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Summary. If vn ) P(X, <..<X,)=1 and Von P(X,<..<X.)

=P(Y,, <...<Y,) then P(n~'-[6(Y,)+...+0(Y,)] converges to cnts. law on
RY=P(n~'-[6(Y;)+...+5(Y,)] converges to a cnts. law on R'). Thus if
P(X, <..<X_,)=(n)"'VYrn then n~'[6(X,)+...+(X,)] converges as.
The main result here generalizes this: Let X{,,, X{,),..., X, be the order
statistics associated with X,, X ,, ..., X,,. Define random variables Z,,Z,, ...
by {Z,=i}={X,=X{)}. Then if Z,,Z,,Z;,... arc independent and
P(Z,£i)<i/n, and {X,} is bounded, n='-[§(X ) +... + 6(X,)] converges a.s.

§1. Introduction

Let X;,X,,... be a sequence of real valued random variables such that P(X;
=X))=0 Vij Let X, be the i order statistic among X,,..,X,, ie

s ns

{Xlys s Xipb={X1, ... X,} and X[, <...<X], as. For convenience let X{,
=—o0 and XF,,,,= +oco. Define a sequence Z,Z,, ... such that Z, takes on
only the values 1,2,3,...,n by letting {Z,=i}={X,=X},}. In other words, Z,
indicates which of the n intervals (—oo, XI"), (X7 Xi5Y, - (Xl
+ ) X, falls into. Let F, denote ¢(Z,,Z,, ...); equivalently F, is the o-algebra
generated by the events {X;<X;},i,j=1,2,3,.... This definition of the Z-
process from a sequence X, X ,, ... will be used throughout.

The aim of this paper is to relate hypotheses on the distribution of
Z,Z,,... to convergence of the empirical distributions n=*-[6(X,)+...0(X )]
as n—oo. Throughout é(x) will denote the point mass at x. The hypotheses on
the distribution of Z,,Z,,... may be given directly or in terms of the events
{X, <X}

Recent work on interval-dividing has centered on Kakutani’s scheme, in
which at each stage the longest remaining interval is divided according to a
fixed [1] or random proportion [4,5]. The results in the present paper seem
quite distinct from these. In the Kakutani scheme, the interval the (n+1)st
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point falls into is determined by the first n points, ie. Z, (co(X,,...., X ). In
Theorem 2 below, the Z; will be assumed to form an independent sequence, so
the (n+ 1) st point falls into an interval picked independently of the ordering of
the first n points. These situations

(Z,.1coX,,....,X) and Z,  Llo(Z,,....Z)co(X,,....X,)

are of course not mutually exclusive but for the Kakutani scheme with the
longest interval divided uniformly at each stage [5], the Z, are not an inde-
pendent sequence (Z, and Z, are not independent for example}.

In §2 it will be shown (Theorem 1) that the probability of the event
{n~ 1 [8(X,)+...+5(X,)] converges to a continuous law on R'} depends only
on the numbers P(X, <...<X_) for all n and permutations = of {1,2,...,n}.
A corollary is that n~ ' [8(X,)+... +8(X,)] converges as. if P(X, <...<X_)
=(n!)~* for all = and n. The familiar example of sequences X, X ,, ... satisfying
this condition, in addition to iid continuous sequences, is the exchangeable
case (for which the Glivenko-Cantelli theorem is an immediate consequence of
deFinetti’s theorem.) A very different example is as follows: there exists a
sequence X, X ,, ... satisfying P(X, <...<X, )=(n!)~' such that a.s. X;, X,, ...
is an enumeration of the rationals.

Of course Theorem 1 “generalizes” the Kakutani scheme {or any scheme
for which limn~'[6(X,)+... +8(X )] is known to be continuous). If X, X,, ...
arise from the Kakutani scheme, and Y,,Y,,... satisfy P(Y, <..<Y)
=P(X, <..<X,) then n"*[8(Y)+...+35(Y,)] converges almost surely. But
the numbers P(X <...<X,_ ) seem hard to compute (at least exactly) for the
Kakutani scheme.

Convergence to a possibly discontinuous law is discussed in §3. Though, as
examples show, the event {n='-[§(X,)+... + (X )] converges to a law on R'}
is not in F;, a sufficient condition for convergence based only on the events
{X;<X;} can be found. Theorem 2 applies this condition to show that if {X 3
18 bounded and Z,,7Z,, ... is an independent sequence with P(Z, Si)<i/n then
n~ [6(X,)+...+8(X,)] converges as. This extends the P(X,, .. X, )=(mh""
condition, for which P{Z,<i)=i/n. Some discussion of the limits obtained in
Theorem 2 follows the proof.

§2. The Continuous Limit Case

The lemma below refers to a sequence of distinct reals, not random variables.

Let xf, be defined analogously to X7, that is {x{), ..., x{y}=1{x(, ..., x,} and
Xy <... «:ic;’n); let xf,= — oo and x,, {,= + 0. For any set 4 let . (A4) denote

limn=*- ¥ I(x;eA) whenever the limit exists; here “I” denotes “indicator

s o0 )

function of”.

Lemma 1. Let x;,X,,... be a sequence of distinct veals. Then n~'-[d(x()
+ ...+ 8(x,)] converges to a continuous law if and only if
(1) B, (— 0, x,) exists for each k, and

) iNgnlax ﬁ;&m{x’gﬂ, Xf 4 1) 0 as n—co.
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Proof. only if: Since the limit of n=*-[8(x;)+...6(x,)] is a continuous law (call

this limit law g), n="- Y I(x,e4) converges for every interval 4, so (1) holds
i=1
and each p,(x), x{;, 1)) is defined. Also u,,(A)=pu(A) for every interval A.
Assume that the max in (2) does not converge to 0. Then there must exist
£>0 and a sequence of nested intervals A, of the form (xf, ,,x; ) such that
for all n, u(A4,)>e. (A compactness argument shows that the intervals may be
chosen to be nested: Let B, be the union of all intervals of the form
[XGy> X+ 1y] such that 1(xGy, XG4 1)) >¢; adjoin £ oo to compactify R. If the max
in (2) is greater than ¢ for all n, then each B, is nonempty. Of course B, B, ,
Vn. Choose xe()B,. Then xe[xf ,xt ., for some i,; pick the leftmost

interval if there is a choice of two. Then A4, =(x{; ,, xf, 1)) is a nested sequence
with u(4,)>e) Note that A4 ,"{x,,x,,...,x,} =¢. The only possibilities for
(1A, are ¢, a singleton, or an interval. Since by countable additivity

w(VA,)ze, (A, must be an interval. But [()A4,]n{x;,X,,...} =¢ since
A X, x =@, so mt Y I(x;e()A4,)=0 for every m, contradicting
— .

#() A,)=¢ and establishing (2).

if: Since the max in (2) converges to 0, 1, (x{y), x(,)) converges to 1. Given ¢
choose n such that ., (xf,,, x7,) > 1 —¢/2. Since

m-t. '21 T{x;€(x{1y, X{m)) = Moo (X{1)s Xp)s
for m large enough m="-[8(x,)+... + 6(x,)] (x}y,, x{,) > 1 —¢. Thus {m~'-[d(x,)
+...4+6(x,,)]1} is a tight sequence. It suffices to show that u_(— 0, a) exists for
every a. By (1), u(— 0, a) exists when ae{x;, x,, ...}, so assume a¢{x,, x,, ...}.
For each n there exists i, such that x{, ) <a<xj,__ . Since

(— o0, x?i,.))c(_ o0, a) = (— 0, x?i,.“))s P (— 0, x?i,.))
<liminfm=1-[8(x,)+... +6(x,)](— 0, a)

<lim supm™ - [8(x,)+ .. + 00,1 (— 00, @ S0 (— 0, %7, ).
Let n—oo. Then p,(—00, X, )= He(— 00, X[ )=t (XG ), X, , )20 by con-
dition (2). So
liminfm=1-[d(x, +...6(x,)] (— 0, a)

=limsupm="'-[d(x,)+...6(x,)] (— 0, a)

and g, (— o0, a) exists. This completes the proof of the lemma. [

Now let X;,X,,... be a sequence of random variables with P(X;=X )=0.
Using Lemma 1, the event {n=!-[d(X,)+...6(X,)] converges to a continuous
law} can be shown to be measurable with respect to the g-algebra F,, ie. the
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o-algebra generated by the events {X, <X}, i, j=1,2,3,.... This is done as

follows: When condition (1) is written as {lim n="'- ) I{(X,<X) exists} then
it is transparently F,-measurable. e =1

To see that condition (2) is F,-measurable, note (as above) that u(~ o0, X,)
is F,-measurable. Now . (— oo, X)) is also F,-measurable, since

Rl — 00, X?i))” Z Ul — OOst)'I(Xk‘_’X?i))
k=1

and I(X,=X{)=\JI(X;<X, iff jed) where the union is taken over all
A

Ac{l,2,...,n} with i—1 elements. Since u, (X7 Xfis1)™ Mol — 0, Xi11)
~ lo(— 00, X)) this shows that condition (2) is F,-measurable. A restatement
of this fact is given in the theorem below.

Theorem 1. Let X,,X,,... and Y,,Y,,... be two sequences of random variables,
such that P(X;=X)=0, and P(X, <...<X,)=P(Y, <...<Y_) for every n and
every permutation m of {1,2,...n}. Then P(n=*-[8(X ) +... +8(X,)] converges to
a continuous law)=P(n~"-[8(Y,)+ ... 8(Y,)] converges to a continuous law).

The conclusion is immediate since the joint law of the random variables
(X, <X )}i,j=1,2,... must equal that of {{(Y;<Y)} L,ji=1,2,...

Corollary. Let X,,X,,... be any sequence of random variables such that
P(X, <..<X,y=@O"" for all n and permutations m. Then n~'-[6(X)+...
+0{X )] converges almost surely to a continuous law.

Proof. Let Y,,Y,,... be any sequence of continuous iid random variables and
apply the Glivenko-Cantelli theorem and Theorem 1 above. [

Define the Komogorov-Smirnov statistic as sup|F,(x)—F(x)| for any se-

quence X,,X,,... such that the empirical distribution function n~'[8(X,)
+...0(X,)] (—o0,x]=:F,(x) converges to a (possibly random) distribution

function F(x). This statistic can can be written as max [i/n = phoo(— 00, Xyl
i—1,.. n
=il 1

and hence is also F,-measurable. So the distribution of the Kolmogorov-
Smirnov statistic is the same for any sequence satisfying P(X, <...<X,)
=(n!)~! as it is for an iid sequence of continuous random variables.

§3. Possibly Discontinuous Limits

The simple first example below shows that the event {n~' - [§(X,)+... 8(X,)]
converges to a law on R'} is not an F,-measurable event.

Example 1. Let x, <x,<x3<... and y, <y, <y;<... be two sequences of reals
such that x,—»x<oo and y,—+oo. If X,,X,,X,,... is a sequence of random
variables such that P(X,;=x,;Vi)=1/2=P(X,=y,Vi) then P(Z,=iVi)=1. [Recall
the definition of the Z-process in §1.] So F, is trivial, but {n™'-[6(Xy)
+...0(X )] converges to a law on R'}={X,=x,Vi} which has probability 1/2.
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As the next example shows, the difficulty is not only in the escape of mass
to infinity.

Example 2. Let n(+) and m(-) be two increasing sequences of positive integers
such that {n(k)};2, and {m(k)}> , are disjoint and have union {1,2,3,...}.
Further assume that lim n(k)/k does not exist. Now let x,,x,,... be a sequence

K-+ 0
of reals such that x, ;) <X,;,<X,3,<... and X, 4,> X, 5,> X3y > .. and such
that lim xn(k):lim Xy L€ ¥1,¥5,... be a sequence with y, )<V, <...,
k—

Vont1) > Yim(z) > - and llm yn(k)<l1m Vmay- I X1, X,,... are random variables

with P(X,=x,Vi)= 1/2 P(X yl\fz) then each event {X;<X;} has probability
0 or 1. Bach Z; is a constant and F, is the trivial o- algebra But n - [6(X )
+...+0(X,)] converges (to d(lim x,,)) if and only if X;=x,Vi.

There is another application for Example 2. Consider the sequence

Vi, V2, - given above. For each jm™'- ) I(y;<y,) converges as m— oo, to 0 if
i=1

j=n(k) 3k, and to 1 if j=m(k). But n='-[8(y,)+...+d(y,)] does not converge.

Thus condition (1) of Lemmal is not sufficient for the convergence of

n~ 1 [8(y)+... +8(y,)] even if {y;} is bounded. The purpose of the next lemma

is to provide a sufficient condition for convergence to a possibly discontinuous

law, based only on hypotheses on the ordering of the points.

Lemma 2. Let x,x,,x5,... be distinct points in a bounded interval. Then 1 and
11 are equivalent.

L n ' [8(y)+... +8(y,)] converges to a law on R for every bdd set {y;}
satisfying y;<y; iff x,<x;.

IL (1) limn=t Y I(x;<x)=:u,(—00,x,) exists for all k,

R 00 i= 1

and

(3) imn='- Y I(u,, (—o0,x;) <r) exists for every rational r.
e o =1
The only part of this lemma that will be applied in the sequel is II =1, ie.
that 11, based only on the ordering of x,x,,..., i$ sufficient for the con-
vergence of n=*-[d(x,)+ ... +8(x,)]. The equivalence of I and II shows that II
is actually the best possible sufficient condition based only on ordering.

© Pf. II=I It is enough to show that (1) and (3) imply the convergence of
n=t[6(x,)+... +6(x,)], since if (1) and (3) hold for x,,x,,... then they must
hold for any sequence y,,y,,... satisfying y;<y; iff x;<x;. The assumption of
boundedness has eliminated tightness considerations, so it suffices to prove
that

n b [0(x )+ ... +8(x,)](—c0,@)=n""" i I(x,<a)
i—1

converges for each a. Assume, to the contrary, that for some a and rational r

n n
liminfr=*- Y I(x,<a)<r<limsupn='- Y I(x;<a).
=1

no o0 i=1 n—
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if x, <a, then

"

Y I <x)sntt Y I(x<a),

i= i=

50

Lo (—0,%) Sliminfn~*- z I(x;<a)<r.

n— i=1

if x,=za, then

LN Ix <x)zn Z I(x,<a),

1 i=1

=
M::

i

SO

to(— oo, x)=limsupn~?. ZI(x <a)>r.

n—> 0 i=1

Hence x, <a iff p_(—o0,x,)<r, and

”1-i§1 Ix;<ay=n"". i; I (— o0, %) <7).

But the righthand side converges by (3) and the left-hand side was assumed not
to converge. The contradiction proves that II=1

I'=II. First assume that (1) fails to hold, ie. for some x,, n~ Z I(x; < x)

does not converge. Let y;=x; if x;Zx,, and y;=x;—¢ if x;<x,. Then for any y
in the interval (x, —¢,x,),

LY Iy<y=nTt Y I(x <x)
i=1 i=1

Since the right-hand side doesn’t converge, {y:n~='-[d(y,)+... + ()] {(—c0,¥)

converges} cannot be dense and thus n=*-[8(y,)+... +6(y,)] cannot converge.

Next assume that (1) holds but that (3) fails, ie. for some r,n” }: Ku,,

(— oo, x;)<r doesn’t converge. Let A={x.: p {—o0,x,)<r}, and let x denote
the least upper bound of A. If x, <x, then x,€4 by the definition of x. If x,>x
then x,¢4. Also, no x, can equal x because for such an x,, if i%k, x;<x,

would hold iff x,ed iff p (—o0,x)<r; but n=*- Y Ix;<x,) converges and
i=1

z (g (—o0,x)<r) doesn’t. Hence x,<x iff x,ed iff p (—oo,x)<r

Now let y;=x; if x;>x and let y,=x,—¢ if x;<x. Then n~* Z I(y,<y) cannot

converge for any ye(x—¢,x), and as before, n~?! [5(y1)+ +§(y,,)] cannot
converge, contradicting I. {7

The corollary in §2 can be restated in terms of the Z-process as follows.
Let X,,X,,... be any sequence of random variables such that the correspond-
ing Z, are independent and uniform, ie. P(Z,=i)=1/n for i=1,2,...,n. Then
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n~!-[8(X,)+...+38(X,)] converges a.s. The main result of this section general-
izes this result by applying Lemma 2.

Theorem 2. Let X,,X,,... be random variables taking values in a bounded
interval, with P(X;=X)=0 Vi,j. Assume that the corresponding Z,,Z,,... are
independent and stochastically larger than uniform, i.e. P(Z,<i)<i/n, i=1,2,...n.
Then n="-[8(X ) +... +86(X,)] converges a.s.

Pf. The conclusion will follow by Lemma?2 if it can be shown that
n~t. ) I(X,<X,) converges as. as n—oo for each k, and n~'. Y I(u,
i=1 i=1

(— o0, X;)<r) converges a.s. as n—oo for every rational r. The a.s. convergence

n

of n=. Y I(X,<X,) for each k is equivalent to the a.s. convergence, for each
L q

N and K=N of m™'- Y I(X,<X},). Convergence will now be proved in this
form. i=1

Fix N and K<N. Let {,=I(Xy, ,<X{) and let S,=¢, +&,+...+¢&,. Now
consider the event {S,=¢}. On this set / of the points Xy, ;,...,... Xy, must

N+n
be less than X[}, so X{, =X %). Thus

P(én+ 1= ]‘lSn:/)
=P(X,, niy <XN|S,=0)=P(X
=P(Z,. ., SC+KIS, =)

N+ —
n+N+1 <X({+'II()|Sn"‘/)

by the definition of the Z-process. But S, depends only on the values of
Zyi1:Zyyigs-. and Zy . all of which are independent of Zy,,.,. So
P(Z, .y, 1SC+KIS,=0)=P(Z,, y,, </ +K). The same reasoning shows that

P, =18,=5,8,=8,...8,_1=8,_1,5,=7¢)
=P(Z,,ni1S4+K)

and hence that {S,} is a Markov chain with

P(S,, =L +118,=0)=P(Z, , y,1 S +K).

Now
E(Sn+ 1|S19 ...,Sn)=E(Sn+ 1|Sn)
and
ES, IS, =0)=E(S,+¢,,. IS, =)=+ P(&, . =1|S,=¢)
=l P(Zyoy SOHE)SEHCHK) (1N 1)
So

E(S,, 1 +K)(n+14+N+1)71S,=¢)
SU+(+K)(n+N+1) " *+K][n+1+N+1]7!
=(/+K)(n+N+1)"1

This shows that (S,+K)(n+N+1)~! is a supermartingale. (If the Z; were
actually uniform it would be the martingale associated with a Polya urn.) Now
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n+N N
(n+N)"t. Z I(X, <X<m) (n+N)“-[Z (X <X{g)
= im1
N-n
+ Y I, <X(K))]x(n+N)”1-[K-1+Sn]
N+1
which converges as n—oo because the supermartingale (n+N-+1)""-(5,+K)
does.

"
The other step is to show the convergence of n™ % Y I(u,(— 0, X)) <r).
i=1

Let F, denote the o-algebra generated by Zyir1Zyin:Zyis,.-. and let T,
= ZI(HOO( 00, X;)<r). Rewriting T, as ZI(/,LOO 00, X)) <r) and noting that
oo ( oc X7,y is F-measurable shows that T; is F-measurable. Also, T,=1T,
— Z I — 00, X7 )< I(Z, . =i) since the term corresponding to the point

X+, must be omitted in going from T, , to T,. Now

E(TJF,, )= E(T,, 1 |F, )

n+1

— Y E(po(— 00, X3 1 <n) IZ,, = DIF, 1)
i=1
not

n+1 2 n+1 l)I(”oo( <o X?l;.l) )

since T,,, is F,,-measurable, I(u,(—o0, X7 )<r) is F,, -measurable, but
Z,,,isindependent of F, ., =0(Z,,,.Z, 3,..-)
The random variables I(u,(—c0, X7 ')<r) are decreasing with i, since
n+ 1
X5 <X <. <Xuhh
. Thus the weighted sum

n+1

Y P(Zyy =) (o — 00, XI5 1) <1)

f== 1
is less than
n+1

Y, )7 I (— 00, Xy ) <7)
i=m 1

since Z,, , is stochastically larger than uniform. Using this inequality in the
above expression for E(T,|F, ) produces

n+1
E(T\E =T, Z (n+1)7 " I (g, (— 00, X1 <r)
Ty (n+1) L =nn+ )T

Dividing by n, E~*-T)JF,. )=(n+1)"'T,,,. Thus n~'- T, is a reversed sub-
martingale and must converge as n-»>oo [2, p.333] which was to be
shown. [
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Perhaps Theorem 2 as stated does not make clear enough the latitude
available in choosing the X; subject to holding the distribution of the Z, fixed.
For example, the X, can be restricted to [0,1] and then chosen to be the
midpoint of the interval dictated by the Z,. If Z, =1, Z,=1, Z;=3, Z,=2, the
corresponding X; obtained by following this scheme would be X,=1/2, X,
=1/4, X5=3/4, X,=3/8. Of course the midpoint can be replaced by any other
proportion or a point chosen randomly in the interval. As long as
Z1,Z4,Z,,... are independent and P(Z,</)<j/n, n~ 1 [6(X ) +... +6(X,)] con-
verges almost surely. In fact the X, need not even be measurable functions and
{n=1-[6(X,)+...+6(X,)] converges} still contains a set of probability 1.

It suffices, in Theorem 2, to assume that {X,} be bounded above as. (the
asymmetry arising because the Z, are assumed stochastically larger than uni-
form). No mass can escape to —oo because Ul —00,X7;)) must have a law
stochastically smaller than Beta (1,n), the law in the uniform case.

The hypothesis that {X;} be bounded above cannot be dropped, even if it is
assumed that P(Z,=i)<A/n uniformly for some A>1. This can be shown
using a result of Dubins and Freedman [3]. In these examples, however, EZ,/n
converges to a limit greater than §. Perhaps EZ, /n—1 is sufficient to guarantee
the tightness of {n™'[6(X ) +... + (X )]}
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