Interval-Dividing Processes

Sam Gutmann

Northeastern University, Dept. of Mathematics, 360 Huntington Avenue, Boston, MA 02115, USA

Abstract

Summary. If $\forall n \sum_{\pi} P\left(X_{\pi_{1}}<\ldots<X_{\pi_{n}}\right)=1$ and $\forall \pi, n, P\left(X_{\pi_{1}}<\ldots<X_{\pi_{n}}\right)$ $=P\left(Y_{\pi_{1}}<\ldots<Y_{\pi_{n}}\right)$ then $P\left(n^{-1} \cdot\left[\delta\left(Y_{1}\right)+\ldots+\delta\left(Y_{n}\right)\right]\right.$ converges to cnts. law on $\left.R^{1}\right)=P\left(n^{-1} \cdot\left[\delta\left(Y_{1}\right)+\ldots+\delta\left(Y_{n}\right)\right]\right.$ converges to a cnts. law on $\left.R^{1}\right)$. Thus if $P\left(X_{\pi_{1}}<\ldots<X_{\pi_{n}}\right)=(n!)^{-1} \forall \pi, n$ then $n^{-1}\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]$ converges a.s. The main result here generalizes this: Let $X_{(1)}^{n}, X_{(2)}^{n}, \ldots, X_{(n)}^{n}$ be the order statistics associated with $X_{1}, X_{2}, \ldots, X_{n}$. Define random variables Z_{1}, Z_{2}, \ldots by $\left\{Z_{n}=i\right\}=\left\{X_{n}=X_{(i)}^{n}\right\}$. Then if $Z_{1}, Z_{2}, Z_{3}, \ldots$ are independent and $P\left(Z_{n} \leqq i\right) \leqq i / n$, and $\left\{X_{i}\right\}$ is bounded, $n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]$ converges a.s.

§1. Introduction

Let X_{1}, X_{2}, \ldots be a sequence of real valued random variables such that $P\left(X_{i}\right.$ $\left.=X_{j}\right)=0 \forall i, j$. Let $X_{(i)}^{n}$ be the $i^{\text {th }}$ order statistic among X_{1}, \ldots, X_{n}, i.e. $\left\{X_{(1)}^{n}, \ldots, X_{(n)}^{n}\right\}=\left\{X_{1}, \ldots, X_{n}\right\}$ and $X_{(1)}^{n}<\ldots<X_{(n)}^{n}$ a.s. For convenience let $X_{(0)}^{n}$ $=-\infty$ and $X_{(n+1)}^{n}=+\infty$. Define a sequence Z_{1}, Z_{2}, \ldots such that Z_{n} takes on only the values $1,2,3, \ldots, n$ by letting $\left\{Z_{n}=i\right\}=\left\{X_{n}=X_{(i)}^{n}\right\}$. In other words, Z_{n} indicates which of the n intervals $\left(-\infty, X_{(1)}^{n-1}\right),\left(X_{(1)}^{n-1}, X_{(2)}^{n-1}\right), \ldots,\left(X_{(n-1)}^{n-1}\right.$, $+\infty) X_{n}$ falls into. Let F_{Z} denote $\sigma\left(Z_{1}, Z_{2}, \ldots\right)$; equivalently F_{Z} is the σ-algebra generated by the events $\left\{X_{i}<X_{j}\right\}, i, j=1,2,3, \ldots$. This definition of the Z process from a sequence X_{1}, X_{2}, \ldots will be used throughout.

The aim of this paper is to relate hypotheses on the distribution of Z_{1}, Z_{2}, \ldots to convergence of the empirical distributions $n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots \delta\left(X_{n}\right)\right]$ as $n \rightarrow \infty$. Throughout $\delta(x)$ will denote the point mass at x. The hypotheses on the distribution of Z_{1}, Z_{2}, \ldots may be given directly or in terms of the events $\left\{X_{i}<X_{j}\right\}$.

Recent work on interval-dividing has centered on Kakutani's scheme, in which at each stage the longest remaining interval is divided according to a fixed [1] or random proportion [4,5]. The results in the present paper seem quite distinct from these. In the Kakutani scheme, the interval the $(n+1) s t$
point falls into is determined by the first n points, i.e. $Z_{n+1} \subset \sigma\left(X_{1}, \ldots, X_{n}\right)$. In Theorem 2 below, the Z_{i} will be assumed to form an independent sequence, so the $(n+1)$ st point falls into an interval picked independently of the ordering of the first n points. These situations

$$
\left(Z_{n+1} \subset \sigma\left(X_{1}, \ldots, X_{n}\right) \quad \text { and } \quad Z_{n+1} \perp \sigma\left(Z_{1}, \ldots, Z_{n}\right) \subset \sigma\left(X_{1}, \ldots, X_{n}\right)\right)
$$

are of course not mutually exclusive but for the Kakutani scheme with the longest interval divided uniformly at each stage [5], the Z_{i} are not an independent sequence (Z_{2} and Z_{3} are not independent for example).

In $\S 2$ it will be shown (Theorem 1) that the probability of the event $\left\{n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]\right.$ converges to a continuous law on $\left.R^{1}\right\}$ depends only on the numbers $P\left(X_{\pi_{1}}<\ldots<X_{n_{n}}\right)$ for all n and permutations π of $\{1,2, \ldots, n\}$. A corollary is that $n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]$ converges a.s. if $P\left(X_{\pi_{1}}<\ldots<X_{\pi_{n}}\right)$ $=(n!)^{-1}$ for all π and n. The familiar example of sequences X_{1}, X_{2}, \ldots satisfying this condition, in addition to iid continuous sequences, is the exchangeable case (for which the Glivenko-Cantelli theorem is an immediate consequence of deFinetti's theorem.) A very different example is as follows: there exists a sequence X_{1}, X_{2}, \ldots satisfying $P\left(X_{\pi_{1}}<\ldots<X_{\pi_{n}}\right)=(n!)^{-1}$ such that a.s. X_{1}, X_{2}, \ldots is an enumeration of the rationals.

Of course Theorem 1 "generalizes" the Kakutani scheme (or any scheme for which $\lim n^{-1}\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]$ is known to be continuous). If X_{1}, X_{2}, \ldots arise from the Kakutani scheme, and Y_{1}, Y_{2}, \ldots satisfy $P\left(Y_{\pi_{1}}<\ldots<Y_{\pi_{n}}\right)$ $=P\left(X_{\pi_{1}}<\ldots<X_{\pi_{n}}\right)$ then $n^{-1}\left[\delta\left(Y_{1}\right)+\ldots+\delta\left(Y_{n}\right)\right]$ converges almost surely. But the numbers $P\left(X_{\pi_{1}}<\ldots<X_{\pi_{n}}\right)$ seem hard to compute (at least exactly) for the Kakutani scheme.

Convergence to a possibly discontinuous law is discussed in §3. Though, as examples show, the event $\left\{n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]\right.$ converges to a law on $\left.R^{1}\right\}$ is not in F_{Z}, a sufficient condition for convergence based only on the events $\left\{X_{i}<X_{j}\right\}$ can be found. Theorem 2 applies this condition to show that if $\left\{X_{i}\right\}$ is bounded and Z_{1}, Z_{2}, \ldots is an independent sequence with $P\left(Z_{n} \leqq i\right) \leqq i / n$ then $n^{-1}\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]$ converges a.s. This extends the $P\left(X_{n_{1}} \ldots X_{n_{n}}\right)=(n!)^{-1}$ condition, for which $P\left(Z_{n} \leqq i\right)=i / n$. Some discussion of the limits obtained in Theorem 2 follows the proof.

§2. The Continuous Limit Case

The lemma below refers to a sequence of distinct reals, not random variables. Let $x_{(i)}^{n}$ be defined analogously to $X_{(i)}^{n}$, that is $\left\{x_{(1)}^{n}, \ldots, x_{(n)}^{n}\right\}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $x_{(1)}^{n}<\ldots<x_{(n)}^{n} ;$ let $x_{(0)}^{n}=-\infty$ and $x_{(n+1)}^{n}=+\infty$. For any set A let $\mu_{\infty \infty}(A)$ denote $\lim _{n \rightarrow \infty} n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i} \in A\right)$ whenever the limit exists; here "I" denotes "indicator function of".

Lemma 1. Let x_{1}, x_{2}, \ldots be a sequence of distinct reals. Then $n^{-1} \cdot\left[\delta\left(x_{1}\right)\right.$ $\left.+\ldots+\delta\left(x_{n}\right)\right]$ converges to a continuous law if and only if
(1) $\mu_{\infty}\left(-\infty, x_{k}\right)$ exists for each k, and
(2)

$$
\max _{i=0,1, \ldots, n} \mu_{\infty}\left(x_{(i)}^{n}, x_{(i+1)}^{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Proof. only if: Since the limit of $n^{-1} \cdot\left[\delta\left(x_{1}\right)+\ldots \delta\left(x_{n}\right)\right]$ is a continuous law (call this limit law μ), $n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i} \in A\right.$) converges for every interval A, so (1) holds and each $\mu_{\infty}\left(x_{(i)}^{n}, x_{(i+1)}^{n}\right)$ is defined. Also $\mu_{\infty}(A)=\mu(A)$ for every interval A.

Assume that the max in (2) does not converge to 0 . Then there must exist $\varepsilon>0$ and a sequence of nested intervals A_{n} of the form $\left(x_{\left(i_{n}\right)}^{n}, x_{\left(i_{n}+1\right.}^{n}\right)$ such that for all $n, \mu\left(A_{n}\right)>\varepsilon$. (A compactness argument shows that the intervals may be chosen to be nested: Let B_{n} be the union of all intervals of the form $\left[x_{(i)}^{n}, x_{(i+1)}^{n}\right]$ such that $\mu\left(x_{(i)}^{n}, x_{(i+1)}^{n}\right)>\varepsilon$; adjoin $\pm \infty$ to compactify R. If the max in (2) is greater than ε for all n, then each B_{n} is nonempty. Of course $B_{n} \supset B_{n+1}$ $\forall n$. Choose $x \in \bigcap_{n} B_{n}$. Then $x \in\left[x_{\left(i_{n}\right)}^{n}, x_{\left(i_{n}+1\right)}^{n}\right]$ for some i_{n}; pick the leftmost interval if there is a choice of two. Then $A_{n}=\left(x_{\left(i_{n}\right)}^{n}, x_{\left(i_{n}+1\right)}^{n}\right)$ is a nested sequence with $\mu\left(A_{n}\right)>\varepsilon$.) Note that $A_{n} \cap\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=\phi$. The only possibilities for $\bigcap_{n} A_{n}$ are ϕ, a singleton, or an interval. Since by countable additivity $\mu\left(\bigcap_{n} A_{n}\right) \geqq \varepsilon, \bigcap_{n} A_{n}$ must be an interval. But $\left[\bigcap_{n} A_{n}\right] \cap\left\{x_{1}, x_{2}, \ldots\right\}=\phi$ since $A_{n} \cap\left\{x_{1}, \ldots, x_{n}\right\}=\phi$, so $m^{-1} \cdot \sum_{i=1}^{m} I\left(x_{i} \in \bigcap_{n} A_{n}\right)=0 \quad$ for every m, contradicting $\mu\left(\bigcap_{n} A_{n}\right) \geqq \varepsilon$ and establishing (2).
if: Since the max in (2) converges to $0, \mu_{\infty}\left(x_{(1)}^{n}, x_{(n)}^{n}\right)$ converges to 1 . Given ε choose n such that $\mu_{\infty}\left(x_{(1)}^{n}, x_{(n)}^{n}\right)>1-\varepsilon / 2$. Since

$$
m^{-1} \cdot \sum_{i=1}^{m} I\left(x_{i} \in\left(x_{(1)}^{n}, x_{(n)}^{n}\right)\right) \rightarrow \mu_{\infty}\left(x_{(1)}^{n}, x_{(n)}^{n}\right),
$$

for m large enough $m^{-1} \cdot\left[\delta\left(x_{1}\right)+\ldots+\delta\left(x_{m}\right)\right]\left(x_{(1)}^{n}, x_{(n)}^{n}\right)>1-\varepsilon$. Thus $\left\{m^{-1} \cdot\left[\delta\left(x_{1}\right)\right.\right.$ $\left.\left.+\ldots+\delta\left(x_{m}\right)\right]\right\}$ is a tight sequence. It suffices to show that $\mu_{\infty}(-\infty, a)$ exists for every a. By (1), $\mu_{\infty}(-\infty, a)$ exists when $a \in\left\{x_{1}, x_{2}, \ldots\right\}$, so assume $a \notin\left\{x_{1}, x_{2}, \ldots\right\}$. For each n there exists i_{n} such that $x_{\left(i_{n}\right)}^{n}<a<x_{\left(i_{n+1}\right)}^{n}$. Since

$$
\begin{aligned}
& \left(-\infty, x_{\left(i_{n}\right)}^{n}\right) \subset(-\infty, a) \subset\left(-\infty, x_{\left(i_{n+1}\right)}^{n}\right), \mu_{\infty}\left(-\infty, x_{\left(i_{n}\right)}^{n}\right) \\
& \leqq \liminf _{m \rightarrow \infty} m^{-1} \cdot\left[\delta\left(x_{1}\right)+\ldots+\delta\left(x_{m}\right)\right](-\infty, a) \\
& \leqq \limsup _{m \rightarrow \infty} m^{-1} \cdot\left[\delta\left(x_{1}\right)+\ldots+\delta\left(x_{m}\right)\right](-\infty, a) \leqq \mu_{\infty}\left(-\infty, x_{\left(i_{n+1}\right)}^{n}\right) .
\end{aligned}
$$

Let $n \rightarrow \infty$. Then $\mu_{\infty}\left(-\infty, x_{\left(i_{n+1}\right)}^{n}\right)-\mu_{\infty}\left(-\infty, x_{\left(i_{n}\right)}^{n}\right)=\mu_{\infty}\left(x_{\left(i_{n}\right)}^{n}, x_{\left(i_{n+1}\right)}^{n}\right) \rightarrow 0$ by condition (2). So

$$
\begin{aligned}
& \liminf _{m \rightarrow \infty} m^{-1} \cdot\left[\delta\left(x_{1}+\ldots \delta\left(x_{m}\right)\right](-\infty, a)\right. \\
& \quad=\limsup _{m \rightarrow \infty} m^{-1} \cdot\left[\delta\left(x_{1}\right)+\ldots \delta\left(x_{m}\right)\right](-\infty, a)
\end{aligned}
$$

and $\mu_{\infty}(-\infty, a)$ exists. This completes the proof of the lemma.
Now let X_{1}, X_{2}, \ldots be a sequence of random variables with $P\left(X_{i}=X_{j}\right)=0$. Using Lemma 1 , the event $\left\{n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots \delta\left(X_{n}\right)\right]\right.$ converges to a continuous law\} can be shown to be measurable with respect to the σ-algebra F_{Z}, i.e. the
σ-algebra generated by the events $\left\{X_{i}<X_{j}\right\}, i, j=1,2,3, \ldots$ This is done as follows: When condition (1) is written as $\left\{\lim _{n \rightarrow \infty} n^{-1} \cdot \sum_{i=1}^{n} I\left(X_{i}<X_{K}\right)\right.$ exists $\}$ then it is transparently F_{Z}-measurable.

To see that condition (2) is F_{Z}-measurable, note (as above) that $\mu_{\infty}\left(-\infty, X_{k}\right)$ is F_{Z}-measurable. Now $\mu_{\infty}\left(-\infty, X_{(i)}^{n}\right)$ is also F_{Z}-measurable, since

$$
\mu_{\infty}\left(-\infty, X_{(i)}^{n}\right)=\sum_{k=1}^{n} \mu_{\infty}\left(-\infty, X_{k}\right) \cdot I\left(X_{k}=X_{(i)}^{n}\right)
$$

and $I\left(X_{k}=X_{(i)}^{n}\right)=\bigcup_{A} I\left(X_{j}<X_{k}\right.$ iff $\left.j \in A\right)$ where the union is taken over all $A \subset\{1,2, \ldots, n\}$ with $i-1$ elements. Since $\mu_{\infty}\left(X_{(i)}^{n}, X_{(i+1)}^{n}\right)=\mu_{\infty}\left(-\infty, X_{(i+1)}^{n}\right)$ $-\mu_{\infty}\left(-\infty, X_{(i)}^{n}\right)$ this shows that condition (2) is F_{Z}-measurable. A restatement of this fact is given in the theorem below.
Theorem 1. Let X_{1}, X_{2}, \ldots and Y_{1}, Y_{2}, \ldots be two sequences of random variables, such that $P\left(X_{i}=X_{j}\right)=0$, and $P\left(X_{\pi_{1}}<\ldots<X_{\pi_{n}}\right)=P\left(Y_{\pi_{1}}<\ldots<Y_{\pi_{n}}\right)$ for every n and every permutation π of $\{1,2, \ldots n\}$. Then $P\left(n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]\right.$ converges to a continuous law $)=P\left(n^{-1} \cdot\left[\delta\left(Y_{1}\right)+\ldots \delta\left(Y_{n}\right)\right]\right.$ converges to a continuous law).

The conclusion is immediate since the joint law of the random variables $\left\{I\left(X_{i}<X_{j}\right)\right\} i, j=1,2, \ldots$ must equal that of $\left\{I\left(Y_{i}<Y_{j}\right)\right\} i, j=1,2, \ldots$
Corollary. Let X_{1}, X_{2}, \ldots be any sequence of random variables such that $P\left(X_{\pi_{1}}<\ldots<X_{\pi_{n}}\right)=(n!)^{-1}$ for all n and permutations π. Then $n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots\right.$ $\left.+\delta\left(X_{n}\right)\right]$ converges almost surely to a continuous law.
Proof. Let Y_{1}, Y_{2}, \ldots be any sequence of continuous iid random variables and apply the Glivenko-Cantelli theorem and Theorem 1 above.

Define the Komogorov-Smirnov statistic as $\sup \left|F_{n}(x)-F(x)\right|$ for any sequence X_{1}, X_{2}, \ldots such that the empirical distribution function $n^{-1}\left[\delta\left(X_{1}\right)\right.$ $\left.+\ldots \delta\left(X_{n}\right)\right](-\infty, x]=: F_{n}(x)$ converges to a (possibly random) distribution function $F(x)$. This statistic can can be written as max $\left|j / n-\mu_{\infty}\left(-\infty, X_{(i)}^{n}\right)\right|$ $i-1, \ldots, n$
$j=i-1, i$
and hence is also F_{Z}-measurable. So the distribution of the KolmogorovSmirnov statistic is the same for any sequence satisfying $P\left(X_{\pi_{1}}<\ldots<X_{\pi_{n}}\right)$ $=(n!)^{-1}$ as it is for an iid sequence of continuous random variables.

§3. Possibly Discontinuous Limits

The simple first example below shows that the event $\left\{n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots \delta\left(X_{n}\right)\right]\right.$ converges to a law on R^{1} \} is not an F_{Z}-measurable event.
Example 1. Let $x_{1}<x_{2}<x_{3}<\ldots$ and $y_{1}<y_{2}<y_{3}<\ldots$ be two sequences of reals such that $x_{n} \rightarrow x<\infty$ and $y_{n} \rightarrow+\infty$. If $X_{1}, X_{2}, X_{3}, \ldots$ is a sequence of random variables such that $P\left(X_{i}=x_{i} \forall i\right)=1 / 2=P\left(X_{i}=y_{i} \forall i\right)$ then $P\left(Z_{i}=i \forall i\right)=1$. [Recall the definition of the Z-process in §1.] So F_{Z} is trivial, but $\left\{n^{-1} \cdot\left[\delta\left(X_{1}\right)\right.\right.$ $\left.+\ldots \delta\left(X_{n}\right)\right]$ converges to a law on $\left.R^{1}\right\}=\left\{X_{i}=x_{i} \forall i\right\}$ which has probability $1 / 2$.

As the next example shows, the difficulty is not only in the escape of mass to infinity.

Example 2. Let $n(\cdot)$ and $m(\cdot)$ be two increasing sequences of positive integers such that $\{n(k)\}_{k=1}^{\infty}$ and $\{m(k)\}_{k=1}^{\infty}$ are disjoint and have union $\{1,2,3, \ldots\}$. Further assume that $\lim _{k \rightarrow \infty} n(k) / k$ does not exist. Now let x_{1}, x_{2}, \ldots be a sequence

$$
k \rightarrow \infty
$$

of reals such that $x_{n(1)}<x_{n(2)}<x_{n(3)}<\ldots$ and $x_{m(1)}>x_{m(2)}>x_{m(3)}>\ldots$ and such that $\lim _{k \rightarrow \infty} x_{n(k)}=\lim _{k \rightarrow \infty} x_{m(k)}$. Let y_{1}, y_{2}, \ldots be a sequence with $y_{n(1)}<y_{n(2)}<\ldots$, $y_{m(1)}>y_{m(2)}>\ldots$ and $\lim _{k \rightarrow \infty} y_{n(k)}<\lim _{k \rightarrow \infty} y_{m(k)}$. If X_{1}, X_{2}, \ldots are random variables with $P\left(X_{i}=x_{i} \forall i\right)=1 / 2=P\left(X_{i}=y_{i} \forall i\right)$, then each event $\left\{X_{i}<X_{j}\right\}$ has probability 0 or 1 . Each Z_{i} is a constant and F_{Z} is the trivial σ-algebra. But $n^{-1} \cdot\left[\delta\left(X_{1}\right)\right.$ $\left.+\ldots+\delta\left(X_{n}\right)\right]$ converges (to $\delta\left(\lim x_{n(k)}\right)$) if and only if $X_{i}=x_{i} \forall i$.

There is another application for Example 2. Consider the sequence y_{1}, y_{2}, \ldots given above. For each $j, m^{-1} \cdot \sum_{i=1}^{m} I\left(y_{i}<y_{j}\right)$ converges as $m \rightarrow \infty$, to 0 if $j=n(k) \exists k$, and to 1 if $j=m(k)$. But $n^{-1} \cdot\left[\delta\left(y_{1}\right)+\ldots+\delta\left(y_{n}\right)\right]$ does not converge. Thus condition (1) of Lemma 1 is not sufficient for the convergence of $n^{-1} \cdot\left[\delta\left(y_{1}\right)+\ldots+\delta\left(y_{n}\right)\right]$ even if $\left\{y_{i}\right\}$ is bounded. The purpose of the next lemma is to provide a sufficient condition for convergence to a possibly discontinuous law, based only on hypotheses on the ordering of the points.

Lemma 2. Let $x_{1}, x_{2}, x_{3}, \ldots$ be distinct points in a bounded interval. Then I and Π are equivalent.
I. $n^{-1} \cdot\left[\delta\left(y_{1}\right)+\ldots+\delta\left(y_{n}\right)\right]$ converges to a law on R^{1} for every bdd set $\left\{y_{i}\right\}$ satisfying $y_{i}<y_{j}$ iff $x_{i}<x_{j}$.
II. (1) $\lim _{n \rightarrow \infty} n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<x_{k}\right)=: \mu_{\infty}\left(-\infty, x_{k}\right)$ exists for all k, and
(3) $\lim _{n \rightarrow \infty} n^{-1} \cdot \sum_{i=1}^{n} I\left(\mu_{\infty}\left(-\infty, x_{i}\right)<r\right)$ exists for every rational r.

The only part of this lemma that will be applied in the sequel is $I I \Rightarrow I$, i.e. that II, based only on the ordering of x_{1}, x_{2}, \ldots, is sufficient for the convergence of $n^{-1} \cdot\left[\delta\left(x_{1}\right)+\ldots+\delta\left(x_{n}\right)\right]$. The equivalence of I and II shows that II is actually the best possible sufficient condition based only on ordering.
Pf. $H \Rightarrow I$. It is enough to show that (1) and (3) imply the convergence of $n^{-1} \cdot\left[\delta\left(x_{1}\right)+\ldots+\delta\left(x_{n}\right)\right]$, since if (1) and (3) hold for x_{1}, x_{2}, \ldots then they must hold for any sequence y_{1}, y_{2}, \ldots satisfying $y_{i}<y_{j}$ iff $x_{i}<x_{j}$. The assumption of boundedness has eliminated tightness considerations, so it suffices to prove that

$$
n^{-1} \cdot\left[\delta\left(x_{1}\right)+\ldots+\delta\left(x_{n}\right)\right](-\infty, a)=n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<a\right)
$$

converges for each a. Assume, to the contrary, that for some a and rational r

$$
\liminf _{n \rightarrow \infty} n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<a\right)<r<\underset{n \rightarrow \infty}{\limsup } n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<a\right) .
$$

If $x_{k}<a$, then

$$
n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<x_{k}\right) \leqq n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<a\right)
$$

so

$$
\mu_{\infty}\left(-\infty, x_{k}\right) \leqq \operatorname{liminff}_{n \rightarrow \infty} n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<a\right)<r .
$$

If $x_{k} \geqq a$, then
so

$$
n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<x_{k}\right) \geqq n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<a\right)
$$

$$
\mu_{\infty}\left(-\infty, x_{k}\right) \geqq \limsup _{n \rightarrow \infty} n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<a\right)>r .
$$

Hence $x_{k}<a$ iff $\mu_{\infty}\left(-\infty, x_{k}\right)<r$, and

$$
n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<a\right) \equiv n^{-1} \cdot \sum_{i=1}^{n} I\left(\mu_{\infty}\left(-\infty, x_{i}\right)<r\right)
$$

But the righthand side converges by (3) and the left-hand side was assumed not to converge. The contradiction proves that $\mathrm{II} \Rightarrow \mathrm{I}$.
$I \Rightarrow I I$. First assume that (1) fails to hold, i.e. for some $x_{k}, n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<x_{k}\right)$ does not converge. Let $y_{j}=x_{j}$ if $x_{j} \geqq x_{k}$, and $y_{j}=x_{j}-\varepsilon$ if $x_{j}<x_{k}$. Then for any y in the interval $\left(x_{k}-\varepsilon, x_{k}\right)$,

$$
n^{-1} \cdot \sum_{i=1}^{n} I\left(y_{i}<y\right) \equiv n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<x_{k}\right)
$$

Since the right-hand side doesn't converge, $\left\{y: n^{-1} \cdot\left[\delta\left(y_{1}\right)+\ldots+\delta\left(y_{n}\right)\right](-\infty, y)\right.$ converges $\}$ cannot be dense and thus $n^{-1} \cdot\left[\delta\left(y_{1}\right)+\ldots+\delta\left(y_{n}\right)\right]$ cannot converge.

Next assume that (1) holds but that (3) fails, i.e. for some $r, n^{-1} \cdot \sum_{i=1}^{n} I\left(\mu_{\infty}\right.$ $\left(-\infty, x_{i}\right)<r$ doesn't converge. Let $A=\left\{x_{k}: \mu_{\infty}\left(-\infty, x_{k}\right)<r\right\}$, and let x denote the least upper bound of A. If $x_{k}<x$, then $x_{k} \in A$ by the definition of x. If $x_{k}>x$ then $x_{k} \notin A$. Also, no x_{k} can equal x because for such an x_{k}, if $i \neq k, x_{i}<x_{k}$ would hold iff $x_{i} \in A$ iff $\mu_{\infty}\left(-\infty, x_{i}\right)<r$; but $n^{-1} \cdot \sum_{i=1}^{n} I\left(x_{i}<x_{k}\right)$ converges and $n^{-1} \cdot \sum_{i=1}^{n} I\left(\mu_{\infty}\left(-\infty, x_{i}\right)<r\right)$ doesn't. Hence $x_{k}<x$ iff $x_{k} \in A$ iff $\mu_{\infty}\left(-\infty, x_{k}\right)<r$. Now let $y_{j}=x_{j}$ if $x_{j}>x$ and let $y_{j}=x_{j}-\varepsilon$ if $x_{j}<x$. Then $n^{-1} \sum_{i=1}^{n} I\left(y_{i}<y\right)$ cannot converge for any $y \in(x-\varepsilon, x)$, and as before, $n^{-1} \cdot\left[\delta\left(y_{1}\right)+\ldots+\delta\left(y_{n}\right)\right]$ cannot converge, contradicting I.

The corollary in $\S 2$ can be restated in terms of the Z-process as follows. Let X_{1}, X_{2}, \ldots be any sequence of random variables such that the corresponding Z_{n} are independent and uniform, i.e. $P\left(Z_{n}=i\right)=1 / n$ for $i=1,2, \ldots, n$. Then
$n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]$ converges a.s. The main result of this section generalizes this result by applying Lemma 2.
Theorem 2. Let X_{1}, X_{2}, \ldots be random variables taking values in a bounded interval, with $P\left(X_{i}=X_{j}\right)=0 \forall i, j$. Assume that the corresponding Z_{1}, Z_{2}, \ldots are independent and stochastically larger than uniform, i.e. $P\left(Z_{n} \leqq i\right) \leqq i / n, i=1,2, \ldots n$. Then $n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]$ converges a.s.
Pf. The conclusion will follow by Lemma 2 if it can be shown that $n^{-1} \cdot \sum_{i=1}^{n} I\left(X_{i}<X_{k}\right)$ converges a.s. as $n \rightarrow \infty$ for each k, and $n^{-1} \cdot \sum_{i=1}^{n} I\left(\mu_{\infty}\right.$ $\left.\left(-\infty, X_{i}\right)<r\right)$ converges a.s. as $n \rightarrow \infty$ for every rational r. The a.s. convergence of $n^{-1} \cdot \sum_{i=1}^{n} I\left(X_{i}<X_{k}\right)$ for each k is equivalent to the a.s. convergence, for each N and $K \leqq N$ of $m^{-1} \cdot \sum_{i=1}^{m} I\left(X_{i}<X_{(K)}^{N}\right)$. Convergence will now be proved in this form.

Fix N and $K \leqq N$. Let $\xi_{i}=I\left(X_{N+i}<X_{(K)}^{N}\right)$ and let $S_{n}=\xi_{1}+\xi_{2}+\ldots+\xi_{n}$. Now consider the event $\left\{S_{n}=\ell\right\}$. On this set ℓ of the points $X_{N+1}, \ldots, \ldots X_{N+n}$ must be less than $X_{(K)}^{N}$, so $X_{(K)}^{N}=X_{(\ell+K)}^{N+n}$. Thus

$$
\begin{aligned}
P\left(\xi_{n+1}\right. & \left.=1 \mid S_{n}=\ell\right) \\
& =P\left(X_{n+N+1}<X_{(K)}^{N} \mid S_{n}=\ell\right)=P\left(X_{n+N+1}<X_{(\ell+K)}^{N+n} \mid S_{n}=\ell\right) \\
& =P\left(Z_{n+N+1} \leqq \ell+K \mid S_{n}=\ell\right)
\end{aligned}
$$

by the definition of the Z-process. But S_{n} depends only on the values of Z_{N+1}, Z_{N+2}, \ldots and Z_{N+n}, all of which are independent of Z_{N+n+1}. So $P\left(Z_{n+N+1} \leqq \ell+K \mid S_{n}=\ell\right)=P\left(Z_{n+N+1} \leqq \ell+K\right)$. The same reasoning shows that

$$
\begin{aligned}
& P\left(\xi_{n+1}=1 \mid S_{1}=s_{1}, S_{2}=s_{2}, \ldots S_{n-1}=s_{n-1}, S_{n}=\ell\right) \\
& \quad=P\left(Z_{n+N+1} \leqq \ell+K\right)
\end{aligned}
$$

and hence that $\left\{S_{n}\right\}$ is a Markov chain with

$$
P\left(S_{n+1}=\ell+1 \mid S_{n}=\ell\right)=P\left(Z_{n+N+1} \leqq \ell+K\right)
$$

Now

$$
E\left(S_{n+1} \mid S_{1}, \ldots, S_{n}\right)=E\left(S_{n+1} \mid S_{n}\right)
$$

and

$$
\begin{aligned}
E\left(S_{n+1} \mid S_{n}=\ell\right) & =E\left(S_{n}+\xi_{n+1} \mid S_{n}=\ell\right)=\ell+P\left(\xi_{n+1}=1 \mid S_{n}=\ell\right) \\
& =\ell+P\left(Z_{n+N+1} \leqq \ell+K\right) \leqq \ell+(\ell+K)(n+N+1)^{-1}
\end{aligned}
$$

So

$$
\begin{aligned}
& E\left(\left(S_{n+1}+K\right)(n+1+N+1)^{-1} \mid S_{n}=\ell\right) \\
& \quad \leqq\left[\ell+(\ell+K)(n+N+1)^{-1}+K\right][n+1+N+1]^{-1} \\
& \quad=(\ell+K)(n+N+1)^{-1} .
\end{aligned}
$$

This shows that $\left(S_{n}+K\right)(n+N+1)^{-1}$ is a supermartingale. (If the Z_{i} were actually uniform it would be the martingale associated with a Polya urn.) Now

$$
\begin{aligned}
(n+N)^{-1} & \cdot \sum_{i=1}^{n+N} I\left(X_{i}<X_{(K)}^{N}\right)=(n+N)^{-1} \cdot\left[\sum_{i=1}^{N} I\left(X_{i}<X_{(K)}^{N}\right)\right. \\
& \left.+\sum_{N+1}^{N+n} I\left(X_{i}<X_{(K)}^{N}\right)\right]=(n+N)^{-1} \cdot\left[K-1+S_{n}\right]
\end{aligned}
$$

which converges as $n \rightarrow \infty$ because the supermartingale $(n+N+1)^{-1} \cdot\left(S_{n}+K\right)$ does.

The other step is to show the convergence of $n^{-1} \cdot \sum_{i=1}^{n} I\left(\mu_{\infty}\left(-\infty, X_{i}\right)<r\right)$. Let F_{n} denote the σ-algebra generated by $Z_{n+1}, Z_{n+2}, Z_{n+3}, \ldots$ and let T_{n} $=\sum_{i=1}^{n} I\left(\mu_{\infty}\left(-\infty, X_{i}\right)<r\right)$. Rewriting T_{n} as $\sum_{i=1}^{n} I\left(\mu_{\infty}\left(-\infty, X_{(i)}^{n}\right)<r\right)$ and noting that $\mu_{\infty}\left(-\infty, X_{(i)}^{n}\right)$ is F_{n}-measurable shows that T_{n} is F_{n}-measurable. Also, $T_{n}=T_{n+1}$ $-\sum_{i=1}^{n+1} I\left(\mu_{\infty}\left(-\infty, X_{(i)}^{n+1}\right)<r\right) I\left(Z_{n+1}=i\right)$ since the term corresponding to the point X_{n+1} must be omitted in going from T_{n+1} to T_{n}. Now

$$
\begin{aligned}
& E\left(T_{n} \mid F_{n+1}\right)=E\left(T_{n+1} \mid F_{n+1}\right) \\
& \quad-\sum_{i=1}^{n+1} E\left(I\left(\mu_{\infty}\left(-\infty, X_{(i)}^{n+1}<r\right) I\left(Z_{n+1}=i\right) \mid F_{n+1}\right)\right. \\
& \quad=T_{n+1}-\sum_{i=1}^{n+1} P\left(Z_{n+1}=i\right) I\left(\mu_{\infty}\left(-\infty, X_{(i)}^{n+1}\right)<r\right),
\end{aligned}
$$

since T_{n+1} is F_{n+1}-measurable, $I\left(\mu_{\infty}\left(-\infty, X_{(i)}^{n+1}\right)<r\right)$ is F_{n+1}-measurable, but Z_{n+1} is independent of $F_{n+1}=\sigma\left(Z_{n+2}, Z_{n+3}, \ldots\right)$.

The random variables $I\left(\mu_{\infty}\left(-\infty, X_{(i)}^{n+1}\right)<r\right)$ are decreasing with i, since $X_{(1)}^{n+1}<X_{(2)}^{n+2}<\ldots<X_{(n+1)}^{n+1}$
. Thus the weighted sum

$$
\sum_{i=1}^{n+1} P\left(Z_{n+1}=i\right) I\left(\mu_{\infty}\left(-\infty, X_{(i)}^{n+1}\right)<r\right)
$$

is less than

$$
\sum_{i=1}^{n+1}(n+1)^{-1} \cdot I\left(\mu_{\infty}\left(-\infty, X_{(i)}^{n+1}\right)<r\right)
$$

since Z_{n+1} is stochastically larger than uniform. Using this inequality in the above expression for $E\left(T_{n} \mid F_{n+1}\right)$ produces

$$
\begin{aligned}
E\left(T_{n} \mid F_{n+1}\right) & \geqq T_{n+1}-\sum_{i=1}^{n+1}(n+1)^{-1} \cdot I\left(\mu_{\infty}\left(-\infty, X_{(i)}^{n+1}\right)<r\right) \\
& =T_{n+1}-(n+1)^{-1} \cdot T_{n+1}=n(n+1)^{-1} \cdot T_{n+1}
\end{aligned}
$$

Dividing by $n, E\left(n^{-1} \cdot T_{n} \mid F_{n+1}\right) \geqq(n+1)^{-1} T_{n+1}$. Thus $n^{-1} \cdot T_{n}$ is a reversed submartingale and must converge as $n \rightarrow \infty \quad[2$, p.333] which was to be shown.

Perbaps Theorem 2 as stated does not make clear enough the latitude available in choosing the X_{i} subject to holding the distribution of the Z_{i} fixed. For example, the X_{i} can be restricted to $[0,1]$ and then chosen to be the midpoint of the interval dictated by the Z_{i}. If $Z_{1}=1, Z_{2}=1, Z_{3}=3, Z_{4}=2$, the corresponding X_{i} obtained by following this scheme would be $X_{1}=1 / 2, X_{2}$ $=1 / 4, X_{3}=3 / 4, X_{4}=3 / 8$. Of course the midpoint can be replaced by any other proportion or a point chosen randomly in the interval. As long as $Z_{1}, Z_{2}, Z_{3}, \ldots$ are independent and $P\left(Z_{n} \leqq j\right) \leqq j / n, n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]$ converges almost surely. In fact the X_{i} need not even be measurable functions and $\left\{n^{-1} \cdot\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]\right.$ converges $\}$ still contains a set of probability 1.

It suffices, in Theorem 2, to assume that $\left\{X_{i}\right\}$ be bounded above a.s. (the asymmetry arising because the Z_{i} are assumed stochastically larger than uniform). No mass can escape to $-\infty$ because $\mu_{\infty}\left(-\infty, X_{(1)}^{n}\right)$ must have a law stochastically smaller than Beta ($1, n$), the law in the uniform case.

The hypothesis that $\left\{X_{i}\right\}$ be bounded above cannot be dropped, even if it is assumed that $P\left(Z_{n}=i\right) \leqq A / n$ uniformly for some $A>1$. This can be shown using a result of Dubins and Freedman [3]. In these examples, however, $E Z_{n} / n$ converges to a limit greater than $\frac{1}{2}$. Perhaps $E Z_{n} / n \rightarrow \frac{1}{2}$ is sufficient to guarantee the tightness of $\left\{n^{-1}\left[\delta\left(X_{1}\right)+\ldots+\delta\left(X_{n}\right)\right]\right\}$.

References

1. Adler, R.L., Flatto, L.: Uniform distribution of Kakutani's interval splitting procedure. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 38, 253-259 (1977)
2. Doob, J.L.: Stochastic Processes. New York: Wiley 1953
3. Dubins, L.E., Freedman, D.A.: A sharper form of the Borel-Cantelli limma and the strong law. Ann. Math. Statist. 36, 800-807 (1965)
4. Slud, E.: Entropy and maximal spacings for random partitions. Z. Wahrscheinlichkeitstheorie Verw. Gebiete. 41, 341-352,
5. Van Zwet, W.R.: A proof of Kakutani's conjecture of random subdivision of longest subintervals. Ann of Probability. 6, 133-137 (1978)
