be a space having a Borel field of subsets over which is defined a prob- 
ability measure P. Let L2 be the set of all real valued measurable functions f on 
f2 such that ~ f2 (o9) dP (co)< oe. Then Lz is a Hilbert space with the inner product 

(f, g) = ~ f(o)) g (m) dP (o9)= E ( f  g). (2.1) 
o 

As usual, we do not distinguish functions which differ only on a set of measure 
zero. 

Let ~e 2 denote the set of all q-dimensional vector-valued functions 
f=( fo )  . . . .  ,f(q)) on f2 such that f~i)~L z. L~a2 is made into a Hilbert space by 
setting 

(f, g) = ~ E (fti) g(i)). (2.2) 
i = l  

The norm induced by (2.2) is given by: 

II f I[ = ( f  f)~-. (2.3) 

Definition. By a vector (q-)valued random process f is meant a sequence (2.4) 
{f.}~| of functions f ,~Se z . 

The covariance matrix of f .  and f., is written as 

(2.5) 

We call the infinite matrix r =  {r.,,} the covariance function off .  

If two processes f and g have all their covariance matrices identical, the 
processes are equivalent up to second order moments, [15]. 

Let M. denote the subspace spanned (with respect to all possible real q x q- 
matrix coefficients) by the set {fj}j__,, j e N = s e t  of integers, fjELP2. Then the 
orthogonal projection of f,+m on M,,  denoted (f,+,,/M,), gives the optimal 
1.s. prediction of jr.+,, given {fi}J--,, [5]. 

Following Wiener, I-5], we call the process {f.}~-~o 

(a) non-deterministic, if for all n, f ,+l  r M. 

(b) regular, if (f./M_,,)~O, as m ~ o o  (2.6) 

(c) full rank, if for all n 
kl I <Eg.g',.<k2I, 

where k 1 and k 2 a r e  positive real numbers, and 

g,=f , - (L/M._l) .  (2.7) 
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The process {g,} is called the innovation process associated with f. It is clear 
that a full rank process is non-deterministic. 

If S(g,,+l, g,,+z, . . . ,g ,)  denotes the closed linear manifold spanned by the 
orthogonal vectors g,,+a, ..., g,, the following holds: 

M,=M,,+S(gm+t,  ..., g,); S(g,,+l .. . .  ,g,)_l_M,,. (2.8) 

This and regularity imply that f ,  can be represented as a one-sided moving 
average: 

fn = Z bni gi,  (2.9) 
i<n 

where b. ~ are q x q-matrices such that 

~. Irb.~lr2 < oo. (2.10) 
i<n 

The notation IIb.~t] is used for the matrix norm: 

II b.,ll = (t (b., b; ~))~ (2.11) 

the prime indicating transpose of a matrix and t( ) the trace. 

Clearly, for a full rank process, 

Egigs=JijGi; k l I < G i < k 2 I  (2.12) 

where (~ij = 1 for i = j  and = 0  for i=~j. 

Conversely, we may consider Eq. (2.9) for a given process g = {gi} in (2.12) and 
a set of coefficients {b,i} satisfying (2.10) to define a class of random processes. 
Clearly, this class contains all regular, full rank processes; and this is why we may 
confine our study to one-sided moving average representation of processes. 

Because of the condition in (2.12) the orthogonal process g may be normalized 
by setting 

wi = G~ ~ gi, 

whereupon we may rewrite the class of interest as: 

f , =  ~ a.i wi, n~N 
i<n 

Ila.,ll z < oo (2.13) 
i<n 

E wi wj=6ijI .  

By direct computation the covariance function of the process (2.13) is seen 
to be given by: 

r,m= ~ a ,  iami for m<n; r,m=r~,, forall m, n~N.  (2.14) 
i<m 
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Defining the infinite matrices r={r,m}, a={au} ,  and a* by * - ' ( a ) i j - a j i ,  we may 
write Eq. (2.14) as the single equation: 

r = a a*. (2.15) 

Notice that r has been factored into upper and lower triangular factors. The 
converse problem: given r, find the factorization (2.15), is of central interest; 
the main part of the paper is concerned with that problem. 

The basic prediction problem is to determine for each n the matrix coefficients 
P, i such that the infinite series ~ p, i fi converges and satisfies the equality: 

i < n  

( f ,+m/M,)= ~ p , , f ~ ,  n e N .  (2.16) 
i < n  

But in many applications this is not enough. Often, the prediction itself is not 
the main goal; and the data obtained from the predictor, considered as a linear 
system defined by the p, i's must be processed by other linear systems for regulation 
purposes, say. This brings up the question whether the resulting process is well 
defined, or as often called, stable. 

It is clear that to ensure this additional property on the predictor, the class of 
processes (2.13) must be appropriately reduced, which is done in the next sections. 

3. A Banaeh Algebra and a Class of Stochastic Processes 

We begin by defining the real Hilbert space ~ as the direct sum of countable 
number of the real Euclidean q-dimensional spaces R q: ~ = ~ �9 Hi, Hi = R q 

for all i ~N .  The elements of ~ are thus of the form ~N 

x =  q, 

having finite norm: 
Ilxll IIx, l12)  < (3.1) 

i e N  

/ q . \ - ~  

where IIx~ll is the usual Euclidean norm ( E (xl')) 2)  " 
\ j =  1 " 

Consider now the symmetric Banach algebra B(~r ~) of all bounded linear 
operators on J f  into itself. Each operator in B=B(J~f) ,  [16], can be described 
by an infinite dimensional matrix of the type: 

( ) a =  {a,m: n, m e N ,  a, meB(~)} = "" %"+1 an,, a . . . .  i ... (3.2) 
�9 . .  a n _ l ,  n a n _ l , n _ l  a n - l , n - 2  . . .  

such that the norm 
Ital[-- Sup Ilaxll <oo. (3.3) 

Xeget ~ 
I/xll=l 
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In (3.2) the a,m'S can be considered as q x q-real matrices. The product in B, 
defined as the composite map a o b, becomes a matrix multiplication: 

(ab)nm = ~ a . l b i ~ .  (3.4) 
i~N 

The element e={eu :  eu=6ijI, I=qxq-identity matrix} is the identity ele- 
p 

ment in B. The map a ~ a*, defined as ( a ) ,  m = am,, is called the involution; and 
the equalities 

[]aa*[]--[lall 2, Ilal[--Ila*ll (3.5) 

follow from the definitions. Also, (a*)-I = (a- l )  *. 

We already met the upper and lower triangular matrices in (2.15). Their role 
in the present discussion is central, and we define the following subspaces of B: 

B + = { a :  aeB, a,m=0, re>n} 
(3.6) 

B - = { a :  aeB, a,m=0, re<n}. 

That they also are subalgebras follows from the proposition: 

Proposition. a, b e B + ( B - ) =  > a b eB+(B-) .  (3.7) 

Proof. a, bsB + = > 

(ab),m= a"ibim for m<__n 

[ 0  m for m > n .  

Similar proof holds for B- .  

We next define a product between an element a6B and the orthonormal 
process w= {wi}~o~ as follows: 

(a W)n = EaniWi, neN.  (3.8) 
i~N 

Since a ~ B implies ~ [I a, i[[ 2 .~ OO, where l[ a, ill is defined in (2.11), Eq. (3.8) defines 
i~N 

an element in 5P2 foreach  n by Riesz-Fischer theorem. 

We conclude this section by defining a class of processes of the type: 

C =  {f:  f =aw, aeB +, w orthonormal}. (3.9) 

Contrary to the entire class of processes of the type (2.13), we may now con- 
sider products g = b f, b e B +,fE C, to mean: g = (b a) w, where f = a w. Clearly g e C. 

4. Prediction in C 

The prediction problem (2.16) for processes in class C is very simple. Let 
f e  C be defined by an aeB+: 

f =  a w. (4.1) 
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If a -~ ~B +, then the equality w = a - l f  shows that the two sets of elements in 
&~ {w~}"_ ~ and {fi}"--o~ span the same subspace M.. Further, we have from (4.1): 

f,+,,=a.+m,,+mw,+,,+'"+a,+m,,+x W,+l+ ~a,+,,,iwi, (4.2) 
i~n  

which shows that the optimal predictor is given by: 

(f,+m/M,)= ~ a,+m,i wi, n~N. (4.3) 
i<n 

We define the shift operator U" in B as: 

(Umx),-=-Xn+m, x 6 ~ ,  

and the truncation of an asB as: 

(a+)ij={;~ j if j< i  
if j>i .  

(4.4) 

(4.5) 

With the notation f =  {J~}~o~, J~=(fi+,,/M,) we, then, can write Eq. (4.3) in 
the concise form: 

f = ( u  m a)+ a -1 f, (4.6) 

where p=(U" a)+ a -~ eB + by Proposition (3.7). 

5. Factorization of the Covariance Function 

In the previous section we saw how neatly the prediction problem is solved 
in terms of the generating element a~ B +, if we know that a-1~ B +, too. In this 
section we study the converse problem: given a covariance function r~B, find the 
factorization (2.15). In addition, we are going to determine conditions on r to 
insure that a -1 ~B +. 

The fact that we are dealing with vector valued processes introduces certain 
trivial but annoying complications. To dispose of them a few notations and pre- 
liminary remarks are needed. 

We begin by introducing one more Hilbert space. Let V be the space of all 
sequences y = {Yi: Yi real valued q x q-matrices, ~, t (Yi Y'i)< oo }. The inner product 
in V is defined as: i~N 

(y, z)= y~ t(y, z',), (5.1) 

and the induced norm is denoted by IlYI[. Sometimes it is useful to consider y 
to consist of q columns or rows y~J), each belonging to ~ .  

Any element of B (;,el) defines also a linear map V~ V by: 

(ay) ,= ~'aniyl, n~N, (5.2) 
i~N 

which clearly is bounded. 
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In addition to multiplication of elements of V by scalars, it is convenient to 
define a product o f a  y~ V with a q • q-matrix Q as: 

(Qy).=Qy,,  n~N. (5.3) 

We use the notation r > 0  for an reB to mean (x, rx)>k>O for all x ~  
such that Ilxll = 1, and r > 0  to mean that (x, r x ) > 0  for all x E ~ .  In what follows 
we assume r=r*. Further, if r>0 ,  then r-l~B. But, also r - l > 0 .  To see this, 
observe that r > 0  implies first the existence of r ~ such that r-~eB. Thus r -1 = 
r -~ r -~, which is enough to establish that r -~ >0.  We also make frequent use of 
the fact that for an r > 0, the expression (x, r x) ~- defines a new norm in ~ which 
is equivalent to (x, x) ~. 

Consider the q x q-matrix defined as: 

[yrz]= ~ yirijz); y, z6V, rr r>0 .  
i,j~N 

(5.4) 

This definition is meaningful, for the m n'th element of [y r z] can be written 
as (y~m), r z(")), where y~")e J/g denotes the m'th column of y and z (") the n'th row of z. 

In particular, it is easy to see that [y r y] is positive definite if and only if 
[y y] = [y e y] is; or, equivalently, if the columns y(J) of y, considered as elements of 
~ ,  are linearly independent. We use the usual ordering for positive definite 
q x q-matrices, defined by: Q > P if Q - P is positive definite. 

To conclude these preliminaries let Yg, denote the subspace of ~ consisting 
of all the elements satisfying x i = 0  for i>n, and let %) denote the operator 
obtained from a~B by the truncation: 

= ~aij for i and j < n (a~.~)i~ 
0 for i or j>n.  (5,5) 

We also write B, = B (ovt~ B + = B  + n B,, and similarly for B~-. 

If r >0 ,  then with x e ~ , ,  rlxll = 1, the relations 

0 < k 1 < (x, r x) = (x, r(,) x) < k 2 (5.6) 

show that r(,}: ~ - - ,  oug, has an inverse r~;) 1 which is uniformly bounded in n. 

We now proceed to the main theorem: 

Theorem. Let r~B, and 
r =r*,  r >0 .  (5.7) 

Then there exists an element a~B + with a - l e B  + such that 

r=aa* 

The factorization is unique up to the equivalence under diagonal unitary trans- 
formations. 
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Proof We begin by constructing an element b = bto )e B o satisfying the equality: 

br(oe b*=g,  (5.8) 

where #=#(o)~Bg c~Bo; i.e. # is a diagonal. Denote the i'th row ofb  by bi: 

bi=(...O, bi, o ,b i_ l , . . . , b , ,O , . . . ) ,  i<=O. 

The rows b ~ will be determined by an immediate adaptation of Schmidt's 
e i o orthogonalization method. Letting { }-o~ denote the orthogonal set in V: 

(ei)j = 6ifl, the rows b ~ are generated by the recurrence relations: 

bO=e o 

0 . . (5.9) 
b~=e ~- ~ [e'r(o~b~][bJr(or i < - l .  

j = i + l  

Here, we used the definition (5.3) of the product between a q • q-matrix and 
a vector in V. The inverse [_bJr(o)bJJ -~ exists since by the construction the q 
columns of the element b i ~ V are linearly independent in Wo, and r(o) ~ > 0. 

Any two vectors b i and b j are seen to satisfy the orthogonality (with respect 
to r~o) 1) relation: 

[b ~ r(or b y] = 6 ~j/~u (5.10) 
where 

O<kl I<# i i<ka  I, i<O. (5.11) 

Indeed, by writing cqj= [eirtor b J], the equality 

0 

~ii Jc" 2 (ZiJ ]Ajj 1 ~'ij "~ [ el r(o) 1 e l i  (5.12) 
j = i + l  

proves the upper bound for #~i. The lower bound is obtained by observing that 
[b i b i] > I, which entails [b i r(o ~ b i] > k 11 for some k 1 > 0. 

Setting ~t= {#if} we obtain (5.8). That b*~B + follows from the second in- 
equality below: 

k~tlxllE<(x,l~X)=(x, br(or 2, X ~ o  (5.13) 

and the equivalence of the norms (x, x) ~ and (x, rco r x) -~. 

We still have to show that h*-~=u+ Let ~o  ~, m<0,  denote the subspace 
~ ( 0 )  ~ - ~ 0  " , - -  

of ~0 consisting of the elements satisfying x i = 0 for i<  m. ~o, m is invariant for 
the operators a in Bg-; denote the induced truncated operators a(o ' m): (a(o, ~)o = a~j 
for 0 > i, j > m, with all the other components zero. 

The first inequality in (5.13) implies that for all X ~ o ,  ,., 

kl ]lxll < Ilb*xll--IIb~o, ~)xtl, kl >0.  (5.14) 

But this means that the inverse b * - l "  (o,~). ]fO,~2/fO, m is uniformly bounded in m. 
Moreover, the inverse is upper triangular. Since ~ 9fO, m=WO, the induced 

m<O 
AI,.-~ satisfying the relation (C(o,~_l))(o,,,)=C(o,~) define an operators C(o, m) =u(O,m), 

operator Cto)eB ~ which by (3.4) is b~o~ -1. 
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Write  now 2(o ) = # - 1  = {/~/~ 1, i=<0}. Eq. (5.8), rewrit ten as 

* - (5.15) C(o) rio) C(o) -- ~(o) 

shows that  the rows of C(o) form an r(o ) o r thogonal  set in V. 

This suggests a cont inuat ion  of the Schmidt 's or thogonal iza t ion scheme (with 
respect to r) for increasing indices. Let  # =  (... O, I, cj, j_ l ,  cj, j_2 ,  ...)~ V. For  j___<O, 
we let c j coincide with the rows of C(o ). Fo r  j>O,  we define 

j - 1  

cJ=e  j -  ~ [ e J r c l ] [ c i r c i ] - l c  i, j > 0 .  (5.16) 
i ~  --co 

The sum on the right is bounded  uniformly in j, since with the notat ions 
[31~ = [e j r ci], 2ii = [c i r ci], the equality 

2j j+ ~ f l i j2~l f l ' i j=[eJreJ] ,  j > 0 ,  (5.17) 
i < j - - 1  

obtained from (5.16), holds. 

Eq. (5.16) implies that  

[c k r d]  = 6kl 2kk, (5.18) 

where, as in (5.11), 
O < k ' ~ ' I < 2 i i < k ~ I ,  i > 0 .  

Just as above one can show that  the opera tor  c(i), defined by the rows d,  j <  i, 
is uniformly bounded  in i, and that  the same is true about  the inverse c(7) a with 
domain  .~ .  Moreover ,  c (o sB  +, (c~i+l))(0=c(0, which together  with the fact that  

- 1  + - 1  - 1  c(o) eBo entail that  c(i)l~B~ , i>  O. Also, (c(i+l))(i)= c(i) �9 By (5.18) 

C(i ) t'(i ) eft/) = 2(0 (5.19) 

where 2~i)= {2ii: 2ii=#~, 1, i<O, 2ii = [cir ci], i>0}.  

The opera tors  c(i), e~) ~, and 2(//, i ~ N ,  define the three operators  c, c - l e B  +, 
and 2 s B  + c~ B - ,  respectively, such that  

c r c* = 2 (5.20) 
as can be verified by (3.4). 

Setting a = c -12  ~ we obtain the desired factorization. 

To  complete  the proof,  let b s B  + be another  opera tor  factoring r: 

r = b b*. (5.21) 

Then  there exists a uni tary t ransformat ion u such that  b = a u. Indeed, u zx a -  1 b ~ B+, 
and uu*  = a - l  b b* a * -1  = e = u * u .  For  x, y e ~ o , m  (re<O) 

(x, y) = (x, u* u y) = (u x, u y) = (Uto, ,~ x, U{o, m~ Y) = (U~o, ,,~ U~o, ,,~ x, y); 

--1 is upper  triangular, for which shows that  U(o,m ) is unitary. But U~o,,,)=Uto, m ) 
U(o ' ,,) is. Thus, U(o ' m) is diagonal.  But this implies that  u is diagonal,  too. 
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Remark 1. A strict application of the method to construct the factors in 
Theorem (5.7) is not very practical, because the inverse rio) 1 is required. However, 
in the important special case of practice where the process is of interest only for 
i >0 ;  i.e. the process begins at a fixed time instant: x={xi}~,  a convenient 
algorithm is obtained by a slight modification of the technique above. Let ~r 
denote the elements of 3(Y satisfying xi=0,  i<0 ;  and let alo)eB(~'o)) denote the 
associated truncation of aeB(~f) .  Then by substituting in (5.15) r~o), Clo ), and 210 ) 
for rto), qo), and 2to), respectively, Eq. (5.16) give directly the inverse Clo)~a -1, 
needed in the predictor formula (4.6). The same algorithm has applications also 
for stationary processes and when the process is described by difference equa- 
tions, [17]. 

We conclude this section by showing that the covariance function in Theorem 
(5.7) defines a regular, full rank process. 

Proposition. I f  r is the covariance function of a process f =  { f , } ~  such (5.22) 
that r6B, r>0 ,  then f is regular and of full rank. 

Proof We show first regularity, i.e., that (fn/Mm) ~ 0 as m ~ - ~ .  By Theorem 
(5.7) r =  a a* ;a ,  a -1 e B +. Thus the process a w, w orthonormal process, is equiv- 
alent to f up to second order moments. 

We compute 
(f,/M,,)= f , , ( n - m ) =  ~ P,,, i f~. 

i<.m 

The vector p., = (p . . . .  P . . . .  1 . . . .  )e V is obtained as the m'th row of the matrix 
peB + given by (4.6): 

p=(U(n-m) a)+ a -1. 

Let % ~-(% m, a . . . .  1, ...)e V denote the m' th row of (U ~n- ") a)+. Then 

[Ipmll<=[la-11111%11 ~ 0  as m ~ - ~ .  

This entails that (f,/Mm) ~ 0 as m ~ - ~ proving the regularity of f That f is of 
full rank follows from the fact that r > 0. Indeed, let 

g.=f.- Z 
i < n - 1  

Writing y & (I, - Pn- 1, , -  1, - Pn- 1, n- 2,'") ~ V we observe that 

Gn=Eg, g'n=[yry]>O, 

uniformly in n, since [y y] _-> I. 

6. Wiener-Hopf Equations in B 

As we saw in Section 4 and 5 the basic prediction problem for processes 
defined by their covariance function is solved by first finding a class C-represen- 
tation for the process, after which the simple reasoning of Section 4 applies. But 
since in more complex least squares estimation problems quite the same approach 
would not apply, we wish to present here another more general one. 
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The solution of a general class of least squares estimation problems can be 
reduced to that of solving the so-called generalized Wiener-Hopf equations: 

~ p ,  lrik--q,k=O, k=n, n - l ,  ..., all heN.  (6.1) 
i<n 

Here, r~k and q,k are known covariance matrices, and P,i are the matrix coefficients 
of the optimal estimator to be determined. Let us recall that Eqs. (6.1) are merely 
a restatement of the fact that the estimation error is to be orthogonal to the 
manifold spanned by the observed random variables. 

We plan to present a neat way to solve the Eqs. (6.1). In that purpose, define 
the operators r =  {rik}, q= {qnk}, and p=  {P,i}; and assume that r~B and qeB +. 
We want conditions on these matrices such that peB +. 

With the no ta t ion / ) -  = {a: aeB, a,,, = 0  for m<n} Eqs. (6.1) read: 

p r -  q ~/]- .  (6.2) 

We prove the following theorem. 

Theorem. I f  r~B, r>0 ,  and qe B +, then Eq. (6.2) has the unique solution (6.3) 

p=(q a* -1)+a-1 (6.4) 

in B +, where a~B + is any factor solving r=aa*. 

Proof Theorem (5.7) ensures the existence of an aeB + such that a - l e B  +. 
Then a* - l e B - .  Let p~B + solve (6.2). Then by Proposition (3.7) and making use 
of the fact that p r - q  belongs to /3-  rather than merely to B- we have: 

(p r -q )a* -2  =p a--q a*-I ~ - .  (6.5) 

Since p aeB +, the inclusion relation in (6.5) can hold only when 

p a - ( q a * - l ) +  =0,  

which is the required formula. 

To show the uniqueness of p, let also r=bb*, b~B +. Then by Theorem (5.7), 
b = a u, u diagonal and unitary; and 

p =  (q b* -1)+ b-1 =(q a* -1 u)+ u -1 a -1 =(q a* -1)+ a-1. 

Remark. Formula (6.4), when applied to the prediction problem of Section 4, 
reduces easily to (4.6); and Theorem (6.3) thus ensures that the optimal predictor 
is uniquely determined by r. 
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