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Summary. If Vn ~P(X=I<. . .<X ,~n )=I  and Vrc, n, P(X~ < . . .<X~ , )  

=P(Y=I < "" < Y,~.) then P(n -1.  [6(Y1)+ ... +6(I7,)] converges to cnts. law on 
R*)=P(n-I.Ea(Y1)+...+a(D3 converges to a cnts. law on R*). Thus if 
P(X=~ <. . .  <X~.) = (n ! ) -  lyre, n then n-  1 [6(X 0 + . . .  + 6(X,)] converges a.s. 
The main result here generalizes this: Let X~I ), X~2 ), ..., X(",) be the order 
statistics associated with X> Xz , . . . ,  X, .  Define random variables Z1, Z2, ... 
by {Z~=i}={X=X(" i )  }. Then if Z > Z 2 , Z 3 , . . .  are independent and 
P(Z~<i)<__i/n, and {Xi} is bounded, n -1 .  [6(X1)+ ... +6(X, ) l  converges a.s. 

w 1. Introduction 

Let X 1 , X  2 . . . .  be a sequence of real valued random variables such that P(X  i 
= X j ) = 0  Vi, j. Let X~i) be the ith order statistic among X 1 , . . . , X  ., i.e. 
{X~11, ..., X(", 1} ={X1,  ..., X,} and X~'I)<... <X(",) a.s. For convenience let X~o 1 
= -  oo and X(",,+ 11= + oo. Define a sequence Z >  Z2, ... such that Z ,  takes on 
only the values 1,2, 3, ..., n by letting {Z,= i}  ={X, =X~0  }. In other words, Z,  
indicates which of the n intervals , - t  , 1 n-x n-x ( - -  OO, X(1 ) ), (X(1) , X<2 ) ) , . . . ,  ( X ( n  - 1), 
+ oo)X, falls into. Let F z denote a(Z1, Z2, ...); equivalently F z is the a-algebra 
generated by the events {X i<Xf l ,  i , j = l , 2 , 3 , , . . .  This definition of the Z- 
process from a sequence X1,X2,  ... will be used throughout. 

The aim of this paper is to relate hypotheses on the distribution of 
Z 1 , Z  2 .. . .  to convergence of the empirical distributions n -1 .  [ 6 ( X 0 + . . . a ( X , ) ]  
as n~oo.  Throughout  6(x) will denote the point mass at x. The hypotheses on 
the distribution of Z I , Z  2 ....  may be given directly or in terms of the events 
{Xi < Xfl. 

Recent work on interval-dividing has centered on Kakutani 's  scheme, in 
which at each stage the longest remaining interval is divided according to a 
fixed [1] or random proportion [4, 5]. The results in the present paper seem 
quite distinct from these. In the Kakutani  scheme, the interval the ( n + l ) s t  
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point falls into is determined by the first n points, i.e. Z,,+~ ca(X~ . . . . .  X,). In 
Theorem 2 below, the Z~ wilt be assumed to form an independent sequence, so 
the (n+ 1)st point falls into an interval picked independently of the ordering of 
the first n points. These situations 

(Z,+ i ca(X1 . . . . .  X,,) and Zm~_i.[-a(Zi,...,Zn)cff(XI,...,Xn)) 

are of course not mutually exclusive but for the Kakutani scheme with the 
longest interval divided uniformly at each stage [5], the Z, are not an inde- 
pendent sequence (Z 2 and Z3 are not independent for example). 

In w it wilt be shown (Theorem 1) that the probability of the event 
{n -1 -[fi(Xi)+.. .  +(5(X,)] converges to a continuous law on R i} depends only 
on the numbers P(X~ <. . .  <X~.) for all n and permutations 7c of {1, 2, ...,n}. 
A corollary is that n -1 .[b(X1)+.. .  +~(X,)] converges a.s. if P(X.~ < . . . < X ~ . )  
=(n !)-1 for all zc and n. The familiar example of sequences X1, Xz, ... satisfying 
this condition, in addition to iid continuous sequences, is the exchangeable 
case (for which the Glivenko-Cantelli theorem is an immediate consequence of 
deFinetti's theorem.) A very different example is as follows: there exists a 
sequence XI, Xz, ... satisfying P(X~<...<X~.~)=(n!) -1 such that a.s. Xl, X2, ... 
is an enumeration of the rationals. 

Of course Theorem t "generalizes" the Kakutani scheme (or any scheme 
for which t i m n - t  [5(X1)+ ... + ~5(X,)] is known to be continuous). If X 1, X2, ... 
arise from the Kakutani scheme, and Yl, l~ . . . .  satisfy P(Y~ < . . . < Y J  
= P ( X ~ < . . . < X ~ )  then n~l[5(Y1)+...+/~(Y,)] converges almost surely. But 
the numbers P(X~ < ... < X ~ )  seem hard to compute (at least exactly) for the 
Kakutani scheme. 

Convergence to a possibly discontinuous law is discussed in w 3. Though, as 
examples show, the event {n -1. [6(X1)+ ... +6(X~)] converges to a law on R 1} 
is not in Fz, a sufficient condition for convergence based only on the events 
{X~ < X  j} can be found. Theorem 2 applies this condition to show that if {X~} 
is bounded and Z~, Z 2 . . . .  is an independent sequence with P(Z,  < i) <= i/n then 
n-l[~(X1)+...+g)(X,~)] converges a.s. This extends the P(X,~...X~,)=(n!) -1 
condition, for which P(Z,,Ni)= i/n. Some discussion of the limits obtained in 
Theorem 2 follows the proof. 

w The Continuous Limit Case 

The lemma below refers to a sequence of distinct reals, not random variables. 
Let x("~l be defined analogously to X(~), that is {x~l ) . . . . .  x~'nl } ={x 1 . . . .  ,x~} and 
x(1)<...~ <x~),~ �9 let X~o) ~ -- - oe and x"(,+1/-- +oo. For any set A let #~(A) denote 

lira n -1. ~ I(x~A) whenever the limit exists; here " I"  denotes "indicator 
n ~ e e  i= 1 

function of". 

Lemma 1. Let x i ,x2 , . . ,  be a sequence of distinct reals. Then n-l.[~5(xl) 
+ ... + ~5(x,,)] converges to a continuous law if and only !f 

(t) #~( - o% xk) exists for each k, and 
(2) max #~(x(~, x~+ t))~O as n ~ .  
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Proof  only if: Since the limit of n -1 .  [ ~ ( x 0 + . . . 6 ( x , ) ]  is a cont inuous law (call 

this limit law #), n - 1 .  ~ i ( x i e A  ) converges for every interval A, so (1) holds 
i = 1  

and each #oo(x(~/), x(~/+ 1)) is defined. Also #o~(A)=#(A) for every interval A. 
Assume that the max in (2) does not  converge to 0. Then  there must  exist 

e > 0  and a sequence of nested intervals A n of  the form (x(~),x(~+l) such that  
for all n, # (A, )>e .  (A compactness argument  shows that the intervals may  be 
chosen to be nested" Let  B n be the union of all intervals of the form 
[x(~), x(~+ 1)] such that  #(x("i) , x("i+ 1)) >e ;  adjoin • oo to compactify R. If the max 
in (2) is greater than e for all n, then each B n is nonempty.  Of course B n ~ B , +  1 
Vn. Choose x e ( ' ] B , .  Then xE[x("i,),x(~,,+l)] for some i,; pick the leftmost 

n 

interval if there is a choice of two. Then  A,=(x(~,), x("~n+ 1)) is a nested sequence 
with #(An)>e. ) Note  that  A n n { X l , X 2 , . . . , x n } =  ~. The only possibilities for 
~ A ,  are ~b, a singleton, or an interval. Since by countable additivity 

n 

# ( ~ A n ) > e ,  ("]An must be an interval. But [ ( ' ] A , ] ~ { X l , X 2 , . . . } = 4 ,  since 
n n m n 

A , ~ { x  i . . . . .  x,}=~b, so m -1 .  ~ I ( x i ~ ( ' ] A , ) = O  for every m, contradicting 
i ~ 1  n 

#((~ A , )>  e and establishing (2). 
n 

/f: Since the max in (2) converges to 0,#~o(x~l),x(",) ) converges to 1. Given e 
choose n such that  #~(X~l), x(",))> 1 -  ~/2. Since 

n n ~ n ?1 m -  1. - -  i(xi~(X(x),X(n)) ) #oo(X(1),X(n)) ' 
i = 1  

for m large enough m-  1. [6(x1) + . . .  + 3(x,,)] (x~l), x(",)) > 1 - 5. Thus {m- 1. [6(xl)  
+ ... +~(x,,)]} is a tight sequence. It suffices to show that #~o(-0% a) exists for 
every a. By (1), #~o(-oo,  a) exists when a ~ { x l ,  x 2 . . . .  }, so assume a(~{xl, x z . . . .  }, 
For  each n there exists i n such that x'~i~ < a <x("i, + ~). Since 

n ~ n n ( - ~ x(in~) ( - oo, a) ~ ( -- oe, x(i~+ ,)), #oo ( - ov, x(i~)) 

=< l im inf m-1 .  [6 (x 0 + . . .  + 6 (Xm) 7 (-- O% a) 
m ~ o o  

_< lim sup m-  1. [-6(xl ) + . . .  + 6(xm)] ( _ oo, a) <- #oo ( - 0% x'~i~ + ~). 

0(3  X n n n n Let n~og .  Then #oo( -  , (~n+~))-#o~(-oe, x(i,))=#o~(x(i,),x(i,+~))~O by con- 
dit ion (2)�9 So 

lira i n fm-  1. [c5(x1 +. . .6(x , , ) ]  ( -  0% a) 

= lira sup m-  1. [3 (x 1) + . . -  ~ (x,,)] ( - oQ, a) 
? n ~ o o  

and #oo( -  0% a) exists. This completes the proof  of the lemma. [ ]  

Now let Xa, X 2 . . . .  be a sequence of r andom variables with P ( X ~ = X j ) = O .  
Using L e m m a  1, the e v e n t  {n-a.[(~(X1)-I-. . .c~(Xn)] converges to a cont inuous 
law} can be shown to be measurable with respect to the o--algebra Fz, i.e. the 
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a-algebra generated by the events {X~<Xfi,  i, j = 1 , 2 ,  3, . , , .  This is done as 

follows: When condition (1) is written as {lim n -1- ~, I (X i<XK)  exists} then 
it is transparently Fz-measurable. ,~ 0o ~= t 

To see that condition (2) is/~z-measurable, note (as above) that # ~ ( -  o% Xk) 
is Fz-measurable. Now g ~ ( - o %  X~)) is also Fz-measurable, since 

co, x?0 = oo, I(X - 
k = l  

and I ( X k = X } ' O = U I ( X j < X  k iff j~A)  where the union is taken over all 
A 

A c { 1 , 2  . . . .  ,n} with i - 1  elements. Since #o~(X("mX(~+l))=#~(-oo, X~i+l)) 
-#~ ( - co ,X(~) )  this shows that condition (2) is Fz-measurable. A restatement 
of this fact is given in the theorem below. 

Theorem 1. Let X ~ , X  2 .. . .  and Y1, Y2 .. . .  be two sequences of random variables, 
such that P(X  i = Xj) = O, and P(X~ <.. .  < X~,) = P(Y~, <. . .  < Y~,) Jot every n and 
every permutation ~z of {1,2 .. . .  n}. 7hen P(n - z . [c~(X1)+ ... +c~(X,)] converges to 
a continuous law) = P(n- 1. [6(y  0 + . . .  3(Y,)] converges to a continuous law). 

The conclusion is immediate since the joint law of the random variables 
{I(X i < X  i)} i,j = 1, 2,... must equal that of {I(Y~ < }~)} i,j = 1, 2,... 

Corollary. Let X ~ , X 2 , . . .  be any sequence of random variables such that 
P ( X ~ < . . . < X ~ , ) = ( n ! )  -1 for all n and permutations ~z. 7hen n-l-[c~(X1)+. . .  
+ 6(X,)] converges almost surely to a continuous law. 

Proof Let Y~, Y2 .. . .  be any sequence of continuous iid random variables and 
apply the Glivenko-Cantelli theorem and Theorem 1 above. []  

Define the Komogorov-Smirnov statistic as sup lF,(x)-F(x)[ for any se- 
x 

quence X~ , X2 , . . .  such that the empirical distribution function n-~[6(X~) 
+ . . . 6 (X, ) ]  ( - c o ,  x ]=:F , (x)  converges to a (possibly random) distribution 
function F(x). This statistic can can be written as max [ j / n - # ~ ( - c o ,  X(]))] 

i-- l ,  . . . ,n  
j = i - -  l , i  

and hence is also Fz-measurable. So the distribution of the Kolmogorov- 
Smirnov statistic is the same for any sequence satisfying P ( X ~ < . . . < X ~ , )  
= (n !)- ~ as it is for an iid sequence of continuous random variables. 

w Possibly Discontinuous Limits 

The simple first example below shows that the event { n - l . [ 5 ( X ~ ) + . . .  6(X,)] 
converges to a law on R 1} is not an Fz-measurable event. 

Example 1. Let x l < x a < x 3 < , . ,  and yl < y z < y 3 < . . .  be two sequences of reals 
such that x , ~ x  < co and yn~ + ~ .  If X 1, X 2, X 3 . . . .  is a sequence of random 
variables such that P(X~=xiVi ) = 1/2=P(Xi  =yiVi) then P(Zi= i Vi)= 1. [-Recall 
the definition of the Z-process in w So F z is trivial, but {n- l - [6(X1)  
+ . . .  6(Xn)] converges to a law on R l} = {Xi=x~Yi} which has probability 1/2. 
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As the next example shows, the difficulty is not only in the escape of mass 
to infinity. 

Example 2. Let n(-) and m(-) be two increasing sequences of positive integers 
such that {n(k)}~= 1 and {m(]s 1 a r e  disjoint and have union {1,2,3,...}. 
Further assume that lira n(k)/k does not exist. Now let xz,x2,. . ,  be a sequence 

k-~ o(3 

of reals such that x,(1)<X,(z)<X,(3)<.., and x,,(~)>x,,(z)>Xm(3)>.., and such 
that limx,(k)=limx~(k~. Let Y~,Y2,... be a sequence with y,(~<y,,(2)<..., 

k ~  co k ~  o~ 

y~u)>y,,(2)>.., and lira y,(k)< lim Ym(k). If X D X  2 ... .  are random variables 
k ~ c o  k ~ c ~  

with P(X~ = x~ Yi) = 1/2 = P(X~ = y~ Y i), then each event {X i < Xj} has probability 
0 or 1. Each Z~ is a constant and iv z is the trivial a-algebra. But n ~. [6(X0 
+ . . .  + 6(X,)] converges (to 6(lira X,(k))) if and only if X~ = x~ Yi. 

There is another application for Example 2. Consider the sequence 

Yl,Y2 . . . .  given above. For each j ,m -1.  i I(yi<Y) converges as m-~oe, to 0 if 
i = 1  

j=n(k)  3k, and to 1 if j=m(k). But n-2.  [~(Yl)+-.. +6(y,)] does not converge. 
Thus condition (1) of Lemmal  is not sufficient for the convergence of 
n - 1  [6(yl)+. . .  + 6(y,)] even if {y~} is bounded. The purpose of the next lemma 
is to provide a sufficient condition for convergence to a possibly discontinuous 
law, based only on hypotheses on the ordering of the points. 

Lemma 2. Let x l , x 2 , x  3 . . . .  be distinct points in a bounded interval. Then I and 
II are equivalent. 

I. n -1-[cS(yO+...+cS(y.) ] converges to a law on R 1 for every bdd set {Yi} 
satisfying Yi < Y~ iff x i < xj. 

II. (1) lira n -1.  i I(x~<xk)=:#oo(--OO, Xk) exists for all Ic, 

and 

(3) lim n -1. i I(#~ ( - o e , x i ) < r  ) existsofor every rational r. 
r t~  co i = 1 

The only part of this lemma that will be applied in the sequel is II ~ I, i.e. 
that II, based only on the ordering of x~,x 2, ..., is sufficient for the con- 
vergence of n -1. [3(xO+.. .+6(x, )  ]. The equivalence of I and II shows that II 
is actually the best possible sufficient condition based only on ordering. 

Pf. I I ~ I .  It is enough to show that (1) and (3) imply the convergence of 
n- l . [6(Xl )+. . .+6(x , ) ] ,  since if (1) and (3) hold for x l , x2 , . . ,  then they must 
hold for any sequence Yl,Ya ... .  satisfying y~<yj iff x i < x  j. The assumption of 
boundedness has eliminated tightness considerations, so it suffices to prove 
that 

n - -  1 .  [ O ( X  1) -IW " "  + ~)(Xn)] ( - -  00,  a)  = n -  1 i l ( x i  <Z a) 
i = 1  

converges for each a. Assume, to the contrary, that for some a and rational r 

l imin fn - l "  i I(x~<a)<r<limsup n-~" i I(x~<a). 
n~ co i= 1 n~ ~ i= 1 
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If x~ < a, then 

SO 

If x k > a, then 

2=1  i = 1  

#~ ( - c~, xk) < lira inf n- 1. ~ I(xi < a) < r. 

n-1 i xlxi<xk ->_. -t 
i = i  i = 1  

SO 

# ~ ( -  co,xk)>--limsupn -1.  ~ I(xi<a)>r. 
n~oa  i = 1  

Hence xk<a iff g~ ( - -oe ,xk )<r  , and 

n-l" i I(x~<a) =n-l" i I ( # ~ ( -  ~176 
i = 1  i = 1  

But the righthand side converges by (3) and the left-hand side was assumed not 
to converge. The contradiction proves that II ~ I .  

1~II .  First assume that (1) fails to hold, i.e. for some xk, n -1. ~ I(xi<x k) 
i = 1  

does not converge. Let y~=xj if Xj>Xk, and yj=xj-~ if xj<x k. Then for any y 
in the interval (x k -  e, xk) , 

n -1. ~ I(yi<y)=-n -1" ~ I(x2<xk). 
i = 1  i = 1  

Since the right-hand side doesn't coflverge, {y: n-  ~- [5(y 1) + . . .  + ~(y.)] ( - oo, y) 
converges} cannot be dense and thus n -1 .  [6 (y l )+ . . .  + (5(y,)] cannot converge. 

Next assume that (1) holds but that (3) fails, i.e. for some r, n-1. ~ I(#~ 
/ = 1  

( - o o ,  x l )< r  doesn't converge. Let A={xk:g~(--oe, Xk)<r}, and let x denote 
the least upper bound of A. If Xk<X, then xkeA by the definition of x. If xk>x 
then XkCA. Also, no x k can equal x because for such an Xg, if i#k, x~<x k 

would hold iff xi~A iff # |  but n -1- ~ I(x2<xk) converges and 
2=1 n 

n - t .  ~ I(l~(--oo,xi)<r) doesn't. Hence xk<x iff x~eA iff #o:.(-oo, xk)<r. 

Now let yj = xj if xj > x and let yj = x j -  e, if x~ < x. Then n - t I(y~ < y) cannot 
i = 1  

converge for any ye(x-e,x), and as before, n-l.[~(yl)+...+b(y,)] cannot 
converge, contradicting I. 

The corollary in w 2 can be restated in terms of the Z-process as follows. 
Let X1,X2, ... be any sequence of random variables such that the correspond- 
ing Z,  are independent and uniform, i.e. P ( Z , = i ) =  1/n for i--1,2, ...,n. Then 



In te rva l -Div id ing  Processes  345 

n-  1. [6(X 0 + . . .  + 3(X,)] converges a.s. The main result of this section general- 
izes this result by applying Lemma 2. 

Theorem 2. Let X1 ,X2 , . . .  be random variables taking values in a bounded 
interval, with P(Xi=Xs)=O Vi,j. Assume that the corresponding Z 1 , Z  2 .... are 
independent and stochastically larger than uniform, i.e. P(Z,  < i) <= i/n, i = 1, 2 .... n. 
Then n-  1. [6(X 0 + . . .  + c~(X,)] converges a.s. 

Pf. The conclusion will follow by Lemma2 if it can be shown that 

n -1.  ~ I ( X i < X g  ) converges a.s. as n~oo  for each k, and n -1.  ~, I(#~o 
i = 1  i=l 

( - ~ , X ~ ) < r )  converges a.s. as n--,c~ for every rational r. The a.s. convergence 

of n-1.  ~ I(X~<X~) for each k is equivalent to the a.s. convergence, for each 
i = 1  

N and K < N  of m-1. ~ i(Xi <XNr))" Convergence will now be proved in this 
form. i= 1 

Fix N and K<=N. Let ~=I(XN+~<Xt~:)) and let S , = ~ 1 + ~ 2 + . . . + ~  ~. Now 
consider the event {Sn=d}. On this set d of the points XN+I, ..., ... XN+, must 

yN _ ~ N + ,  Thus be less than X~), so ~(/~)-~r 

P(~.+ 1 = 11S. = d) 
N+n =P(X.+u+ 1 <X~K)IS.=d)=P(X.+N+ , <X(~+K)IS.--d) 

--P(Z.+N+ 1 -< d + KIN. = d) 

by the definition of the Z-process. But S~ depends only on the values of 
ZN+I,ZN+ 2 .... and ZN+., all of which are independent of ZN+.+I. So 
P(Z.+N+ I Gd + K IS~ = d ) =  P(Z~+N+ I G d + K). The same reasoning shows that 

P(~.+ 1 = lIS1 --sl ,$2 =s2, " "  Sn-1 =Sn-- 1,S. =d) 

=P(Zn+N+ 1 ~ - ~ q -  K) 

and hence that {S,} is a Markov chain with 

i"(S.+ 1 = d +  I lS.=d)=P(Z.+N+ 1 <d + K). 
N o w  

and 

So 

E(s .§  ~lXl . . . . .  S.):E(S.+ ll8~) 

E(S,+ 1[S, = d)= E(Sn + in+ tlSn =d) = d + P(~,+ 1 = IIG =~) 

=d +P(Z ,+x+l  <=d+K)<-_d+(d+K)(n+N+l)  -1 

E((S,+ 1 + K ) ( n +  1 + N +  1)- llSn =d) 

< = [ d + ( d + K ) ( n + N + l )  - I + K ]  [ n + l + N + l ]  -1 

=(d + K) (n+ N + l) - t .  

This shows that ( S n + K ) ( n + N + I )  -1 is a supermartingale. (If the Z i were 
actually uniform it would be the martingale associated with a Polya urn.) Now 
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(n + N) - I  ~ I(X~ < XfK)) --- (n + N ) - I .  t(Xi < X~K) ) 
i = l  i 

N+n 1 
+ ~ I(X i < X[K)) | = (n + N ) - I .  [K - 1 + S,] 

N + I  .1 

which converges as n ~ c o  because the supermartingale ( n + N +  1)-~ . (S ,+K)  
does~ n 

The other step is to show the convergence of n -1.  ~ I (#~(-oo,Xi )<r) .  
i=1 

Let F, denote the a-algebra generated by Z,+I ,Z ,+2,Z,+3 .... and let T, 

= ~" I(#oo ( -  co, Xi) < r). Rewriting T, as ~ I(p~o(- co, X~0 ) < r) and noting that 
i = l  i = 1  

# |  X~i)) is F,-measurable shows that T, is F,-measurable. Also, E =  E+ 1 
u + l  

- :E  I(~( .+1 --co. X(o )<r)I(Z,+ ~ =i) since the term corresponding to the point 
i = 1  

X,+ 1 must be omitted in going from T,+ 1 to T,. Now 

E(T,15+ 1)= E(T,+ ~te.+ ,) 
n + l  

- ~ E(I(#o~(- co, ~.v"+l<r)l(Z.+(o 1 = i)IF~+ 1) 
i = 1  

n + l  

= g._ l -  ~ P(Z.+ l=i) I(~| l)<r), 
i = l  

since T,+, is F,+ 1-measurable, I(~uoo ( -  co, X~i- ~ *) < r) is F,+ 1-measurable, but 
Z.+ 1 is independent of F, + 1 = a(Z, + 2, Z ,  + >...). 

The random variables I(poo(-c~,X("O+-l)<r) are decreasing with i, since 

. . . .  (2) . . . . . . .  ( . + 1 )  

�9 Thus the weighted sum 

n + l  

E P(Z,+I = i) I(#~o(- co, X(~-~ 1) <r)  
i = 1  

is less than 
n+ 1 

Go X"+ 1~ <r) ~, ( n + l ) - ~ ' I ( # ~ (  - , (o , 
i = l  

since Z~+ 1 is stochastically larger than uniform. Using this inequality in the 
above expression for E ( ~  IF,,+ 1) produces 

n + l  

E(T.LF.+ ~)~ ~+1 -- ~ (n + 1)  - ~ .  I (p . ( - -  co, X~,[ ~) < r) 
i = 1  

= T,+ 1 - ( n  + 1) -~  �9 g ,+  ~ = n ( n +  l y  ~ �9 T~+~. 

Dividing by n, E(n- i ~,[/~+ 1) ~ ( n  + 1)- 1 rn + 1" Thus n -  1. T, is a reversed sub- 
martingale and must converge as n-§ [2, p. 333] which was to be 
shown. [] 
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Perhaps  T h e o r e m  2 as s tated does not  make  clear enough the lat i tude 
available in choosing the X i subject to holding the distr ibution of  the Z i fixed. 
Fo r  example,  the X i can be restricted to [0, 1] and then chosen to be the 
midpoin t  of the interval dictated by the Zi. If  Z 1 = 1, Z 2 = 1, Z 3 = 3 ,  Z 4 = 2 ,  the 
corresponding Xi obta ined  by following this scheme would be X 1-- 1/2, X a 
= 1/4, X 3 = 3/4, X 4 = 3/8. Of  course the midpoin t  can be replaced by any other  
p ropor t ion  or a point  chosen r andomly  in the interval. As long as 
Z 1, Z 2, Z 3 . . . .  are independent  and  P(Z n <j) <j/n, n- 1 [~(Xl)  + . . .  + c~(X~)] con- 
verges a lmost  surely. In fact the Xi need not  even be measurab le  functions and 
{n-  1. [(5(X 1) + - . .  + ~(X~)] converges} still contains a set of  probabi l i ty  i. 

I t  suffices, in T h e o r e m  2, to assume that  {X~} be bounded  above  a.s. (the 
a s y m m e t r y  arising because the Zi are assumed stochast ical ly larger than  uni- 
form). N o  mass  can escape to - o e  because # ~ ( - o e ,  X~l)) mus t  have a law 
stochastical ly smaller  than  Beta (1, n), the law in the uniform case. 

The  hypothesis  that  {X~} be bounded  above cannot  be dropped,  even if it is 
assumed that  P(Zn=i)<_A/n uniformly for some A > I .  This can be shown 
using a result of Dubins  and F reedman  [31. In these examples,  however,  EZ,,/n 
converges to a limit greater  than  �89 Perhaps  EZn/n--. �89 is Sufficient to guarantee  
the tightness of  {n-  1 [~(X 1) +-- -  + c~(Xn)]}. 
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