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Summary. Convergence in probability of Malthus normed supercritical 
general branching processes (i.e. Crump-Mode-Jagers branching processes) 
counted with a general characteristic are established, provided the latter 
satisfies mild regularity conditions. If the Laplace transform of the repro- 
duction point process evaluated in the Malthusian parameter has a finite 
'x log x-moment' convergence in probability of the empirical age distribu- 
tion and more generally of the ratio of two differently counted versions of 
the process also follow. 

Malthus normed processes are also shown to converge a.s., provided 
the tail of the reproduction point process and the characteristic both satisfy 
mild regularity conditions. If in addition the 'x logx-moment '  above is 
finite a.s. convergence of ratios follow. 

Further, a finite expectation of the Laplace-transform of the repro- 
duction point process evaluated in any point smaller than the Malthusian 
parameter is shown to imply a.s. convergence of ratios even if the 'x logx-  
moment '  above equals infinity. 

Straight-forward generalizations to the multi-type case are available in 
Nerman (1979). 

1. Introduction 

Let us outline the general branching process following Jagers (1975). Assume 
that a typical individual reproduces at ages according to a random point 
process ~ on [0, oo). It is alive during the age interval E0,2) where 0<2_<00 
(thus if 2=  0 the individual is never alive). In general branching processes no 
particular dependence structure are assumed between ~ and 2. 

By L we denote the distribution function of the life length, i.e. 

L(u) = P[ 2 <= u], (1.1) 

and by ~(t) the ~-measure of E0, t], i.e. 

r = ~ (E0, 0).  (1.2) 
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/ l = E [ ~ ]  denotes the intensity measure  of ~. We write 

~(t) =E[~(0], (1.3) 

and call/~(t) the reproduct ion  function. 
Let  us m a k e  the convent ion:  

b 

In the integral  J ,  we include a only if a is zero and  we exclude b only if b 
a 

is infinity, 

We suppose  th roughou t  that :  

(i) # is not  (as a measure)  concent ra ted  on any lattice {0, h, 2h . . . .  }, h > 0. 

(All results could be modif ied to the lattice case.) 

(ii) There  exists a Mal thus ian  pa rame te r  c~(0, oo), i.e. a finite posit ive 
solut ion of the equat ion  

e -  st ll(dt) = 1. (1.4) 
0 

(iii) The  first m o m e n t  of  e - ~  #(dt) is finite, i.e. 

~ u e ~" #(du) < oo. (1.5) 
0 

We write x for an individual,  x = ( i  I . . . .  ,i,), if x is the i~:th child of  the 
i, t : t h  child of  ... of  the i~: th  child of  the ancestor,  and let 0 denote  the 
ancestor.  

),  16, 
where 

J ,  = {(il . . . . .  i,); i je{1,2 . . . .  }}, 

is to be called the individual  space. 
The  basic probabi l i ty  space is 

(1.7) 

where (f2x, ~ ,  Px) are identical spaces on which we define ( ~ ,  2x) distr ibuted 
like (~, 2). 

We  let a~ stand for the bir th t ime of x: 

a 0 = 0 ,  and if x = ( x ' , i )  

ax = o-x, + in f{u ;  ~ (u )  > i}. 
(1.9) 

(Thus, for an individual  x never  born,  by convention,  a~ = ~ . )  
In the sequel we shall associate with each individual  x r a n d o m  entities 

defined on (f2~, N~, P~) (and by extension also on the p roduc t  space (f2, ~ ,  P)). 
Such entities will for short  be in t roduced  wi thout  indices x just  like ~ and  2 

(~, ~, P) = F[ (~x, ~x, 5)  (1.8) 
x ~  
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were. Similarly restrictions will sometimes be formulated for an anonymous 
typical individual. 

Suppose that besides the reproduction ~ and the life length 2, we assume 
the existence of a product-measurable, separable, non-negative random process 
~b(t), assigning some kind of score to the typical individual at age t (alive or 
not !). For simplicity we define qg(t) for all teR, but require that 

qS(t)--0 for t<0 .  (1.10) 

We then define (cf. Jagers (1975), Sect. 6.9) 

Z~= Z Cx(t-dx), (1.11) 
x E ~  

and say that {Zt~}t is a general branching process counted with characteristic 
~b. Since Z~ is linear in ~b generalizations to not necessarily nonnegative ~b:s 
could easily be made at several places in the sequel. Observe that we require 
independence of ~b~ between individuals, but that dependence of Ox, 2x, ~x.-- is 
allowed for fixed x, (for a relaxation of this requirement cf. Sect. 7). 

If 
~b(t)=~'l if 0 < t  <inf(a, 2) 

(1.12) to otherwise, 

then Z~ counts the number of individuals alive at time t whose ages are less 
than a. We denote this particular Z~=Z~ and name {Z7}t, ~ the age process. 
Denote Z t = Z~. Also T t = the total number of births up to and including time t 
has a simple characteristic representation: 

qS(t) = 1 if t>0 .  (1.13) 

For other interesting examples cf. Jagers (1975) and HSrnqvist (1981). 
We shall study the asymptotics of e-~tZ~, as t~oo .  Special interest will be 

focused on ages, i.e. on the process -~t ~ and we e Z,, give age results explicitly. 
Moreover, we shall be interested in the empirical age distribution at time t, 
Z~/Z t, and generally in ratios Z~*/Z~ ~, for pairs ~bl, ~b 2 of characteristics. We 
formulate the results for a fixed age a, but because of the monotonicity of Z~/Z, 
as a function of a, it is possible to deduce functional variants of our age 
distribution results. 

Let us make a brief historical sketch. Doney (1972), (1976) showed 

Proposition 1.1. As t--,oo, e-~tZt converges in distribution to a random variable 
W, and with the definition 

t 

~(t) = ~ e -a" ~(du), (1.14) 
0 

the following sequence of equivalences holds 

E[~(oo)log+ ~(oo)] < oo. <:> 

E[W] >0. <:> 

E[e ~Zt]~E[W],  as t-~oo. <:> (1.15) 

W > 0  a.s. on {T~--->oo}. [] 
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For Bellman-Harris processes with finite Malthusian parameter 

E[~(oo) log + ~(oo)] < oo. ~,  

E[~(oo) log + 4(00)3 < oo. 
(1.16) 

However, generally not even finiteness of ~(oo) follows from the finiteness of 
E [ ~ ( o o ) l o g + ~ ( ~ ) ] .  For Bellman-Harris processes Proposition 1.1 is due to 
Athreya (1969). 

The results for Galton-Watson processes in Kesten and Stigum (1966) 
suggest the possibility of strengthening the weak convergence in Proposition 
1.1 to a.s. convergence. For Bellman-Harris processes this was done by Ath- 
reya and Kaplan (1976). Their method starts from studying Z'~/Z t, the age 
distribution at time t on the set {T~oo}.  With the help of a strong law of 
large numbers they show the convergence 

t t  

j" e . . . .  
z~ 0 

z t  ~ e . . . .  (1 - L(u)) du 
0 

a.s., as t--,cc, (1.17) 

provided E[~(oo)log+~(~)]<oo,  and then use a certain martingale, the so 
called reproductive value martingale, to connect it with the convergence of 

- - a t  a e Z t. Further, they demonstrate convergence in probability of the age distri- 
bution, even if E[~(oo)log + ~(oo)] = o% assuming mild conditions on the life 
span distribution L. Later Athreya and Kaplan (1978) refine their results 
somewhat and recently (independent of this paper) Kuczek (1980) shows that 
a.s. convergence for the empirical age-distribution always holds for supercriti- 
cal Malthusian Bellman-Harris processes. 

For the general case Savits (1975) used a quite different method, con- 
vergence of the bivariate Laplace transform of ,(e-~ "t, e-~tZ'~t, to show con- 
vergence in probability of Z'~/Z~, provided E[~(oo)log+~r and g(oo) are 
both finite. 

K. Rama-Murthy (1978)adopted the Athreya-Kaplan method and modified 
it to the general case. However, this leads to conditions in form of uniform 
restrictions on all conditional residual reproductions and life lengths, given the 
history of an individual up to any age. 

In the next section we shall give some elementary results and present our 
key tool, a martingale, related to the reproductive value martingale. In Sect. 3 
this new martingale is combined with a weak law of large numbers, in the 
spirit of Athreya and Kaplan (1976), to show that e-~'tZ~ converges in proba- 
bility, as t~oo ,  under weak restrictions on r As a corollary to this, for r and 
r restricted like qS, we also show convergence in probability, on {Tt~oo }, of 
the ratio Z~I /Z~  2, provided E[~(oo)log + ~(oo)] is finite. 

Section 4 will contain a strong law of large numbers with a probabilistic 
proof and for the ease of reference L6vy's generalized Borel-Cantelli theorem 
both results which we need in Sects. 5 and 6. 
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In Sect. 5 we show that e-~tZt 4' converges a.s., as t~oo ,  under weak re- 
strictions on 4, provided there exists a non-increasing integrablc function g 
such that 

E[sup (~(oo) - ~(t))/g(t))] < oc. (1.18) 
t 

We also show a.s. convergence on { 7 ~ } ,  of the ratio Z~ , ~t provided 
that (1.18) holds and E [ , ~ ( ~ ) l o g  + ~(ov)]  is finite. 

In Sect. 6 we shall show that if there exists a fi<c~, such that E[_~(oo)] is 
finite, then a.s. ratio-convergence holds generally. 

Finally, Sect. 7 is an addendum concerning a generalization of all results to 
random characteristics 4~ permitted to depend on the whole daughter process 
of the individual x. 

2. Two Basic Results and a Crucial Martingale 

It is a fundamental idea in the analysis of branching processes to split the 
process in a sum of a stochastic number of time translated copies of the 
original process plus a residual. The following general variant we quote from 
Jagers (1975): 

Proposition 2.1. It  holds that 
Co(t) 

Z~ = 40(0 + Z (i)ZL~,,, (2.1) 
/'=1 

where {xZ~t}t is the general @counted process of x-descendants initiated by the 
assumption that x is born at O. The processes {(i)Zt~}~ i=  1, 2 . . . .  are independent 
copies of {Zt~}t, also independent of 4o and 40. [] 

and 

We write 

m~=E[e  -~'Z~t], (2.2) 

a - R I -  a m t =E[e  Zt]. (2.3) 

Since 4 is non-negative, we conclude easily that m~ satisfies the renewal 
equation 

t 

m~ = e-  ~*E [4 (t)] + ~ m~t_s e - ~ 12 (ds). (2.4) 
0 

Let G be the measure on [0, oc) defined by 

t 

#~(t) = S e- ~s #(ds). 
0 

Then (cf. Jagers (1975), Theorem 6.9.2). 

(2.5) 
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Proposi t ion 2.2. Suppose that E[q~(t)] is continuous a.e. with respect to Lebesgue 
measure, and that 

L sup (E[4(t)]e-~*)<oo. (2.6) 
k = o  k < = t ~ k §  l 

Then 

In particular 

e-~' E [q5 (t)] dt 
~ 

oo 

u. (du) 
0 

, a s  t ~  o o .  (2.7) 

j e -  ~'t(1 - L(t)) dt 
a a 0 mt--*mo~-- , as t~oo.  (2.8) 

u~(du) 
0 

Proof. The propos i t ion  follows f rom the renewal theorem (e.g. Jagers (1975), 
T h e o r e m  5.2.6) if we show tha t  E [-Z, ~] is bounded  on finite intervals. 

Consider  t in some interval [0, s]. posi t ivi ty  of  terms implies tha t  

E [Zt ~] = ~. E [~b x (t - ax)]. (2.9) 
x 

Since q~ and a~ are independent  for each fixed x, we deduce 

E [Z~]  N (sup E [q~ (t)]) E [ Y~]. (2.10) 
t<=s 

Due to (2.6) and the finiteness of  E[T~] (Jagers (1975), T h e o r e m  6.3.3), E[Z~] is 
bounded,  and hence Propos i t ion  2.2 holds. [ ]  

Suppose  that  x >  x2, x 3 . . . .  are the first, second, third . . . .  individual born  in 
the process, so that  

0 z O'xl ~ O ' x 2  ~ . . . .  

I f  several births take place at the same point  of  t ime we order  the individuals 
at first hand  with respect  to genera t ion  and  at  second hand  with respect to 
some arbi t rary  rule. 

Recall  ~x(t) f rom (1.14). We define 

R o = 1 ,  and  

R.  = 1 + L e . . . . .  ( ~ x , ( o o ) -  1), 
i = 1  

rewrite 

for n = l , 2 ,  . . . ,  

(2.11) 

R , = I + ~  ~ e-~(x*,k) - - . . . .  e *~ 
i = 1  k = l  i = 1  

and conclude that  R n is a weighted (weights e . . . .  for x) sum of children of the 
n first individuals. All children except x 2 . . . .  , xn are included. 
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Further, we define ~4~ as the a-algebra generated by the biographies of the 
whole lives of x 1, ..., x,. Formally, denote by B.~ the a-algebra in the product 
space (Q, B) generated by the projection on (g?y, By). Then ~,, is the smallest a- 
algebra, such that 

{ x l = y  1 . . . . .  x , = y , } e d ,  for all (Yl . . . . .  Y~) 
and 

A ~ B ~ A c ~ { y ~ { x  1 . . . .  , x , }}~d ,  for all y. 

Lemma 2.3. {R,,} is a non-negative martingale with respect to {d,}. 

Proof R ,  and o-x,+~ are .M, cmeasurable. Further ~r . . . .  (co) is independent of 
ag~, and 

EE~ ~ . . . . . .  (00)] =#~(OO) = 1. (2.12) 

Hence 

E[Rn+l-Rnl~4,]=e-~ax,+lE[=~ . . . .  ( o r ) - 1 ]  =0. [] (2.13) 

Now, we define 

J ( t ) = { x = ( x ' , i ) ; a ~ , < t  and t<O-x<OO }. (2.14) 

This means that or is composed of the individuals to be born after t, whose 
mothers are born before or at t. Suppose that 

Y~= Z e-~*" (2.15) 
xe~C(t) 

Then, since J ( t )  consists of exactly the children of the first T t individuals to be 
born after t, it holds that Y t=Rr .  

Finally 

Proposition 2.4. {Y~}~ is a non-negative martingale with respect to {0Jr~},. 

This has the immediate 

CoroLlary 2.5. 7here exists a random variable Y~o < 0% such that I{-~Y~o a.s., as 
l~-+ oo.  

Proof For fixed t, observe that T, is a stopping time with respect to {d,}, A 
variant of the optional sampling theorem (e.g. Neveu (1975), Theorem It-2-13) 
shows that (Y,} is a supermartingale with respect to {Jr,}. 

As pointed out E[-Tt] is finite. Further 

E EIR,+ ~ - R, I I ~,,] = e-  ~~ ..... E El~ (oo) - 1 l] < 2. (2.16) 

Together, (e.g. Breiman (1968), Proposition 5.33) these facts imply that 

EEYt] --- 1. (2.17) 

Hence { I~} is not only a supermartingale but a martingale as well. []  
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3. Convergence in Probability 

The main result of this section is 

Theorem3.1. Suppose that E[q~(t)], as a function of t, is continuous a.e. with 
respect to Lebesgue measure, 

sup (e-~tE[4(t)])<o~, (3,1) 
k-=O k~t<<-k+ 1 

and 

E [sup ~b (s)] < oo, for all t < oo. (3.2) 
S<:t 

Then 
e - ~ t Z ~  t~  m~ in probability, as t~oo. (3.3) 

We postpone the proof, 
There is an immediate 

Corollary 3.2. For each a~(O, oo] 

e-~tZa--~ ,~mGo~ in probability, as t--+oo. [] (3.4) 

Further, 

Corollary 3.3. Suppose that 

E E  (oo) log+  (oo)] < (3.5) 

Then, with d) satisfying the conditions of Theorem 3.t, the convergence in (3.3) 
holds in the sense of I2-convergence. 

Proof of Corollary 3.3. Since e-~tZz~ Y~ m~ in probability by (3.4), Y~ moo must 
have the distribution of Win Proposition 1.1. Thus from (1.15) 

E [ Y~] = 1. (3.6) 

Therefore 

lira E [e- ~'Z~] = m~ = E [ Y~ m*~ ], (3.7) 
t ~ o o  

which yields Ll-convergence (e.g, Bauer (1968), Theorem 20.4 and 
Corollary 20.5). [] 

For ratios we obtain 

Corollary 3.4. Suppose that ~ satisfies (3.5) ~, and ~ and 4z the conditions of 
Theorem 3.1. Then, on { 7 ~ } ,  

Z~ ~ m ~ 
-.-~o in probability, as t~oo. (3.8) 

Cf. Theorem 6.3 and Corollary 6.4 for other conditions ensuring the convergences in (3.8) and 
(3.9) 
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In particular, on the same set 

i e-~"(1 -L (u ) )du  
Z~ o 
- ~ . . . .  in propability, as t ~ .  (3.9) 
z~ I e-~"( 1 -L(u))du 

0 

((3.9) was stated for the case that  #(oo) is finite by Savits (1975).) 

Proof of Corollary 3.4. F r o m  Proposi t ion 1.1 and the convergence in probabili-  
ty in (3.4) we know that  

{Y~ >0} = {7;-~oc} a.s., (3.10) 

and (3.8) follows. [ ]  

For  the proof  of  Theorem 3.1 we need two lemmas. Let  us define 

J ( t , c ) = { x ~ J ( t ) ; t + c < a ~ < o o } ,  for c > 0 ,  (3.11) 

i.e. 

and 

,g(t, c )= {x = (x', i); o > < t ,  t + c  <a~ < ~} ,  (3.12) 

Y~,c= ~ e . . . .  . (3.13) 
x ~ ( t ,  c) 

Yt, c is the contr ibut ion to Y~ from the individuals born  later than t + c. 

L e m m a  3.5. 
c o  

(1 - #~ (s)) ds 

~ r g ,  c ] ~  . . . . .  k(c), 
]~ (1 - #~(s)) d~ 
0 

as t ~ o c ,  (3.14) 

where 

k(c)$0, as c--,oc. 

Proof of Lemma 3.5. If we let 

~ ( s ) = ( ~ ( o v ) - ~ ( s + c ) ) e  ~s, for s > 0 ,  

then 

Y~,c = e ~tZ~. 

Hence (3.14) follows from Proposi t ion 2.2. [ ]  

Let  N(t, c) denote  the number  of individuals in ~r c). 

L e m m a  3.6. Suppose that 

#(c) > 1. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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Then, on { T t ~  }, 

O. N e r m a n  

liminfN(t, c) > /~(c) -  1 >0, a.s. (3.19) 
t ~ c O  r t 

Proof of Lemma 3.6. The lemma follows from strong law of large numbers 
applied to {~, ([0, c])}~ and the inequality 

Tt 

N(t, c)> ~ r ( [0 ,  c]) - - T  t. (3.20) 
i = 1  

(This argument is due to S. Asmussen.) [] 

It is time for the 

Proof of Theorem 3.1. First we suppose that 

q~(t)=0, for t > s o m e  s, (3.21) 

and make the convention 

Z~=O, for t<O. (3.22) 

By (3.21), every individual that contributes to Zt~+~ must be born after t. 
Therefore 

which we rewrite as 

ZLs= Z , (3.23) X t q - S - - ~ x  
xeJ(t) 

e-~('+s)ZL~ = ~ e ~xe  ~(t+s "x)Z 0 
X t + S  G x  

x~J( t )  

= ~ e-~axe-~(t+s-ax) Z4) 
X ~ t - ?  S - - G  x 

x6J( t )  \ Y(t, c) 

+ ~ e-~~ -~('+~-~) Z ~ 
x t + s - f f  x �9 

xe~r(t, c) 

We shall show that for any fixed e > 0 

~(t + s) ,~ Pile Zt+s-Y~m~l>e]<=e, 

for to, s (and c) satisfying (A), (B), (C) and (D): 

#(c) > 1, and 
g2 

< 
= 16 sup rn~' 

t 

when t > to, 

for t> to ,  

(3.24) 

(3.25) 

(A) 

(this is possible because of the fact that m~ is finite on finite intervals and, by 
Proposition 2.2, converges to m~, and because of Lemma 3.5). 
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(3.21) is valid, and 
F, 2 

Im~-m~l < ~ lbr 

(this is possible according to Proposition 2.2). 

p [ l y _ y  i>_c=_] <_e, 
I_ '-- 4mO~,J --4 

(this is possible by Corollary 2.5). 
and 

t > s - c > O ,  

for t.>_to, 

P[I ~" e - ~ ( e  ~(~+ . . . .  ) Z*  - m ~  ~1>~]< 4, 

for t > t o. 

We show that (D) is possible by proving 

Lemma3.7. Suppose that y(c )> l .  7hen, for 0 satisfying the 
Theorem 3.1 and s> c, on {Tt~oc }, 

e-~Ox(e-~(t+s- ~,~) Z* - m  e ~ 0  
k X t - s - - ~ x  t - - S - - ~ x ]  

xe,g (t) \ • (t, c) 

in probability, as t--* co. 

Proof of Lemma 3.7 (inserted). If N(t, c) is positive we may write 

o - ~ a x t o -  ~(t+s-~r,~)  7 4 )  _ m 4 ;  

XC~C(t) \ d~ (t, C) 

= (g(t, c) e-~(t ~ c)) 

2 e~(~+ . . . .  )to-,~ ~(~+ . . . .  )74;:,.~ ~_~x -m~. . . . .  ) 
x e J  (t) \ J (t, c) 

U(t, ~) 
Since a ~ t  +c for x ~ J ( t ) \ J ( t ,  c), 

N( t , c )e -~( t~~  a.s., as t~oc .  
Let 

e a ( t §  -~(t-bs- a x )  Z 4 ;  WI4;  
- -  ~ -  x - - t  b $ - -  ~r x - -  " " t  -~ s - Crx2 

N(t, c) 

By Lemma 3.6, (3.26) follows if we for any e,z > 0, can show that 

P[IA(t )J>el ,N(s ,c)~oe]~O,  as t--, oe. 

We shall use the following law of large numbers 
elementary proof cf. Athreya and Kaplan (1976). 

375 

(B) 

(c) 

(D) 

conditions of 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

to show (3.30). For an 
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Proposition 3.8. Consider a family of sequences {Xtk } k = 1 . . . . .  n,, t > O, that are 
independent for fixed t, and such that nt~oo, as t~oo.  Suppose that, ~ denoting 
stochastic order, 

O<=Xtk~-X, with E[X] < oo. (3.31) 

Then, with mtk = E [-Xtk], 

nt  

F, 
k=l ~0 in probability, as t~oo.  [] (3.32) 

n t 

Recall that dTt is the a-algebra generated by the whole lives of individuals 
born before or at time t. N(t, c) is SJTt-measurable and, on { x e J ( t ) \ J ( t ,  c)}, so 
is a, .  Further, conditioned on dTt, the processes {xZ~} are independent for 
x ~ J ( t ) \ J ( t ,  c) and their distributions are unaffected by the conditioning. 

Moreover, for each u < s 

Z ~ = ~  dp~(u-ax)< ~ supqS~(u). (3.33) 
x x; u<s 

• x < $  

Since ax and q5 are independent for x fixed we deduce 

E [- ~ sup q5 (u)] = E [T~]. E [sup q5 x(u)], (3.34) 
x; u<s u<s 

~ x ~ S  

which is finite due to (3.2) and the finiteness of E(Ts]. Hence, on {N(t, c)~oo}, 

P[lA(t)l>~ltdT~]~O a.s., as t ~ ,  (3.35) 

by virtue of Proposition 3.8. Dominated convergence yields (3.30). [] 

We return to the proof of Theorem 3.1. Recall the definition of Y~ 
= ~ e . . . .  . By repeated use of Boole's and Markov's inequalities (3.25) fol- 

xeJ(t) 
lows: 

P [le-~(t+~)Z~+~- Yoo m~[> ~] 

=P[]  ~ e . . . .  (e -~(~+ . . . .  )~Z~+ . . . .  ) 
x~5(t) \ J(t ,  c) 

e (e x Z, + . . . .  ) - Y~ > ~] 
xeJ(t ,  c) 

[ _ ~ ~ x ~ t §  " ' t + s - - a x / I  
x E Y ( t )  ".. ~r c) 

+ P [ i xey ( t )~ j ( t , c )  e aa~ m~t + s ~ 

+ E e . . . .  (~-:~(t+ . . . .  ) 7 4 )  ~ _ ~tt m ~  [ ~__ ~_] 
xe~C(t, c) Z3  

+ P  ] Y , - Y ~ l m ~ >  ~ < ~ + P  e ~]m~+ . . . .  - m ~ [ >  ~ 
x e d e  (t)  "....~(t, e) 

+P[ ~ e . . . .  ,e  -c~(t+ . . . .  ) t + s - a ~ - - m ~ ' > ~ ]  + ~  - (3.36) 
k x~J(t, c) "~ 3 'e 
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Here the first e/4 comes from assumption (D) and the second from (C). The 
second term is less than 

4] P Yt~  => =4<- (3.37) 

by (B) and Proposition 2.4, implying that E[Y~] = 1. 

o-~xi~-<t+~ ox) 7~' me) n < E r y  q supm~=<~2 (3.38) 
x~J(t,  c) 1 o  

due to (A). This and Markov's inequality applied to the third term completes 
the proof under the restriction (3.21), which will now be removed. 

Truncate a general q~ to 

~b,(t) : {0@(t ) for t<c '  
otherwise. (3.39) 

Of course 

and 

Z t - Z ~ ' ~  O, (3.40) 

- = z  4," 4;  e Z t -~Y~rn~ in probability, as t--*oo. 

Moreover, by definition, 

(3.41) 

Further, 

' (3.42) mO'--->m ~ as c ~oo.  
- - o o  - - o o ~  

le ~ 'Z t -  Yoo m~l <: le-='(Z?-z?')l + le-~"z~ " -  Y~ m~l + Im~ -rn~l Yoo. 
(3.43) 

The probability that the left hand term should be greater than e>0, can thus 
be shown to be small: choose a large c', then a large t, and apply Boob's and 
Markov's inequalities to the right hand terms. [] 

4. A Strong Law of Large Numbers 

To get a.s. convergence results we shall work with convergence on certain 
lattices in both of Sects. 5 and 6. The following strong law of large numbers is 
needed. 

Proposition 4.1. Let  n~ i= 1, 2 . . . .  be a sequence of  positive integers, and let Xu ,  
j = 1, ..., n~ be independent for  f i xed  i, i= 1, 2 . . . . .  Suppose that 

[XuJ == Y, with E[Yj < oo, (4.1] 

and 

lim inf ni + i > 0. (4.2) 
i ~  n l  J- . . .  J -h i  
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then 
nl 

s i=J= 1 
ni 

or, seemingly stronger, f o r  any ~ > 0 

-,0 a.s., as i ~ o e  (4.3) 

• PI-I&] >a3 < oo. (4.4) 
i=1 

For the proof of this proposition (for a more direct approach cf. Asmussen 
and Kurtz (1980): 

Lemma 4.2. Assume that X i, i = 1, 2 . . . . .  are independent, 

Then 

IX~I~Y and E [ Y 3 < o r  (4.5) 

(X  i - E [Xi]) 
i =  1 

9 0  a.s., as n--* oo. (4.6) 
n 

Proof. Construct U~, i=  1, 2 . . . .  , independent and independent of all Xi ,  each U~ 
uniformly distributed on [0,1]. Let F d x ) - - P ( l X ~ l < x J ,  F ( x ) = P [ g < x l ,  F~{x} 
= F/(x)-Fi(x - )  and F -  l (x)=inf{t ;  f ( t ) > x } .  Define 

Y~=F-Z(FdlX , I ) -GF~{IX~I} )  i = 1 , 2  . . . . .  (4.7) 

Certainly Y~ will be independent and have Y's distribution, and by construction 

IX,] < Y~. (4.8) 

Let z(A) denote the indicator function of the event A. Choose c so large 
that 

Then 

E [ YZ (Y > c)] < - (4.9) 
= 2 "  

(x~- E Ix3) (x~ z(5_-< c)- E EX~ z(5 _-< c)]) 
- <limsup 

n ~ O  n r l ~ o o  n 

limsup ~ 
_El x, ~(~ > c) E Exlz(~ > e)3 

+ limsup i + i = 1 
n ~ c o  n 

limsup ~ E Z ( 5 > c ) + ~  ~ 0 +  ~=1 a<O ~ 
n ~  n = +~+~' (4.10) 
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The law of large numbers for independent random variables (e.g. Breiman 
(1968), Theorem 3.27) yields the zero. This, (4.8) and (4.9) justify the second 
inequality. The last one is implied by the classical law of large numbers for 
independent and identically distributed random variables (Theorem 3.30 the 
same reference). [] 

Proof of Proposition 4.1. We may assume that E[Xzj]=0. To prove (4.4), it is 
no restriction to assume independence between all the X o. Then Lemma 4.2 
shows that 

But 

E Ex,  
i = l j = l  

k 

Y~ ni 
i=1 

*0 a.s., as k~oo.  (4.11) 

nk k nl k k -  1 ni k -  1 

Ex.  E EX. En, E E x .  
j=l _ i = l j = l  i~l i=l j=l i=1 (4.12) 

k k - - 1  
nk nk 

i = 1  i ~ 1  

and thus (4.11) and (4.2) show (4.3). The inequality (4.4) follows from the 
independence of Sk, k = 1 , 2  . . . .  by virtue of the converse Borel-Cantelli 
theorem. [] 

Finally, we shall have use for the following direct consequence of L6vy's 
generalized Borel-Cantelli theorem, see Meyer (1972) Theorem 21. 

Proposition 4.3. Assume that {~} is an increasing sequence of a-algebras and 
that {A~} is any sequence of events. Then, with 

E = {  ~ P [ A , l ~ ] < o o } ,  
n- -1  

P[{A,} infinitely often IE] =0. [] 

(4.13) 

5. Almost Sure Convergence 

Our technique in proving Theorem 3.l was to split e-~('+~)Z~+s (~ satisfying 
qS(t)=0, for t>s) into ( J ( t , c ) - - {xeJ ( t ) ;  % > t + c } )  

e-~(t*s)~z~+ . . . .  + • e ~(t+S)xZ~+ . . . .  �9 (5.1) 
xe~C(t) .. d~(t, c) xe~( t ,  c) 

Then, we used a weak law of large numbers to show that the first sum is 
close to (Y~-Y~,c)m~, where Yt, c= ~ e -~x, for s,c and t large. By renewal 

x~J( t ,  c) 

theory we found that the expectation of Yt, c is small for large c and t. Thus 
Markov's inequality yielded that Yt,c should be close to zero. Hence, the first 
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sum in (5.1) is close to Y~m~ for large s,c and t. On the other hand, a 
conditional expectation of the second sum in (5.1) is smaller than Yt, csupmt ~, 
which is approximately zero for s, c and t large, t 

To strengthen the convergence of e-~tZ~ t to convergence a.s. with a method 
along the same lines we need a strong law of large numbers applicable to the 
first sum in (5.1) and something like 

lira limsup Yt, c =0  a.s. (5.2) 
e ~ o D  t ~ o o  

To obtain the latter we require 

Condition 5.1. There exists on [0, oo) a non-increasing, bounded, positive integra- 
ble function g, such that 

E [sup ~ ( ~ 1 7 6  (5.3) j < o o .  

(The boundedness of g is superfluous: if ~ satisfies the rest of the condition we 
can always choose g bounded.) 

Remark. Condition 5.1 is satisfied if there exists a non-increasing integrable 
positive function g such that 

i 1 ~-~t#(dt)<o% (5.4) 
g(t)  ~ 

since then 

d ( o o ) - ~ r  ~ 1 
g(t) - { g(O e-~sr 

< ~ e-~S~(ds)< e-~S~(ds), (5.5) 
t 

and accordingly 

oo 

E [sup ~(~176 < ~ ~=.1 
[ , g(t) ] o g(s) e-~#(ds)<m" (5.6) 

For Bellman-Harris processes with finite Malthusian parameter #(oo) is 
always finite. In this case g(t)=e -~ will do. We conclude that for Bellman- 
Harris processes Condition 5.1 is superfluous. 

Generally, Condition 5.1 is seen to be weaker than 

~ t 2 e- #(dt)< ~ ,  (5.7) Gtt 

0 

and e.g. 

S t(log-- t)l+~e-~t#(dt)<oo, for some e>O. (5.8) 
0 



Convergence of C-M-J Processes 381 

Besides the condition on ~ we shall need restrictions on 4). The following one 
is a dual of that on 4. It will be used to conclude a.s. convergence for general 
4): s from convergence for 4):s vanishing outside a bounded interval. 

Condition 5,2. There exists on [0, oo) an integrable, bounded, non-increasing posi- 
tive function h, such that 

U = sup ( e-~t 4)(t)] (5.9) 
t \ h(t) ] 

has finite expectation. 

To bridge the gap from convergence, as t--*oo on certain lattices, to general 
convergence we need more restrain on 4). We make two definitions: 

c sup  4)(s), for t > 0  

4)~(t) = t ; - t l  ~ otherwise, (5.10) 

and 

4)~(t)= inf 4)(s). (5,11) 

Lemma 5.3. I f  4) satisfies Condition 5.2 and has paths in the Skorohod D-space 
(not necessarily right continuous), then E[4)(t)], E[4)~(t)] and E[4)~(t)] are a.e. 
continuous and for almost all t. 

E[4)~(t)]l,E[4)(t)], and E[4)~(t)]~E[4)(t)], as ~,0. (5.12) 

Proof Dominated convergence, justified by Condition 5.2 proves that E[4)(t)] 
is D-valued and hence a.e. continuous. 

Clearly 4)~(t) and 4)~(t) are D-valued and Condition 5.2 can again be used to 
dominate and hence E[4)~(t)] and E[4)~(t)] are also a.e. continuous. For con- 
tinuity points t of 4) 

4)~(t)J,4)(t) and 4)~(t)T4)(t), as e$0. 

and since all but countably many t are a.s. continuity points of 4) the last 
assertion follows. [] 

We are ready to formulate the main theorem of this section: 

Theorem 5.4. Suppose that ~ satisfies Condition 5.1, and that 4) is D-valued and 
satisfies Condition 5.2. Then 

e-~Z~-~ Y| a.s., as t~oo.  (5.13) 

We postpone the proof. 
Some immediate consequences: 

,,Corollary 5.5. Suppose that ~ satisfies Condition 5.1. Then 

a 

j (1 - L(u)) e- ~" du 
- a t  a 0 e Z ~  Y~ a.s., as t ~ .  [] (5.14) 

~ ue-  ~" l~(du) 
0 
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Corollary 5.6. Suppose that ~,01 and ~ 2  satisfy the conditions of Theorem 5.4, 
and that 2 

E [ ~ ( o o ) l o g  + ~ (oo) ]  < oo. 

Then, on {T<-.oo}, 

Z~ ~ 

z2 
In particular, on the same set, 

(5.15) 

- - - * ~  a.s., as t--*oo. (5.16) 

a 

Z~ ~(1-L(u))e-~"dUo 
, a.s. ,  a s  t - ~ o o .  [ ]  (5.17) 

oo 

Z, S ( l_C(u) )e_~ ,d  u 
o 

We shall need an asympto t i c  bound  for Tt, the total  n u m b e r  of  births up to 
and including t ime t: 

L e m m a  5.7. There is a constant K < oo, such that 

limsupe-~tT~< KY~o a.s. (5.18) 
t ~ c ~  

Proof F r o m  L e m m a  3.6 we have  tha t  if p ( c ) >  1 then, on {T~--. oo}, 

l iminf N(t, c) > p(c) - 1 a.s. (5.19) 
t ~ o o  r t 

but  Yt > e - <t + c) N (t, c) shows 

l iminf  ~ > (#(c) - 1) e -  ~c 
t~oo e I t 

(5.20) 

and the l e m m a  follows. []  

Define for any c > 0  

qS,(t) =f~b(t)  for t>c  
(5.22) lo otherwise.  

Then  

L e m m a  5.8. Assume that (o satisfies Condition 5.2. Then there exists a K < o3, 
such that, for all c > O, 

o0 

l i m s u p e - ~ t Z ~  "_<-K ( ~ h(t)dt)Y~ a.s. (5.23) 
t ~ oo \ c  - K / 

The l e m m a  has the useful 

2 Cf. Theorem 6.3 and Corollary 6.4 for other conditions implying (5.16) and (5.17) 
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Corollary 5.9. Suppose that ~ satisfies Condition 5.1. Then there exists a K <  0% 
such that, for all c > O, 

limsup Yt, <K g(t)dt Y~o a.s. (5.24) 
t~oo \ c -  K 

Proof of the Corollary. With 

- -  c ~ t  O(t)- e (~(oo)-  ~(t)), (5.25) 

Y~,~. Condition 5.1 on ~ and Condition 5.2 on this 
[] 

e ~(t+c)Zt~+c is nothing but 
particular ~b are equivalent. 

Proof of Lemma 5.8. First we fix s such that g(s)> 1, and observe that, 

Tt  

Tt+s> ~ ~x,{[0, s]}. (5.26) 
i = 1  

Hence the strong law of large numbers implies that, on {T~ oe}, 

T~+~ 
l i m i n f - - >  #(s) > 1 a.s. (5.27) 

t ~ o O  T t - -  

and that (argue as in the proof of Proposition 4.1), on {T~--,oo}, 

T(k+ l ) s  

/=r~s+1 -~E[U] a.s., as k~oo. (5.28) 

Hence, for any e>0, on { T t ~ } :  
Tt  

limsup e- ~(t+ c)Z~ ~ = limsup e- ~(t+ o ~ q~ (t + c - a~,) 
t ~ c o  t ~ o o  i = 1  

[t/s] T ( k  + 1)s 

<limsup 2 ~ e-~(t+~ 
t ~ oo k - O i =  T k s +  l 

[t/s] T ( k +  1)~ 

<limsup ~ ~ e-~,h(t+C-ax,)Ux~ 
t ~ c o  k - - O  i - - T k s + l  

[t/s] T(k+l)s 

< limsup ~ ~ e-~k'h(t+c-(k+l)s)m~, 
t ~ o o  k - O  i =  T k s +  1 

[t/s] 
<limsup ~ e-~k~h(t + c - ( k  + l)s)E[U] T(k+ l)~ 

t ~ c e  k = 0  

[t/s] 
<e~SK(Yoo +e)limsup ~ h ( t + c - ( k +  1)s) (5.29) 

t ~ o o  k = O  

by virtue of Lemma 5.7. But, since h is non-increasing 

[t/s] 
limsup ~ h(t+c-(k+l)s)<(1/s)  ~ h(u)du. (5.30) 

t ~ c ~  k - O  c - - 2 s  

The arbitrariness of e>O shows the lemma. [] 
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The proof of Theorem 5.4 is built upon the following lemma or rather on 
its Corollary 5.11. 

Define to each c > 0  and t 0>0  the lattice {to, t~, t 2 . . . .  } by 

and {tk,.}k, . by 

tk=-kC+to, k=0,  1,2 . . . . .  (5.31) 

k c  
t k , , = - - ,  k = 0 , 1  . . . .  , n = l , 2  . . . . .  (5.32) 

n 

Lemma 5.10. Suppose that ~ satisfies Condition 5.1, ~b satisfies Condition 5.2 and 
that E[qS(t)] is continuous a.e. with respect to Lebesgue measure. Further, assume 
that #(c) > 1. Then 

e - ~ * k Z ~ Y ~ m ~  a.s., as k ~ .  (5.33) 

We postpone the proof of this lemma. 

Corollary5.11. Assume that @, ~, and c satisfy the conditions in Lemma 5.10. 
Then, for each fixed n, 

e-~t~ ~ o go~ m~ a.s., as k ~  oo. (5.34) Z tk, n-'--~ 

Proof of the Corollary. Let A~ be the set where (5.33) holds for to=rC. On the 
set A =  ~ A~, obviously (5.34) holds for each fixed n. Finally by 

re{rationals in [0,1]} 

Lemma 5.10 P(A~) = 1, and hence P(A) = 1 too. [] 

Proof of Theorem 5.4from Corollary 5.11. Fix a c, such that #(c)> 1. According 
to Lemma5.3,  E[@~/"(t)] and E[O~/,(t)] are both continuous a.e. Further, it 
follows from the definition of q~ and q~ that, for t~[tk, n, tk+l ,J ,  

< < _  . (5.35) 
t k ,  n - -  - -  , n  

Since qS/, and q5 ~/" satisfy Condition 5.2 we can apply Corollary 5.11 to {Z~ ~/"} 
and {Zt~C/"}. Together with (5.35) this yields, 

_ c_ 
e . Y~ m~ ~ <l iminfe-~ 'Z~ 

t + o o  

c 

< limsup e-  at Zt~ < e~ Yoo m~ c/" a.s. 
t ~ o o  

But, by definition, 

Hence, if 

0o  

E [~b(t)] e -~t dt 
m ~ =  o 

~ u e - ~  #(du) 
o 

(5.36) 

(5.37) 

~c/n m~ < oo, (5.38) 
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~bc/n 
dominated  convergence and the second part  of L e m m a  5.3 imply that  m| and 
mr both  converge towards me as n--,oo. However,  (5.38) is a consequence of 
the fact that q5 r satisfies Condi t ion 5.2. Intersection of the sets where (5.36) 
holds for n =  1,2 . . . .  yields Theorem 5.4. [ ]  

It remains to prove L e m m a  5.10. For  that purpose we need a sublemma. 
Recall that N(t ,  c) is the total number  of elements of J ( t ) \ J ( t ,  c). 

L emm a  5.12. I f  #(c) > 1, then 

p [  . . . .  N ( 6 ~  1 '  C)  
plmm~-k . . . .  > 0l T ~  oo3 = 1. 
i_ k~m ~ N( t j ,  c) 

j = l  

P r o o f  o f  L e m m a  5.12. We observe that 

Thus, on {Tt--*oo } 

N(tk ,  c) < ~ +  . 

l iminf ~N!tk'  c) -_> liminf N!tk '  c ) > # ( c ) -  1 
t-, ~ N( tk  _ 1, C) -- t~ ~ Tt k 

by (5.19) which yields the lemma. [ ]  

P r o o f  o f  L e m m a  5.10. First, we suppose that 

Then, for n > n  o, 

e-~*~+,,7r - m e  Y 
l ~ t k i  n ' '~cO ~cO[ 

<=l 2 

r  for t>_n o & 

k ~ x ~ t k  + n --  a x  - -  " '~tk  + n - a x ]  I 
x e d t  (tk) ". J ( tk ,  nc) 

+1( Z e . . . .  mt~ + ._ .~ ) - rn~  Yool = $1 (tk) +$2(6 )  
x e J  (t D \ d~ (t~, nc ) 

Let us rewrite Sl(tk) as 

Since 

N 1 (6) = [e- ~ N (6, n c)[ 

e -  ~(Gx -tk)(e ~(tk+.-~)  ZOk~. - o~ --rn~k+~,-r ~ )  

N(tk, he) 
. ? : e J ( t k ) - . ~ Y ( t u ,  he) 

= S l l ( t k )  S 1 2 ( t k ) ,  say. 

e -~t~N(tk, nc)<_e ~"c Yt--+e~"eYo~ < oo 

it is enough to show that, on { T t ~  }, 

Sl2(tk)-*0 

a.s., as k ~ o c ,  

a.s., as k--*oo, 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

say. 

(5.43) 

(5.44) 

(5.45) 

(5.46) 
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in order to conclude that, on {T<-,co}, 

Sx(tk)~0 a.s., as k-~oo. (5.47) 

To show (5.46) we shall use Propositions4.1 and 4.3. J ( t k ) \ J ( t k ,  n c  ), 
N ( t k ,  n c  ) and a~ on { X e J ( t k ) \ J ( t k ,  nC)}  are all measurable with respect to 
~4r, ~. Further, conditioned on d r t  ~, the processes { x Z ~ } ,  x e J ( t k ) \ J ( t  ~, n c ) ,  are 
mutually independent and their distributions are unaffected by the condition- 
ing. 

Observe that 

e - ~(~'~ - tk) e - ,(tk + ~ -a=) = e - ,cn < 1, (5.48) 

and that 

s u p Z ~ <  ~ sup~b~(s). (5.49) 
s<=cn x s g c n  

f ix  ~ cn 

From the finiteness of E[T~], the independence of ~r~ and ~b~, and Con- 
dition 5.2, 

E[ ~ sup q~(s)] =E[~..]  E[suP4x(S)] < co. (5.50) 
X 8~= Cn 

6 x ~ C n  

Further, from Lemma 5.12, on {Tt~co }, 

liminf 
k ~  Go 

N(tk, c) 
k 

N ( t ; ,  c)  
j =  1 

> 0  a.s. (5.51) 

Proposition 4.1 yields that, on {Tt~co }, 

~ P [ S l e ( t k ) > e l d r J  < co a.s., (5.52) 
k = l  

which by virtue of Proposition 4.3 yields (5.46), and hence also (5.47). 
To settle (5.33) for our special ~b it suffices to show that to any e>0,  we can 

find n >  no, such that 

limsupk~ $2 (tk) < Y~o e a.s.. (5.53) 

Let r be so large that 

limsupt~oo Y~ c '<2  Yo~ a.s. (5.54) 
' = sut~m~ 

t 

which is possible by Corollary 5.9. 
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Assume that n > n o, and r is so large that 

lrnr 4 <e_ t " ~  =2  if t > ( n - - r ) c .  

(Certainly Proposition 2.2 is applicable.) 
Then, by the definition of Yt, 

limsup S 2 (tk) < limsup f ~ . . . .  + e (rn~+ _~  -rn~)l 
k ~ o o  k ~ c o  x e d ~ ( t k ) \ d t ( t k ,  rc) 

+ limsupl ~, e . . . .  (m~k +,_ ~x - m ~ )  
k ~ 0o xs~r ( t k ,  rc) ~. 5 r ( t k ,  nc) 

- ~ e . . . .  r n ~ i + l i m s u p l m ~ Y t - m ~ Y o o  t 
X ~ ( t k ,  nc) k ~ 

g 

< -  limsup Yt~ + (sup m~) limsup Ytk ~r -< e Y~ 
=2  k ~ c o  t k ~  ' - -  

by (5.54) and (5.55). 
Finally, use Lemma 5.8 to remove (5.42). [] 

(5.55) 

a.s., (5.56) 

6. a.s. Convergence of Ratios and the Empirical Age Distribution 

Consider the ratio Z~/Z~ for two characteristics ~b and 0. If 

E [~(oo)log + ~(oo)] < oo, (6.1) 

and ~b and ~ satisfy the conditions of Theorem 3.1 or ~b, ~ and ~ the conditions 
of Theorem 5.4 then Corollary 3.4 and Corollary 5.6 state appropriate ratio- 
convergences (on {Tt~ oo}). 

On the other hand, if 

E [~{(oo)log + ~ (c~)] = oo (6.2) 

then Theorem 3.1 and Proposition 1.1 show that Y~ =0  a.s.. Accordingly ratio- 
convergences do not follow that easily. 

The purpose of this section is to give sufficient conditions on the repro- 
duction 4, and the characteristics q~ and 0, for a.s. convergence (on {Tt--*oo}) of 
Z~/Z~t, even if (6.2) holds. 

We shall work with the following assumption on 4: 

Condition 6.1. There exists a fi<c~ such that #~(oo)=E[~(oo)] < oo. (For Bell- 
man-Harris processes with finite Malthusian parameter #(c~) is always finite. 
Therefore they satisfy the condition with fl = 0.) 

We shall restrain ~b and ~ more than in Sect. 5: 

Condition 6.2. There exists a fl < cr such that 

V= sup (e-r (6.3) 
t 

has finite expectation. 
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Just  like in Sect. 5 the two condi t ions are dual. 
Let  us formulate  

Theorem 6.3. Suppose that ~ satisfies Condition 6.13 and that 0 and ~ satisfy 
Condition 6.2 and have D-paths. Thenl on {Tt~oo  }, 

zt 
'L~- a.s., as t~oo.  (6.4) 

Z Ot moo 

Corollary 6.4. Suppose that ~ satisfies Condition 6.1. 3 Then, on {Tt~oo }, 

a 

!(1 -L(u) )e -~"du  
Z~ ~ (6.5) - -  ~ -  - -  a . s . ,  a s  t ~ o o .  [ ]  

Z, ~(l_L(u))e_~,.du 
o 

Remark. For  Bel lman-Harr i s  processes, Condi t ion  6.1 is always satisfied. And  
thus the fact that  the empir ical  age dis tr ibut ion of a supercri t ical  Mal thus ian  
Be l lman-Har r i s  process always converges a.s. towards  the stable age distribu- 
t ion follows f rom Corol la ry  6.4. As poin ted  out  in the in t roduct ion  this result 
has been established also by Kuczek  [1980]. 

The  p roo f  of  T h e o r e m  6.3 will be built  on the next  lemma.  F r o m  Sect. 5 we 
recall some convent ions:  to fixed c > 0 and t o > 0, 

and 

6 = k c + t o ,  k=O,  1,2 . . . .  (6.6) 

kc 
tk,, = - - ,  k = 0, 1, 2 . . . . .  n = 1, 2 . . . . .  (6.7) 

n 

L e m m a  6.5. Assume that ~ satisfies Condition 6.1 and dp and ~ satisfy Con- 
dition 6.2, and that E[q~(t)] and E [ 0 ( t ) ]  are continuous a.e. Then, on { T ~ } ,  

z .  m0 () 
t k +  i,n___ - . - c o  ct dC 

Zo mO e ,, a.s., as k~o�9 (6.8) 
tk ,  n cO 

We pos tpone  the p roof  of  L e m m a  6.5. 

Proof of Theorem6.3 from Lemma6.5. L e m m a 5 . 3  implies that  E[~bc/"(t)], 
E[4c/,(t)], E[0C/n(t)], and EEOc/,(t)] are cont inuous  a.e. Moreove r  4 ~/', (a~/,, 
t) el', and 0~/, satisfy Condi t ion  6.2. 

Now,  if t~[tk, n, tk+ 1,,] then 

Zeal, Z 0 Z r 
tk,,, < t <  r . . . . .  (6.9) 

Z Oc/n = ~ =  ,70c/~ �9 
i~k + 1, n Z~-  ~ t k ,  n 

3 For other conditions implying ratio stabilization consult Corollary 3.5 and Corollary 5.6 
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Hence Lemma 6.5 implies that, on {T~oo},  

_ c mr Z 0 Z4) c m 4'c/~ 
. co " ' ' " ' ~ -  ~ '  ( 6 . 1 0 )  e o / _ < h m m f ~ - < h m s u p ~ _ < e  n a.s. 

The proof is completed as the proof of Theorem 5.4. [] 

For the proof of Lemma 6.5 we need some supporting results. 

Lemma 6.6. Suppose that 12(c)> 1. Then, on { T ~  00 }, for each f ixed s6(O, ~ )  

Yt~+-~l a.s., as k--+~. (6.11) 
Y~ 

With the 

Corollary 6.7. Suppose that #(c) > 1. Then, on {Tt~ ~},  

Yt~+.i'"~l a.s., as k ~ ,  (6.12) 
t t k ,  n 

for any f ixed j and n. 

Proof  of  the Corollary. Choose s= Jc and intersect the sets where (6.11) holds 
n 

1 2  n - 1  
for t o = 0  . . . . . .  , - -  [] 

n n n 

Proof  of  Lemma 6.6. We prove the lemma for s<=c. The claim of the lemma 

we use this on s 1 =c  and on s 2 = s -  [c] c. then follows if 

We make the convention 

Yt=l for t< 0 .  (6.13) 

Define {xY~} similar to {~Z,}. Then, for s<c,  we can write 

Yt+~= ~ e . . . .  xgt+ . . . .  + Y~,~. (6.14) 
xe,.c(t) ".. J ( t ,  c) 

From this we obtain (N(t, c) as in Sect. 5) 

=1 +S~(t)S2(t  ), say. (6.15) 

Since 

N (t, c) e-~t <(Yt-Yt,c)e"C<=e~c Y~, (6.16) 
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it is enough to show that, on {Tt--+oQ }, 

S2(tk)~O a.s., as k~oo .  (6.17) 

To do so, we shall use Propositions 4.1 and 4.3 like in the proof of Lem- 
ma 5.10. 

J ( t k ) \ J ( t k ,  C), N (t k, c) and a~ on { x e d ( t k ) \ J ( t  k, c)} are ~4rtk-measureable. 

Further, conditioned on d r t  k, {xYt}, x ~ J ( t k ) \ J ( t  k, c), are mutually independent 
and their distributions are unaffected by the conditioning. Observe that, for 
x~J(tk),  

e-~'(~x-t~)< 1, (6.18) 

and that, for t < s, 

e . . . .  + Y~,s_, < T~ + Ys, t>O 

Y~<{1 ~J(~ J(''~-t) = t<O. (6.19) 

Finally, from Lemma 5.12 

[ . . . .  N(tk+ 1, C) ] 
P ]nmlni  T - - -  - > 01Tt~ oe = 1. (6.20) 

1 
Proposition 4.1 yields that, for any e>0,  on {Tt~oo}, 

~ P [ S 2 ( t k ) > e ] S J T J < O e  a.s., (6.21) 
k=l 

which by virtue of Proposition 4.3 yields (6.17). This completes the proof of the 
lemma. [] 

Lemma 6.8. There exists a K < oe, such that, on {Tt~oo }, 

e-~t T. 
limsup - -t < K a.s. (6.22) 

t ~ o O  r t  - -  

Proof. The lemma follows from the fact that 

(6.23) 
y t = y t -  yt, c=e-~'CN(t,c)e -~'~ 

and Lemma 3.6. [] 

Before the proof of Lemma6.5 we need analogues to Lemma 5.8 and 
Corollary 5.9. Recall from section 5 that 

c~,(t)=[c~(t) for t > s  
(6.24) 

otherwise. 
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L e m m a  6.9. Suppose that r satisfies Condition 6.2. Then, if l~(c)> 1, on {Tt~oo }, 

lira limsup e - ~ Z ~ '  0 a.s.. (6.25) 
s ~  oo k ~  oo r t k  

and, for each n, on the same set, 

-- ,n  ' 

lira limsup e ~t~ Z~ , .=0 .  (6.26) 
s ~  09 k ~  oo r t k ,  n 

Further (with the help of Corollary 6.7 proved like Corollary 5.9). 

Corollary6.10. Suppose that ~ satisfies Condition 6.1. Then for each n, on 
{T1--+ oO }, 

lim limsup Y~ .... = 0. [] (6.27) 
c ~  oo k ~  00 Yttk, n 

Proof of Lemma6.9. Certainly it is enough to prove (6.25) for s=rc with r 
integer. Observe that (just like (5.28)), on {Tt~oe }, 

i=rt~+1 -~E[V]  a.s., as k~oo.  (6.28) 
~k+l- T~k 

Hence, analogous to (5.29), on {Ttooe}, 

limsup 
k~oO Y t k + r  

Tt  k 

q~(tk+~-- (7~) e -~t~+~ 

= limsup ~= ~ 
k ~  r t k + r  

k - 1  

< limsup i= 1 j =  0 i =  T t j +  1 

k~(x)  g t k + r  

k-~ (e-~tj+~Tt,+~] (yt,+ e (~-~)(k+r-j-~,c] 
<O+e~E[V]limsupk-oo j=o ~ \-- Ytj+, ! Y~+~ ! a.s.. (6.29) 

The zero comes from Lemma 6.6. The first factors in the last sum are uni- 
formly dominated (a.s.) due to Lemma 6.8. Reversing the order of summation 
and using Lemma 6.6 again it is easy to dominate the second factors geometri- 
cally and hence to deduce by dominated convergence (K from Lemma 6.8), on 
{~--,oo}, 

~--CCtk +r Z r oo 

l imsup- t~+. <_e~E[V] K ~, e -(~-z)j~ a.s. [] (6.30) 
k ~ o o  r t k +  r - -  j = r  
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Proof of Lemma 6.5. The l e m m a  follows by Corol la ry  6.7 if we show that, on 
oo}, 

e -  ~t~, ~ Z o 
t~'~-*mr a.s., as k - ~ .  (6.31) 

r t tk ,  n 

Suppose  first that  

qS(t)=O for t> j~ (6.32) 
n 

By the same corol lary  the limit (6.31) then follows from, on {Tt~oo }, 

�9 . . . .  z t k + +  I 
l im hmsup  ,' . . . .  m~ = 0  a.s. (6.33) 
J ~ c o k ~ c o  I ~ttk, n [ 

To prove  this consider j >J0 and  r > 0. Then, on {Tt~ co}, 

l imsuple-~'k+J . . . .  Z~+;  . . . .  ~ m ~  
k ~ o O  gt,k-, n 

_,. le-~'~,"N(tk , , ( j+r)c/n) 
umsup  - " - 

- -  k~co  I ~k, ,~ 

k ~  x~J(tk, n ) \ J ( t k ,  n,(j+r)c/n) 

(e-~(t~+J . . . .  -~)  Z ~ - ~ *  ~/~,r, (j+r)c/n)l X tk+j+r,n--Gx #t~tk+j+r,n--G:c]/x~ ~,~k, tl~ 

d(O-~c ( m t k  + j v ~ ~ X  ~ m 

+ l i m s u p  J(k , , , )  ~,~(k,n,J /n) �9 - -  

k ~  cO g t k ,  n 

+ {sup m~} l imsup Yt~, ~, ~/,  a.s. (6.34) 
t k ~  co r t k  

Now,  on { T t ~  oo }, 

e-~,k,.N(tk,. ' (j + r) c/n) 
< e ~u+ ~)~/", (6.35) 

tk,  n 

and the second factor of  the first t e rm in (6.34) can be shown to be zero a.s. In 
fact, with k--,oo only on {ko, ko+n, ko+2n . . . .  }, this follows just  like the 
convergence of S~=(tk) in the p roof  of  L e m m a  5.10. But k 0 =  1, 2 . . . .  , n can be 
chosen arbitrarily.  The  second te rm can be made  arbi t rar i ly  small  by choice of  
r large, according to Propos i t ion  2.2 and the definition of Yr. By virtue of  
Corol la ry  6.10 the last t e rm tends to zero, as j-- ,oo. 

Finally, use L e m m a  6.9 to r emove  (6.32). []  

7. Addendum 

Consider  a branching  process counted with a r a n d o m  characteris t ic:  

z t  = (7.1) 
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Of course this sum makes sence for not necessarily independent (b-processes. 
The question arises whether our limit theorems are valid for some larger class 
of characteristics. We shall show that indeed they are for characteristics which 
may depend not only on x's own life but also on its whole daughter process. 
Such generalized characteristics play a fundamental role in a recent paper by 
Jagers (1981), where different aspects of sampling in a supercritical branching 
process at a late time point are treated. 

To any xeJ ,  let 

J~ = {(x, y); y e J }  (7.2) 

where (x, 0)=x, i.e. Jx consists of x and its potential progeny. Let {q)(t)} 
={~b(t, co)}t~R denote a real-valued, non-negative stochastic process vanishing 
for t negative, which may depend on all coordinates in O (recall: (s N, P) 
= I~ (Ox, ~ Pc)). Denoting by nx the shift operator that maps the (x, y)-coordi- 

xEJ 

hate on the y-coordinate (the x-coordinate on the 0-coordinate) we define 

and 

as usual. 
Since (cf. Proposition 2.1) 

4~(t, co)= ~(~, ~x(co)), (7.3) 

z~= ~, ~b~(t-a~) (7.4) 
x ~ F  

Co(t) 
z~=~bo(t)+ ~ z e (7.5) (i) t - - a ( i  ) ' 

i - - 1  

where, and this is the key to our results, the ~j)z~-processes are independent 
copies of {z~} also independent of 4o (but not necessarily of ~bo), renewal 
theory applies unchanged, and both (2.4) and Proposition 2.2 follow exactly 
like before. Also Theorem 3.1 and its proof are valid without any changes. 

For age-truncated q) (i.e. q)(a) vanishing for all ages a larger than some 
constant), and reproductions ~ satisfying the conditions of Theorem 5.4 a.s. 
convergence of e-~tz~ follows as before. However, since the (bx's need not be 
independent, the proof of Lemma 5.8 is no longer valid. But, define 

e_=t4~(t ) 
sup h(t) U~ for 0_<a<l  ~,~(a) 

[0 ~ otherwise. (7.6) 

Then, since Ox is a characteristic of the truncated type, 

e -  st zt0 ~ y~ m0 a.s., as t ~  oo. 

where 

(7.7) 

1 

mL = J" e[v~] e-~' dt <e[vx ] .  (7.8) 
0 
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With ~b'(a) denoting qS(a) for a larger than c and zero otherwise we have, since 
h does not increase, that 

e-~tz~'=e-~ ~ Cx(t-ax)<=e-'t ~ h(t-ax)e~(t-'x)Ux 

[ t -  c] + 1 

k= l k - -  l ~=ax~=k 

[ t -c]+ 1 
<e -~ ~ h(t-k)e ~(~-k+ l) ~ U~ 

k = l  k--l~=ax<=k 

[t c]+ 1 

= ~. h(t-k)e~(e-~kz~ D. 
k = l  

(7.9) 

We can reverse the order of summation, and use the a.s. convergence of e ~k z~, 
and the monotonicity of h, to dominate and conclude that 

limsupe-~tz~'<e ~ h(s)ds Y~.E[Ux] 
t~oo  c - - 2  

a.s. (7.10) 

Thus, the lemma is still valid, and the original proof of Theorem 5.4 works. 
Also the proof of Lemma 6.9 is invalid, but for age-truncated characteristics 
Theorem 6.3 follows as before, and with an argument analogous to (7.9) we can 
prove Lemma 6.9 and hence the theorem holds. 

Let us give some examples of processes counted with generalized character- 
istics. 

Example I. If 

4)(t) : f l  if z~>0 
(7.11) t0 otherwise. 

Then z~ counts the number of individuals who have descendents alive at t. 

Example 2. Let qS(t) denote the number of pairs of cousins in the second 
generation both alive at time t. Then z~ counts the total number of cousin 
relations between pairs of individuals alive at time t. 

Example 3. If 

10 if the ancestor is alive, and has exactly k - 1  children alive at t 
q~(t) = otherwise 

(7.12) 

then z~ counts the number of "families" consisting of k individuals. 
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