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Summary. We derive necessary and sufficient conditions for several charac- 
terizations of the rate of convergence of a sum of independent variables to 
a stable law. The technique used is to obtain upper and lower bounds on 
the rate in terms of functions depending in a very simple way on the 
common underlying distribution. This permits a general approach to the 
problem of rates of convergence. 

1. Introduction 

n 

Let S n = ~ Xj be a sum of independent and identically distributed random 
1 

variables whose common distribution lies in the domain of normal attraction 
of a stable law of exponent e, 0 < e < 2. Then there exist constants #n such that 
(Sn-#~)/n 1/~ converges in distribution to a stable law as n ~  oe. There are two 
principal approaches to estimating the rate of convergence in this limit theo- 
rem. The first is to impose a condition on the pseudomoments,  or on the 
difference moments, of the underlying distribution, and the second is to use an 
order of magnitude condition on the tails of the distribution. See for example 
the work of Banis [1, 2], Butzer and Hahn  [3], Christoph [-4, 53, Cram~r [-6, 7], 
Egorov [8], Kalinauskaite [-15], Paulauskas [17, 18, 19, 20], Satyabaldina [-22, 
23] and Zolotarev [-25]. Some of these results resemble those of Heyde [12], 
Ibragimov [,-133 and Lifshits [16] regarding the rate of convergence to a 
normal law. Our aim in the present paper is to present a different approach 
to rates of convergence to a stable law, which makes it a matter  to derive 
general characterizations of rates. Our technique seems to be new in the context 
of stable convergence, although it has been used before in connection with 
normal convergence; see [10]. We pause here to describe it. 

Let A n denote the uniform distance between the distribution function of (S~ 
-#~)/n ~/~ and that of the limiting stable law. We shall prove that under mild 
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conditions there exist positive constants C~, C 2 and c, and positive functions f 
and g depending in  a simple way on the underlying distribution, such that 
An<= Ci[f(n)+n ~] and g(n)< Cz(A,+n-~). Therefore f(n) and g(n) describe 
the behaviour of A~ up to terms of O(n-~). Many questions about the asymp- 
totic behaviour of A~ can now be rephrased in terms of f and g, which are 
much easier to handle than A~ itself. To emphasize the generality of this 
approach we note that some of the classic sufficient conditions for rates of 
convergence, such as those of Cram& [6, 7], may-be derived in this manner. 

The theory of non-normal stable laws falls naturally into three classes: 
1 < ~ <2, ~-= 1 and 0 <  ~ < 1. We shall follow tradition by treating these classes 
separately, in Sects. 2, 3 and 4, respectively. The proofs of our main'results are 
placed together in Sect. 5. 

We close this section with some notation. Let F denote the common 
distribution function of the summands Xj. A necessary and sufficient condition 
for F to tie in the domain of normal attraction of a stable law of exponent ~ is 
that it admit the representations 

1-F(x)=cix-~+o(x  --~) and F(-x)=c2x-~+o(x  -~) 

as x ~ o o ,  for nonnegative constants c 1 and c 2 with c 1 + c 2 > 0  1-14, Theorem 
2.6.7, p. 923, Define 

S ( x ) = l - F ( x ) + F ( - x ) - ( c l  +c2)x -~, x > 0  

(the remainder in the tail sum), and 

D ( x ) = l - f ( x ) - f ( - x ) - ( c  1 -c2)x -~, x > 0  

(the remainder in the tail difference). We shall always assume that iS(x)] 
+lD(x)[=o(x-~), and if 1 < ~ < 2 ,  that E(X1)=0.  Let 

a i =(c  i q-c2) ~ u -c~ sin u du 
0 

for 0 < ~ <2  (the integral converges only in the Riemann sense if c~ =< 1), and 

oo 

( q  - c2) ! u - ' (1  - cos u) du 

a2= t Cl-- c2 

if 1 <c~<2 

if cz=l 

if 0 < a < l .  

o:3 

In the case ~=  1 assume ~ jD(x)j dx< oo, and for any a>0 ,  define 
l 

s co  

~ =  ]' [1 -F(x) -F(- -x )]  dx + ~ D(x)dx-(c 1 -c2)(3,+loga), 
0 a 
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where 7 denotes Euler's constant. It is easily checked that # does not depend 
on a. Set # , = 0  if 0 < ~ < 1  or l < ~ < 2 ;  n ( # + a  2 log n) if c~=l. Then (S,-#,)/n a/6 
has a limiting stable law whose distribution G has characteristic function 
given by 

~l t l~[al+ia  2 sgn(t)] if 0<c~<l  or l <c~<2 
-l~ if c~=l. 

This may be seen from the results of [-9, p, 580]; it will also be proved during 
the course of our investigations. Let F, denote the distribution function of (S n 
-#,)/n 1/~, and set 

A. -- sup IF.(x) - G(x)l. 
x 

The symbol C, with or without subscripts, will denote a positive generic 
constant. It will in general depend on the underlying distribution F, but not on 
n. 

2. The Case 1 < g < 2 

We shall assume throughout that E(X1)=0 .  Our first result provides an upper 
bound without any additional restrictions on F. 

Theorem 1. If  F is in the domain of normal attraction of a stable law of exponent 
c~, 1 < ~ < 2, then 

f Fill ~ II11~ 
A.<Cn n 2/~ ~ xlS(x)ldx+n-3/~, S x2lD(x)l dx 

o o 

+n-X/~',l/= ~ [IS(x)I+lD(x)l] dx +n-2/~'}. 

It follows immediately that if IS(x)] + I D (x) I -= 0 (x- a), where ~ </~ < 2, then 
An-=O(n ~-~/~') (Cram6r [6, 7]). By using integral approximations to series it is 
also easily proved from Theorem 1 that if ~ < p < 2 and 

oO 

S xa 11-IS(x)l + IO(x)l] dx < oo, (1) 
1 

then 

• n~/6-2 A n <  oo. 
1 

Condition (1) is equivalent to a restriction on the difference moment of F. 
Since 

I1 - F ( x ) -  [1 - G ( x ) ]  I = I1 - - F ( x ) - - e  1 x-~l + O(x -2c~) 
and 

I F ( - x ) -  6 ( - x ) l  = I F ( - x ) -  c2 x 61 + O(x-26) 
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then 1S(x)+D(x) i=21F(x)-G(x) l  +O(x  --2~) and [S(x ) -D(x) t - -2  I F ( - x )  
- c z x - ~ t + O ( x - 2 ~ ) .  But iS t+IDt<[S-DI+IS+DI<2(ISI+IDI) ,  and so (t) holds 
if and only if 

O3 

j I x ? - l l F ( x ) - G ( x ) l  dx < oo. 
--CO 

This is generally a little weaker than the more common pseudomoment con- 
dition, 

[~ [xlald [ F ( x ) -  G (x)][ < oo; 

see Zolotarev [25]. 
Our next result gives an improved upper bound on A., and a lower bound, 

under slightly more restrictive conditions, 

Theorem 2. I f  S is ultimately monotone then 

-{-n -3/~ j X 21D(x)[ d x + n  -t:~ ID(x)[ d x + n  -21~ , 
0 n TM 

and if in addition D is ultimately of the one sign, 

r l l /~  

C{A.+nx-2/~}>n~ n-2/~ ! xlS(x)ldx+tS(n11~)l 

+n -3z~ j xZlD(x) ldx+n -it" ~ ID(x)tdx . 
0 n~k, ) 

The analogue of the Berry-Ess6en theorem for convergence to G imposes 
the difference moment condition 

o?_ 
j Ix I tF(x)-G(x)[  d x <  ~ ,  (2) 

-o-09 

and gives a rate of convergence of O(nl-2/~); see Satyabaldina [22, 23]. It 
follows from Theorem 2 that the distribution with tails given by 

1 - F ( x ) = e l x - ~ + c x  -2 and F ( _ x ) = c 2 x - ~  cx 2 

for all sufficiently large x, where c is any constant, has the property that A, 
=O(nt-2/~). However, condition (2) fails to hold for this distribution unless c 
- - - - 0 .  

To demonstrate the utility of our results we shall derive some characteri- 
zations of rates of convergence of the type obtained in [4, 5, 8, 15]. 

Corollary 1. I f  c~ < fi < 2, if S is ultimately monotone and D ultimately of the one 
sign, then 

co 

n~j~- 2 ~. < ~ (3) 
t 
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Ix? ~ IF(x)-  G(x)l dx < ~ .  (4) 
- c o  

I f  c~ < fl < 2 and S and D are both ultimately monotone, then 

A.  = O(n 1-~/~) (5) 
if and only if 

IF(x)-  6(x)l + [ F ( - x ) -  G ( -  x)l = O(x ~). (6) 

I f  S and D are both ultimately monotone then 

An=O(n 1-2/~) 
if and only if 

~xlS(x)ldx<oo and ID(x)l=O(x-2). 
0 

Proof We prove only that (3)~(4) and (5)~(6). Firstly, if (3) holds then from 
Theorem 2, 

Making integral approximations to these series we find that 

which is equivalent to (4). Next, if (5) is true then IS(nl/=)l =O(n-P/=), and if D is 
monotone on (a, oo), 

/,/1/~ n l /~  

O(n-B/~)=n-3/~ S x2lD(x)[dx>n S4~lD(nl/~)l ~ x2dx, 
a a 

from which follows (6). 

3. T h e  C a s e  ot = 1 

Throughout this section we impose the condition 

ID(x)[ dx < oo. (7) 
1 

There are some fundamental differences between the case c~ = 1 and that consid- 
ered in the previous section. For example, even in the "ideal" situation where 
IS(x)l +lD(x)l=O(x-2), the fastest rate of convergence permissible in general is 
O(n l(logn)2) and not O(n-1), as might perhaps be expected. Indeed, it is 
possible to derive Edgeworth expansions in which the first term is 
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O(n-l(logn)2); see [-11]. However, if the limiting stable law is symmetric then 
rates of O(n- 1) may be achieved. 

We first state the following analogue of Theorems 1 and 2. 

Theorem 3. I f  F is in the domain of normal attraction of a stable law of 
exponent ~ = 1, and if condition (7) holds, then for n> 2, 

A . < C  n -1 x l S ( x ) l d x + n - 2 ~ x 2 l D ( x ) l d x  
0 

+ ~ [1S (x)] + I D (x) l]d x + n-1 (tog n)2~. 
n ) 

I f  in addition S is ultimately monotone then 

A . < C  n -1 x l S ( x ) J d x + n j x - l l S ( x ) l d x  
n 

-~-n-2ix2lO(x)ldx-}-o ~ l O ( x ) l d x q " n - l ( l ~  

and if also D is ultimately of  the one sign, 

tt 
C{An +n -  1(log n) 2) ~ n -  1S x lS(x)l d x + n  IS(n)] 

0 

+n -2 xalO(x)l d x +  ~ IN(x)[ dx. 
0 n 

There is no difficulty in obtaining characterizations of the rate of con- 
vergence in terms of series conditions and order of magnitude conditions, using 
the techniques of Sect. 2 (see also 1-4, 5, 8, 15]). We note here only the 
following results, which do not follow the usual pattern. 

Corollary 2. Assume condition 
ultimately of the one sign, then 

if and only if 

(7) holds. I f  S is ultimately monotone and D 

n 

~n-~G<oo (8) 
1 

~ lS(x)l dx < oo and [D(x)l l o g x d x  < oo. (9) 
1 1 

I f  in addition D is ultimately monotone then 

A n = O(n- 1 (log n) 2) (10) 
!f and only if 

x 
~IytS(y)ldy=O((logx) 2) and ID(x)t=O(x-2(logx)2).  (11) 
1 
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c~  

Proof If (8) holds then ~ tS(x)l dx + ~ y-~ dy ~ ID(x)[ dx < o% which is equiva- 
1 1. y 

lent to (9). Conversely, it follows from Theorem 3 that 

~n- IA ,<=C y-Zdy  x lS (x ) ldx+~dy~x-~ lS (x ) ldx  
1 1 y 

+ y-3dy~x2tD(x) ldx+ y - Idy . f lD(x ) l dx+C , 
1 i 1 y 

and the right hand side is finite if (9) holds. If (10) is true then 

i x IS(x)l dx =O((logn) 2) and ~x 2 tD(x)l dx= O(n(togn)2). 
1 1 

n 

The last condition implies that ]D(n)lyx2dx=O(n(logn)2), and (11) follows. 
1 

Conversely, if (11) holds then for large n, 

?l n 

O((log ~)2) = S X Is(x)l dx > IS(n)l ~ x dx, 
1 i 

and so IS(n)l = O(n- 2(log n)2). Consequently ~ IS(x)t dx = O(n- 1 (log t,/)2), and 
(10) is now easily proved from Theorem 3. 

4. The Case 0 < ~ < 1 

and 

Throughout this section we assume that the functions S and D are both 
ultimately monotone. 

Theorem 4. I f  F is in the domain of normal attraction of a stable taw of exponent 
~, 0<c~< 1, and if S and D are both ultimately monotone, then 

+ ~ x -1 l-IS(x)] + [D(x)[] dx -t-n -min(2" tl~@ 
t l l / ~  ) 

I nl/~ 
C ( Z l n q - n - r n i n ( 1 ,  z /c~-l)}  ~ n n-2/c~ ~ x l S ( x ) l d x - l - l S ( n l / c ~ ) [  

1 

+n i#, S xldD(x)[ +nl/~' x-lldD(x)l " 
1 n TM 

Cram6r's [6, 7] upper bounds on A, are easily deduced from this result. It 
is also possible to characterize the rate of convergence: 
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Corollary 3. I f  ~ N f i < m i n ( 1 ,  2cQ and S and D are both ultimately monotone then 

if and only if 

I f  in addition x~]D(x)t 
c~<f l<min(1 ,  2c0, then 

~ na/~- z An < oo (12) 
1 

oo 
5 Ixl a -  * I F ( x ) -  G(x)l dx < oo. (13) 

- - 0 9  

is ultimately nonincreasing for some e > 0 ,  and if 

(14) A n = O ( n ~ - P / ~ )  
if  and only if 

I F ( x ) - G ( x ) l  + I F ( - x ) -  G ( - x ) l  =O(x-P) .  (15) 

Proof. The p roof  is very similar to that  of Corol lary  1. In proving that 
co no 

(12)~(13), note  that  ~ x ~ ]dO(x)] < co if and only if ~ x a-  1 ID(x)[ dx < o% and in 
1 i 

showing that  (14)~(15),  observe that  if x"[DI is nonincreasing then 

tdD(x)l = - d [ x  -~. x~lD(x)J] 

- -ex  -1 tD(x)l dx-x-"d[x~lO(x) l ]>=ex-1  tO(x)l dx. 

Therefore  if (14) holds, O(x ~-p) = i Y tdD(y)[ >= C ]D(x)l ~[ dy, giving (15). 
1 1 

5. The Proofs 

We shall procede via a sequence of  lemmas. Let  q5 denote  the characteristic 
function of the distr ibution F, and 0 another  characterist ic function. The 
symbols  a 1 and a 2 denote  real constants  with a 1 >0 ,  while b i and b 2 stand for 
real valued functions of a real variable. 

L e m m a  1. Suppose 0 (t) = exp { - It1 ~ [a i  + ia2 sgn (t)] } and 

1 - qS(t) = - l o g  O(t) + b l (t) + ib2(t) + O(It[ p) 

as t ~O, where 0 < ~ < 2 ,  , < f l < 2  min (1, , )  and [bl(t)[ +[b2(t)[=o(lt["). Then 

4(t/n~/~) n = 0(t){ 1 - n[bl (t/n ~/~) + ib2(t/nl/~)]} + r, (t), 

where for positive constants c, C and e, 

trn(t)[ < C {tnb i (t/nl/~)] 2 + Inbz(t/ni/~)12 + Itl e n ~-~/~} e -~l'l~ 

whenever Itt <~n  1/~. 

Proof Under  the condit ions of  the lemma we have l l - q S ( t ) t < C l t l  ~ for all t. 
Choose  & so small that  11-qS(t)t <�89 for Itl <6.  Then  if Itl <an ~/~, 

n log 4(t/n 1/~) = - n i l  - 4)(t/nl/~)] - � 8 9  - ~(t/nl/~)] 2 - . . .  

= - n E1 - , > ( t / n i / ~ ) ]  + rob(t), 
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where Ir.i (t)l =< Cn Lt/n~/~12~. Consequently dp(t/nl;~)" = ~[J(t) ~.(~ t), where 

. (t) = exp { - n [b 1 (t/n 1/~) + i b 2 (t/nl/~)] + r, t 2 (t)} 

= 1 - n [b  1 ( t /n 1/~) + i ba ( t /nl /~)]  + r. 3 (t), 

and for It] < 6 n  1/~, 

It.3 (t)[ <= C {lnbl  (t/nl/~)[ 2 + [nb2(t/n~/~)[ z + n [t/nl/~f} 

x exp {]nbi(t/ni/~)l + Inb2(t/nl/~)t +n l t / n i /~ f } .  

Given 0 < A < a ~  we may choose 6 so small that  for all n and [ t l < f n  ~/'~, 
Inb i ( t / n i /~ ) l+[nbz ( t / n l /~ ) [+] t fn i -~ /~<A It[ ~, and the proof of Lemma 1 is now 
easily completed. 

Lemma 2. Suppose t p ( t ) = e x p { - ] t ] [ a l + i a 2 s g n ( t ) l o g [ t l ]  } and 1 - ( b ( t ) =  
- l o g t p ( t ) - i # t + b l ( t ) + i b z ( t ) + O ( [ t f  ) as t ~ O ,  where l < f l < 2 ,  - o o < # < o � 9  
Ibl(t)t =o(ltt)  and tbz(t)[ =o(It[ log Itl- 1). Then 

dp (t/n)" exp [ - it (# + a2 log n)] = ~ (t) { 1 - n [ b~ (t/n) + i b z (t/n)] } + r. (t), 

where  for  posit ive constants  c, C and e, 

[r.(t)[__< C {[nb a (t/n)] 2 + [nb2(t/n)[ 2 + ] t f  n i --~ 

+ t z n -  i [(log n) 2 +( log ltt)z]} e -~M 

whenever  It] <en.  

Proof. We have l l -  ~b(t)] < C It] log ]t I-1 for ]t] < �89 Choose 6 < �89 so small that  ]1 
- 4 ( t ) ] < � 8 9  for ]t l<6. Then if [t!<c~n, n l o g 4 ( t / n ) = - n [ 1 - 4 ( t / n ) ] + r . i ( t  ) where 
It. 1 (t)] < Cn [[ t/n] log [n/tl] z. Consequently 

n log ~(t /n)  = - l t t  [al + ia2 sgan (t) log ttt] - n [b i (t/n) + ib2(t/n)] 

+ i t (#  + a 2 log n) + rn2 (t) 

where Ir.2 (t)l < C n  { I t /n f  + [It/nt log ln/tt] 2}. Therefore 

(~(t/n)" exp [ -  i t (#  + a 2 log n)] = 0(t) ~.(t), 
where 

C. (t) = {cos [n b2 (t/n)] - i sin [n bz (t/n)] } exp { - n b 1 (t/n) + r. 2 (t)} 

= {1 - inbz ( t /n  ) + r. 3 (t)} {1 - nb i (t/n) + r.4(t)}, 

Ir.3(t)t ~ C lnbz(t/n)t  z and  

Ir.4(t)l < C {[nbl (t/n)l 2 + Ir.z (t)[} exp {[nbl (t/n)[ + [r.z(t)[ }. 

Given 0 < A < a  1 we may choose 6 > 0  so small that  for all n and I t l<6n,  
[nbi(t/n)l + [r.z(t)[ < A  It[, and the proof is now easily completed. 

Let F. denote the distribution with characteristic function 4)(t/nl/~)" (in the 
case of L e m m a l )  or ~ ( t / n ) " e x p ( - i t ( # + a z l o g n ) )  (in the case of Lemma2) ,  
mad G the distribution with characteristic function q). Set A . = s u p  IF . ( x ) -G(x ) [ .  

X 
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The following result is easily deduced from Lemmas 1 and 2, and the smooth- 
ing inequality for characteristic functions; see [21, Theorem 2, p. i09]. The 
constant c appearing below is a little less than  that above. 

Lemma 3. There exist positive constants C, c and ~ such that under the con- 
ditions of Lemma 1 (note that this implies ~</~=<2 min(1, ~)), 

g n l / ~  

An< Cn S t -  i {!bl (t/nl/~)l + ]ba(t/nlj~)[} e-a~ at + O(n 1 -p/a), 
0 

and under the conditions of Lemma 2, 

8n 

A n < C S t -  1 {tnb~ (t/n)[ + fnb2(t/n)[ + tnb2(t/n)l 2} e -ct dt  
0 

+ 0 (n 1 - ~ + n-  1 (log n)2). 

Let 0(t) have the meaning it does in Lemmas 1 or 2, and set B(t)=t(1  
1 

- t) I0 (t)]- 1 if 0 < t < 1 ; 0 otherwise, and/~(x) = S e i~x B(t) d t. 
0 

Lemma 4. For any ~, 0 < ~ < 2 ,  we have sup]/~(x)t< c~ and ~ tB(x)Idx < oo. 
x - - o o  

Proof. We treat only the case of Lemma 1. It is Clear that /~ is bounded, and so 
it suffices to prove that I~(x)i=O(ix[ -~-~) as x---, oo, for some e>0. Integrating 
by parts we find that 

i 

B(x) =(i/x) ~ [1 - 2t + e t  ~- ~ (a 1 + ia2) ] exp [t~(aa + ia2) + i tx] dt. 
0 

Another integration by parts will prove that 

i 

.I (1 - 2 0 exp [t~(al + ia2) + i tx]  dt  = O(x -  ~). 
0 

To handle the remainder, note that if the complex valued function ~ is periodic 
of period 1 and satisfies 

1 

y l ~ ( t + h ) -  ~(t)[ dt = O(h ~) 
0 

1 

as h--*0, where 0 < e < l ,  then ~(t , )e~t~dt=O(x-~) .  (Apply the results of [22, 
0 

p. 46],) This condition is easily checked for e= min (0', l) and ~(t) 
=t  ~-1 exp[t~(ai+ia2)] on (0,1), extended by periodicity to ( - o %  c~). This 
completes the proof. 

Let ~,  denote the characteristic function of the distribution F n. 

Lemma 5. For any ~, 0 < ~ < 2, we have 

i {~,,(t)[~(t)3-~ - 1} (1 - t) dt ~ CA,. 
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Proqf Let {~,,m, m > 1} and {~,,, m > 1} be sequences of characteristic functions 
of variables with finite means, and having the property that ~,, ,~0~ and ~ , ~  
as m-~ oo. Let Gnm and G m be the respective distribution functions, Since G,m 
- G  m is integrable we may integrate by parts in the relation 

O3 

~ o ~ ( t ) -  O~(t) = .[ e "x d [ O . ~ ( x ) -  O~(x)], 
~ C O  

obtaining 

[lPnra(t ) -  ~m(t)] / i t  = -- ~ e itx [Gnm( X) -  Gm(X)] dx .  
- - 0 0  

Note also that B(t)=(2rc)-i ~ eitX~(x)dx, the bar denoting conjugation. 
- - C O  

Applying Parseval's equality to this pair of Fourier transforms we see that 

i ~ t-i[O~m(t)-O,~(t)] B(t) dt 
- - o o  

c O  

= ~ [Gnm(x)-Gm(X)]/B(x)dx, 
- - c O  

and letting m --, oo and applying Lemma 4 we may deduce Lemma 5. 
In order to apply the preceding lemmas we must derive suitable versions of 

the functions b~ and b 2. Note that S and D are functions of bounded variation 
on (a, oo) for any a>0 ,  and that we assume E(X~)=0 if 1 <c~<2. 

Lemma 6. Fix a>0 ,  and define bl by either of the formulae 

O0 cO 

b i ( t ) = - j ( 1 - c o s t x ) d S ( x )  or bl( t)=t j s in txS(x)dx ,  
a 17 

the last integral converging in the Riemann sense. 
cO CO 

(i) Assume j ID(x)I dx < 0% and set b2(t) = t j (1 - cos tx) D(x) dx. Then 
a 

t c ~  1 - -  6(t) = ~1 I [al + ~a2 sgn (t)] + b 1 (t) + ib2(t) + O(t 2) ~ 1 < c~ < 2, 
- ( I t I[a~+isgn(t)(-#+a210glt l )]+b~(t)+ib2(t)+O(t  2) /f c~=l, 

where ]a, a~ and a 2 are as in Sect. t. 
cO 

(ii) Assume 0 < a < l ,  and set b2(t)= j s intx dD(x). Then 
a 

1-4(t )=l t[~[al  +ia2 sgn(t)]+bz(t)+ib2(t)+O(lt[). 

Proof. Suppose t>0.  It is easily proved that for 0<c~<2 and either definition 
of bl, 

Rt[1 -~ ( t ) ]  =a~ t~+b~(t)+O(t2); 

for b 2 defined as in (i), 

(t) = ~ a2 ta + b2 (t) + 0 (t 3) if 1 < a < 2, 
- I m  ( - l a t + a 2 t l o g t + b 2 ( t ) + O ( t  3) if c~=l; 
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and for b 2 defined as in (ii), 

- Im ~o(t)=a2 t~ + b2(t) + O(t) 

if 0 < c~ < 1. Hence  the result. 

L e m m a  7. Assume 1 < c ~ < 2  and ~(IS[+]D[)dx<oo, 
o3 o3 a 

= t j sin tx S(x) dx and b2(t ) = t ~ (1 - cos tx) D(x) dx. Then 
a a 

and 

and define bl(t) 

nl/= t 

t-llba(t/nl/~)ie-Ctr n -3/~ j x2lD(x)Ldx+n - )D(x)ldx . 
0 0 

This result follows directly f rom the inequalities 

[bl(t)L<t 2 ~ xhS(x) ldx+t  IS(x)[dx, 
a n TM 

nl/~ 
[ba(t)l<t 3 j x21O(x)Ldx+2t ]D(x)[dx. 

a n TM 

L e m m a  8. Assume 0 < c ~ < 2  and S is monotone on (a, oo), and define b t ( t ) =  

- ~  (1-cos tx)dS(x) .  Then for any c > 0 ,  
a 

f nl/~ } 
~ l lbl  (t/nl/C~)l e Ct~ d t  ~ C l n - 2 / ~  ! x]S(x)]  dx-]-nl/~ x - l  [S(x)] dN-~-n-2]c~ ' 

and 
nt/c~ 

Proof The first inequali ty follows f rom the fact that  

dS(x t -1 e - " ~ [ 1 - c o s ( t x / n l / ~ ) ]  dt 

o3 o3 dt = n -1/~ ! S(x)dx J 0 e-Ct~ sin(tx/nl/~) +O(n-2/~) 

=1! x-1 S(x)dx j c~ct~- l e-Ct~[1-c~ +O(n-  2/") 

o3 
< C ~ x -  l JS(x)L min {1, (x/nl/") 2} dx+O(n  2/% 

a 
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To prove the second, observe that since the function f ( z )=z-2(cos  z - 1  +�89 2) 
does not change sign on (0, oo), and satisfies f ( z )>  C rain(l, z2), then 

! dS(x)i (1-t)E1- cos (tx/n1'~ at 

7 = f f (x /nl /9  dS(x) > C1 rain {1, (x/nl/~) 2} IdS(x)t 
a a 

( 1 _  ~)nl/~ 

>Cz  ( l - e )  -2n-z/~ S xZldS(x)] + IdS(x)l 
a (1--  ~:)n TM 

for any ee(O, �89 Choose e=e(n) in this range so that ( l - e ) n  u~ is a continuity 
point of S. Then the last written integral on the right hand side equals IS((1 

- ~) nU~)l > [S(nU~)l, while the first equals 

(1 - - e ) n l / ~  

2 I xlS(x)[dx-(1-e)enZ/~lS((1-s)nl/~)l+O(1)" 
17 

Therefore the lower bound is not less than 

(i 
e)n:, t~,  1 / a n - 2/~ 

and since e may be chosen arbitrarily close to zero, the proof is complete. 

Lemma 9. Assume 1 ~ c~ <2, D does not change sign on (a, c~), and ~ IDI dx < ~ .  

Define b2(t ) ~ t ~ (1 - cos tx) D(x) dx. Then 
a 

(1 +n-2 /">=C n -3/~ ~ x 2 t D ( x ) l d x + n  --1/c~ ~ ID(x)ldx �9 
t 0 n TM 

This result may be proved as above, with the function f replaced by f(z) 
1 

= ~ t(1 - t) (1 --cos tz) dt= z-  3 [z(cos z -  1 + �89 2 ) -  2(sin z - z  +~z3)]. 
O 

Lemma 10. Assume 0<c~<l  and D is monotone on (a, oo), and define b2(t ) 

= ~ sin tx dD(x). 77wn for any c > O, 
a 

t -  llb2(t/nU~)[ e-a~ dt 
0 

while 

< C  n -1/~ ~ IO(x)ldx+ x - l lD(x ) ldx+n  -al= , 
r i l l  o: 

(1- t )bz( t /n  ~/=) ~ C  n -~/= fo xldD(x)l +n~/= x-~ldD(x)l �9 
a n TM 
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Proof. The second inequality may be proved as in Lemma 8; we prove only the 
first. Now 

nl/~ [ 

[ba(t)l<t ! xdD(x) +. i~s in txdD(x) ,  

and 

~i~ sin tx dD(x) <=tn~/~lD(n~/~)] + t ,i~ D(x) cos t x dx , 

the last integral existing in the Riemann sense. Using the second mean value 
theorem we see that the last written term is dominated by 2]D(na/~')l. For 
O<t<n- ~/~ we may also estimate this term as follows: 

,1/~ cos tx dx <_ t- ~ ~ | cos tx dx t ~ D(x) _ t  ~ [D(x)Idx+t ~ D(x) 
n TM t 1 

t - t  

<t 5 ID(x)ldx+2lD(t-')l. 

Therefore 

Now, 

I,=- o I t 'Ibz(t/nl/~)le-~*=dt<C~n-*/= ! xdD(x)+ID(n'/=)I 

1 t -1  t 

1 t -1  1 

dt ~ ID(unl/~)t du+~ t-lID(nl/~/t)I dr=2 ~ x-lID(x)l dx, 
0 1 0 n TM 

and consequently 
( .,l~ } 

Integrating by parts and using the continuity point argument of Lemma 8 
completes the proof. 

Theorem 1 follows from Lemmas 1, 3, 6 and 7, the upper bound in Theo- 
rem 2 from Lemmas 1, 3, 6, 7 and 8, the first upper bound in Theorem 3 from 
Lemmas 2, 3, 6 and 7, the second from Lemmas 2, 3, 6, 7 and 8, and the upper 
bound in Theorem 4 from Lemmas 1, 3, 6, 8 and 10. Note that under condition 
(7), Ibz(OI=o([tt) in the case ~=1.  The lower bounds on A, are established in 
essentially the same way, employing Lemma 5 in place of Lemma 3, as well as 
the lower bounds from Lemmas 8, 9, and 10. The only unusual aspect is the 
need to prove that 

1 

.l Inbj(t/nl/~)IZdt<C(A,+~,), j = l  and 2, 
O 

where 3 , = n  -mi"(1,1/~-1), n 1-2/~ or n-1(log n) z, depending on the theorem to be 
proved. Let ~,  have the meaning it does in Lemma 5. Up to terms of order 6, 
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the quantities [nbl(t/nl/~)[ and Inbz(t/na/~)[ are dominated by CI4,.(t)-~,(t)l 
uniformly in 0 < t < 1, and so it suffices to show that 

1 

[~pn(t)-- 0(t)[ 2 dr<= CA.. 
0 

The left hand side is dominated by 

e o{ I~P.(t)-~(t)l 2e-'2dt=C o{ [f,,(x)-f(x)[ 2dx, 
oo  - - o 0  

where f,,, and f are the densities of the distributions with characteristic func- 
tions 0.(t)e -~t2 and r ~t2, respectively. Writing h for the standard normal 
density we see that 

[f.(x)-f(x)[= ~ [f,(y)-a(y)] h'(x-y) dy < CA,, 

and the proof is now easily completed. 

Acknowledgement. I am very grateful to a referee for his detailed and pertinent comments. 
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