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Let F be a distribution function and let Qv(1)=O for l < 0  and Qv(l)= 
sup{F(x+l)-F (x): x~lR} for l > 0  be its L6vy concentration function. This 
paper has two purposes: to give a characterization of unimodal distribution 
functions (Theorem 3.5) and a representation theorem for the class of unimodal 
distribution functions (Theorem 6.2), both in terms of their Ldvy concentration 
functions. 

1. Introduction 

Let F be a (right continuous) distribution function on I R = ( -  o% oo). Defining 
F ( - o o ) = F ( - o o ) = 0 ,  and F(oo)= l ,  F may be considered as an u.s.c. (upper 
semicontinuous) function on the compact space ~ = [ - o o ,  oo], and F as a 
1.s.c. (lower semicontinuous) function on 1),. We say that F is unimodal when- 
ever there is an a, called a mode of F, such that F is convex on ( -  oo, a) and 
concave on (a, oo) (see, e.g., Lukfics ([5], p. 91)). There are many character- 
izations and properties of unimodal distribution functions, principally given in 
terms of characteristic functions; for a recent survey, see, e.g., Medgyessi [6]. 

Let us consider now the L6vy concentration function QF of F, defined by 
QF(I)=0 for l < 0  and QF(l)=sup {F(x+l)-F(x): x~lR} for l~[-0, oo]. QF is 
again a distribution function and if F is unimodal, then Qv is unimodal. The 
converse is however not true. Further let x '= in f{ x :  F(x)>0} and x " =  
sup {x: F(x) < 1} ; then we say that F is strictly unimodal if it is unimodal with 
mode a and if it is strictly convex on (x', a) and strictly concave on (a, x"). Evident- 
ly a is the only mode of F. Hengartner and Theodorescu [-3] have shown that 
F is strictly unimodal if and only if QF is strictly unimodal. 

In this paper, we give first a characterization of unimodal distribution 
functions (Theorem 3.5) and then a representation theorem (Theorem 6.2), both 
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in terms of concentrations functions. We will use the pointer A F of F, a 
multivalued function, defined by AF(1)={xeff~: QF(1)=F(x+l)-F_(x)} for 
/s[0, oo], which has unexpectedly nice properties. 

2. Preliminary Results 

Denote by ~ the set of distribution functions, by ~+ the set of all F ~  such 
that F_(0)=0, and by ~+ the set of all subadditive F ~ + .  Identifying ~ with 
the set of probability measures on IR, @ is provided with the narrow topology 
a(d/[b(lR ), Cb(IR)) (see [1]). Some important properties of concentration func- 
tions are listed in the following: 

Remark 2.1. (1) Q: FF--~QF is a continuous convex idempotent surjection from 
onto ~+.  (2) QF(0) is the greatest jump of F on 1R and QF(/)>0 f o r / > 0 .  (3) 

QF is continuous on P,. if and only if QF is continuous at 0. 
For  details, see Hengartner and Theodorescu [2]. 
A correspondence A: L--->X is a map from L into the power set of X such 

that A(l)=~r for each l~L. We denote by D(A) the set of all l~L for which A(l) 
is a singleton. In the case D(A)=L, A can be considered as a map from L into 
X. If L and X are topological spaces, then we say that A is cocontinuous at the 
point losL, if, for each neighbourhood W of A(lo) there exists a neighbourhood 
V of 10, such that A ( V ) =  0 A(l)c W. We also say that A is cocontinuous on L 

l s V  

if A is cocontinuous at each leL. 
From Smithson [8] we take the following: 

Remark 2.2. Let A: L--*X be a correspondence and loeL. (1) If L is metrizable 
and X is locally compact, then A is cocontinuous at l o if and only if 
(l,)cL, ln--*lo,xn~A(l,),x o duster  point of (x,)~Xo~A(lo). (2) Let X be sepa- 
rated and A cocontinuous on L. The image A ( K )  of each compact subset K of 
L is a compact subset of X if and only if each A(1) is compact. (3) Let A be 
cocontinuous on L. The image A ( C )  of each connected subset C of L is a 
connected subset of X if and only if each A(l) is connected. 

From now on F is a fixed distribution function, Q its concentration func- 
tion, and A its pointer. As in convex analysis, we use the convention oo + 
( - o o ) = -  oo + oo = oo. Obviously, if F is not continuous, then A(0) is the finite 
nonempty set of all x~lR such that Q(O)=F(x)-F_(x), while A(0)=IR if F 
is continuous. 

The subsequent results rely heavily on the following: 

Theorem 2.3. (1) A: [0, oo ]~ IR  is a point-compact correspondence. (2) I f  
l~(O, oo), then A(/)~IR. (3) I f  /o~[0, oo] and if Q is continuous at lo, then A is 
cocontinuous at l o. 

Proof (1) Indeed, each A(l) is the nonempty closed set of all maximal points of 
the u.s.c, function x~--,F(x+l)-F_(x) on the compact space IR. (2) In this case, 
A(1) is necessarily contained in the bounded set {x: F(x+l)>Q(1)}c~ 
{x: F (x)<=l-Q(/)}. (3) Let l , ~ I  o and let x o be a cluster point of a sequence 
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x.eA(I,). Since F(x o + lo) - F (xo) < Q(lo) = lira (2 (I.) = lira sup [F(x. + 1 . ) - F  (x.)] 
n ~ c o  t l ~ o o  

<F(xo+lo)-F_(xo)<Q(lo) ,  we have xo~A(lo) and hence A is cocontinuous at 
l o by Remark 2.2, (1). 

Similar results hold for the correspondence A +I ,  where I: [0, co]- ,  [0, co] 
is the identity map. 

Lemma 2.4. Let O < l o < L < o o  and suppose that Q is continuous on [lo, L ]. I f  
- o o  <z=infA<(lo,  L)>, then F (z)=F(z) or z is no limit point of A<(I o, L)>. 

Proof For F_(z)<f(z ) .  z~>z, z.j.z, z.~A(I.), l .~(to,L ), l .~ l ,  we obtain the 
contradiction Q (/) = F(z + l) - F (z) > F(z + l) - f ( z )  > lim sup [F(z. + l~) - F (%)] 
=Q(I). 

The following properties of convex functions will be frequently used and 
can be found, e.g., in Valentine [9] or in Rockafellar [7]: 

Remark 2.5. Let f be a real valued convex function, defined on a interval J of 
1R. (1) f is continuous on In tJ .  (2) If a, b, c, de J, a<b,  c<d, and d-c>=b-a, 
then f ( d ) - f ( c ) > f ( b ) - f ( a ) .  (3) Let a < b < c ,  g: (a ,c )~ lR  continuous, and g 
locally convex on (a, b)w(b, c); then g is convex on (a, c) if and only if g(b)__< 
�89189 for some sequence %,10. (4) At any x Mn t J ,  the left 
derivative f'_ (x) and the right derivative f+ (x) exist. Moreover, f ;  <=f+, f '  and 
./~. are nondecreasing functions, f '  is left continuous, and f~ is right con- 
tinuous. (5) For each x~Int  J, 0f (x)= [fi(x),  f+(x)] is the set of subgradients of 
f at x, i.e., the set of all ~ I R  such that f ( y ) - f ( x ) > c ~ ( y - x )  for each y~J. (6) 
Let g be convex on J;  f + g  reaches its minimum on J at xEInt J if and only if 
O~Of(x)+Og(x). (7) g: In t J -~ lR  is convex if and only if g is a primitive of a 
nondecreasing function h. The set of all nondecreasing functions for which g is 
a primitive is the set of nondecreasing selections of the subdifferential 0g of g. 

In the next sections, use will be made of the following three technical 
lemmas. 

Lemma 2.6. Let le(0, oo) and ~(O,t). (1) I f  x, y6A(l), Ix-yl<l, and if Q is 
concave on I t - I x - y [ ,  t + lx-y]],  then Q is affine on [ t - ] x - y [ ,  l + lx-y]].  (2) I f  
Q is strictly concave on a neighbourhood of  t and if teD(A), then fe int  D(A). (3) 
t f  Q is concave on (0,2l), and if Q is not affine on ( I -e ,  +~), and if Q(I)> ! 2~ 

then leD(A). (4 ) / f  Q(I)= 1, then A(1) is convex. 

Proof (t) Q ( 1 ) > � 8 9 1 8 9 1 8 9 1 8 9 1 8 9  
-�89 (2) Choose e~(0, l) such that Q is strictly concave on (I-e,  l+e). 
By Theorem 2.3, (3), there exists fie(0, e/2) such that A(k)c (A(l)-e/4,  A(1)+ e/4) 
whenever [k - l ]<6 .  For such a k one has d i a m A ( k ) < e / 2 < k .  By (1) it 
follows that k~D(A). (3) Suppose x,y~A(1), x4=y. By (1), I x - y [ > l ,  say y > x + I .  
We obtain the absurd inequality F(y + l) = Q(1) + F (y) > Q(1) + F(x + l) 

2Q (1) > 1. (4) Q (1) = 1 and x EA(l) implies F (x) = 0 and F(x + l) = 1. 

Lemma 2.7. Let l ' > t > 0 ,  x~A(l), and yeA(t) .  (1) I f  x(~A(l') or y~A(1), and if F 
is concave on [x+l ,  c o ) ~ ( - c o ,  y+l'],  then y<x .  (2) I f  y+l '~A(1)+l  or 
x + lr + l', and if F is concave on [y, co) ca ( -  oo, x], then y + l' > x + t. 
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Proof The proofs of these four statements being similar, we restrict ourselves 
to the first one. Indeed, suppose y>x~A( l ' )  and let F be concave on the 
indicated set. We have f ( y + l ) - F ( x + l ) > F ( y + l ' ) - F ( x + I ' ) > F _ ( y ) - F ( x )  and 
hence the contradiction Q(l) > f ( y  + l) - F (y) > f ( x  + l) - F (x) = Q(1). 

Lemma 2.8. Let 0 < l o < l 1 <_ co, J =A((10, I1)), K = (A + I) ((l o, 11) ). Suppose that 
Q is concave (respectively strictly concave) on (I o,ll) and that A is convex 
valued on (lo, 11). Then F is convex (respectively strictly convex) on I n t J  and 
concave (respectively strictly concave) on Int K. 

Proos By Theorem 2.3, (2), (3) and Remark 2.2, (3), J and K are intervals of IR. 
Let lo<7<~5<l l  and [p, q] =A([?,,  ~3]). For any x,y,z~(p,q),  such that y < x < z ,  
z - x < ~ - t  o and x - y < l ~ - 6 ,  there exists la[?,, 61 such that x~A(1), and hence 
F ( x + l ) - F  ( x ) = Q ( t ) > = ( z - x ) ( z - y )  -1 Q ( x - y + l ) + ( x - y )  ( z - y )  -1 Q ( I - z + x )  
>( z - - x )  ( z - y )  - I  [F(x+I ) -F_(y ) ]  + ( x - y )  ( z - y )  -1 [F(x+l ) -F_(z ) ] .  We ob- 
tain F_ (x) < (z - x) ( z -  y)- i /7_ (y) + (x - y) (z - y)- 1 F (z). This means that F_ 
is locally convex on (p,q). Therefore F = F ,  F is convex on (p,q), and F is 
convex on I n t J =  ~ IntA([7,  6]). The above inequalities are strict when Q is 

strictly concave. The proof of the dual statement for K is similar. 

3. Unimodal Distribution Functions 

Let a =inf{x~IR: F concave on (x, ov)}, a+=sup{xe lR :  F convex on 
( -  o% x)}. Let q /denote  the set of all unimodal distribution functions. Clearly, 
F~q/ if and only if a <_a+; in this case, [a ,a+] is the set of all modes of F 
and a_ =a+ or F is continuous. Further, let ~g, be the set of all F s ~  with 
mode a. Then ~h'~ is a convex subset of q / a n d  ~g and ~r are closed in ~ with 
respect to the narrow topology. This last statement follows from Luk~tcs [5], 
Theorem 4.5.4, p. 97. 

Clearly, the next result must hold: 

Theorem 3.1. Let F~qJ, l>0,  and xeA(l).  Then x<a+ and x + l > a _ .  

Proof Suppose a+ < x aA(l); since Q (I) = F(x + t) - F(x) < F(a + + I) - F(a +) < Q (1), 
F is affine on the interval (a+,x+t) .  By Remark 2.5, (3) for any e > 0  suf- 
ficiently small, we have �89 +e)+�89 F(a+-e)<F(a+) ,  and hence we obtain 
the contradiction Q ( 1 ) > = F ( a + + l - e ) - F ( a + - e ) > F ( a + + I - e ) - 2 F ( a + ) +  
F(a+ + ~) = F(a+ + l) - F(a, )  = Q(1). The relation x + l >_ a is proved analogously. 

Corollary 3.2. I f  F ~ ,  then Q~q[, with smallest mode O. 

Proof Given 11,12>0 and 2~(0,1), choose xl~A(l l )  and x2~A(12). We have 
2 Q ( 1 1 ) + ( 1 - 2  ) Q(12)<F(2 xl + ( 1 - 2  ) x 2 + 2  ll + ( t - 2  ) 12)-F (2x1+(1-,~) x2) 
< Q ( 2 t 1 + ( 1 - 2 ) 1 2 )  and hence Q ~ o .  Obviously, 0 is the smallest mode (cf. 
Remark 2.1, (2)). 

Corollary3.3. I f  Fsqg, then A(1) is a convex set for each le[0, ov] and 
A(/)c [a_ - t , a + ] J b r  0 < l <  or. 
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Proof By L e m m a 2 . 6 ,  (4) it suffices to consider the case Q ( / ) < I .  Fo r  l = 0 ,  we 
have  A(0 )= IR  or A ( 0 ) = { a  }={a+} .  N o w  let 0 < l < o o .  F r o m  R e m a r k  2.5, (2) 
and T h e o r e m  3.1 it follows easily that  A(1)cFa- l ,a+] .  But in this interval 
Q(1) is the m a x i m u m  of the cont inuous and concave funct ion x~--,F(x+l) 
- F  (x). 

Corol lary3.4.  I f  Fe~,  then Q is continuous on (0, oo]. Moreover (1) A is 
cocontinuous on (0, oo]; (2) if B c ( 0 ,  oo] is connected, then A(B)  is connected; 
(3) if C c ( 0 ,  oo] is compact, then A ( C )  compact. 

Proof Indeed, apply  successively R e m a r k  2.5, (1), Theo rem 2.3, and R e m a r k  2.2, 
(2), (3). 

Our  first main  result is contained in: 

Theorem 3.5. F e ~  and only if Q e ~  and A is convex valued for l > 0 .  

Proof The necessity of  these condit ions follows f rom the Corollar ies  3.2 and 
3.3. Conversely,  assume that  Q e ~ '  and that  each A(l), / > 0 ,  is a convex set. By 
Corol la ry  3.4, (2), J = A ( ( 0 ,  oo)) and K=(A+I)((O, oo)) are intervals in IR. By 
L e m m a 2 . 4 ,  for x = i n f J ,  we have F ( x ) = 0  or J = { x } .  Indeed,  for 
F (x )>0 ,  y>x, F(y)>l-F_(x) ,  Q(l)>F(y), we get the contradic t ion A(l)c~ 
( -  oo, x) + ~. Similarly, F (y) = 1 or  K = {y} if y = sup K. Finally, J u K contains 
the set {x: 0 < F ( x ) < l } .  Indeed, assume that  supJ=a<f i=in fK;  we obtain  a 
point  x~A((fl-cO/2 ) and hence the contradic t ion x<c~, f i>x+(f i -a) /2~K. 
F r o m  L e m m a  2.8 it now follows that  F is convex on J - and thus on ( - o o ,  ~) 
- and F is concave on K - and thus on (fl, oo). 

We give now an al ternat ive short  p roof  of  the result of  Hengar tne r  and 
Theodorescu  [3]:  

Corollary 3.6. F is strictly unimodal if and only if Q is strictly unimodal. More- 
over, in this case D(A)~ (0, L), where L = sup {/: Q (l)< 1}. 

Proof In view of T h e o r e m  3.5, L e m m a  2.8, and L e m m a  2.6, (4), it suffices to 
show that  (O,L)cD(A) whenever  Q is strictly unimodal .  Only the case L > 0  is 
of  interest. By L e m m a  2.6, (2), (3), D(A) contains a largest n o n e m p t y  set of the 
form (l o, L), 1 o > O. 

Put  Zo=infA((lo,L)) , Z l=SUpA((Io, L)) , z2=inf(A+I)<(lo, L)) and z 3 
= s u p ( A + I ) ( ( / o ,  L)) .  We may  suppose  z o < z  1. By the L e m m a s  2.8 and 2.4, F 
is strictly convex on [Zo, zl] ,  strictly concave on [z 2, z3], F = 0  on ( -  oo, Zo] , 
and F - - 1  on [z 3, oo). By L e m m a  2.7, the function A is nonincreasing on (1 o, L), 
and A + I  is nondecreasing on (lo,L). N o w  assume that  10>0; by L e m m a  2.6, 
(1), A(lo) consists of  a finite n u m b e r  of  points with mutua l  distances > l o. F r o m  
T h e o r e m  2.3 it follows that  there exist a sequence I, ~ l o and  a point  x~A(Io) such 
that  A(l,)Tx. Hence  x=z  1. Let x' be another  point  of A(lo). We have either 
x '<z l -10  and then Q(lo)=F(x'+lo)-F_(x ')<f(zl)-F(zl- lo)<Q(lo) ,  or 
x'  > z 1 + lo, and then Q (lo) = F (x' + lo) - F (x') < F (z 2 + Io) - F (z2) < Q (lo). 

We shall call F e ~  monomodal if it has a unique m o d e  and polymodal if it 
has more  than one mode,  i.e., if a_ < a §  Note  that  every discont inuous Fe~r  is 
m o n o m o d a l .  
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The three following examples show the nonvalidity of some weaker forms 
of Theorem 3,5 and of Corollary 3.6. More precisely: (a) If Q is continuous, and 
if A is convex valued, then F is not necessarily unimodal. (b) If Q is mono- 
modal and if F is discontinuous, then F is not necessarily unimodal. (c) If Q is 
monomodal, and if F is continuous, then F is not necessarily unimodal. 

Example 3.7. Let ~,/3>0, .+ /3=1,  and/~<~/2. Define 

[ �89 2 for 0_<x_<l, 

[ - � 8 9  for l_<x___2, 
F(x)=~ c~ for 2_<x_<3, 

| .+ �89 3) 2 for 3_<x_<4, 
l.l--�89 2 for 4_<x-<5. 

We compute 

[1 - I /2  tbr 0_<l_<2, 
| [ 2 - l ,  0] for 2_<l_<3, 

A(l)=j(I-3)fl/(e-~), for 3 < t <(4c~-/~)/., 

/ (5-1)fl  for (4oc-fi)/.<__l<__5, 
t [ 5 - t ,  0] for I>5, 

2/(1 - I/4) 

Q(1) =]( .  + �89 ./3(1- 3)~)/(. -/3) 

11-�89 

a =(4~-fi)/c~, a+ =0, 
Example 3.8. For s = 1, 2 we define 

for 0<_t_<2, 
for 2< t<3 ,  
for 3 <l<(4~-/~)/~, 
for (4.-/3)/.__<l<5, 
for I>5, 

We find A~(4)= {0, 2}, 

0 

F,(x) = x/4 

t(x+2)/8 
1 :~ F 1 (x) =X(4x - 7) = 

=~(x-2) /8  +�88 
F 2 (x) [ ( x -  2)/8 + �89 

for x<0 ,  
for 0_<x_<l, 
for l < x < 2 ,  
for 4 < x < 6 ,  

for 2 < x < 4 ,  

for 2 < x < 3 ,  
for 3 < x < 4 .  

i for l<0,  
Qs(l) = +2)/8 for 2 < l < 6 ,  

for 1>6, 

Ql(1)--�88 and Q2(1)=(I+2)/8 for 0_-</<2. 
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4. Larboard and Starboard 

Let F~q/. A more detailed description of the behaviour of the pointer of F can 
be obtained by introducing the larboard function b and the starboard function t 
of E defined by b(l)=infA(l), t(l)=supA(1) for le(0, oo], b(0)=b+(0), t(0) 
=t+(0). Obviously A(l)=Eb(I), t(l)] for l>0.  

Lemma 4.1. (1) I f  le[O,c~], then b ( l ) e [a_- l ,a_]  and t( l )e[a+-l ,a+].  (2) a 
=b(0), a+ = t(0), b ( o o ) = -  oo, t ( ~ ) = x ' .  

Proof. (1) Apply Corollary 3.3 and Remark 2.5, (2). (2) Apply (1). 

Theorem 4.2. (1) b and t are nonincreasing on [0, oo] and absolutely continuous 
on [0, oo). (2) b + I  and t + I  are nondecreasing on [0, oo] and absolutely con- 
tinuous on [0, c~). 

Proof. In virtue of Theorem 3.1, the monotonicity of these functions is an 
immediate consequence of Lemma 2.7. Now observe that l l> l  2 implies 
l~-12>b(12)-b(ll)>O. Hence b is absolutely continuous. Analogously for t, 
b+I,  and t+I .  

Note that from Theorem4.2 and Corollary 3.6 it follows that LeD(A), 
whenever Le(0, oo) and F is strictly unimodal. 

The following result is complementary to Theorem 4.2: 

Lemma 4.3. (1) b is continuous at t = oo if and only if x' = - co or x" < ~ .  (2) t is 
continuous at l= oo. (3) b + l  is continuous at l= oo. (4) t + I  is continuous at I 
= oo if and only if x" = co or x' > - oo. 

Proof. (1) Let l i m b ( l ) = - o o  and let F(x)=0.  Choose l > 0  such that b(l)<x. 
l ~ o 0  

We have Q(1)=F(b(l)+l)-F(b(l))<__F(x+l)-F (x)<=Q(1) and F(b(l)+l)= 
F(x + l). This shows that F is constant on (x+l, oo). Conversely, put 2 =  lim b(l). 

t ~ c O  

Since l > l i m ( Q ( l ) + F  (b( l ) )>l+F (2), we have 2 = - o o  whenever x ' = - o o .  

In the case x', x"elR we have ~ <  lim ( x " - t ) =  - o o .  (2) Since A is cocontinuous 

at l=  o% t is u.s.c, and hence left continuous at l=  co. (3, 4) Similar proofs. 

5. The Subdifferential of  a Unimodal Distribution Function 

Let Feog. In the proof of Corollary 3.3 it was pointed out that A(I) is the set of 
all maximum points of the concave function F(.  + l ) - F  on [ a - l , a + ] .  By 
Remark 2.5, (6), the convex function F - F ( .  +t) has a minimum at an interior 
point x of this interval if and only if 0e3F_ (x) + ~ ( -  F(x + l)). Hence: 

Lemma 5.1. A(l)ra(a_ -1, a+)= {xe(a - l ,  a+): Of(x + l ) ~ f ( x ) + ~ }  for le(O, oo). 

Lemma 5.2. Let le(O, oo) and xeA(l).  (1) I f  x e [ a _ - I ,  a+), then OQ(t)cOF(x). (2) 
I f  x~(a -1, a+], then OQ(t )c~ f (x  +t). 
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Proof The first s tatement  follows from the inequalities 

c~(l- k) < Q (l) - Q (k) < F(x + l) - F (x) - F(x + l) + F (x + l -  k) = F(x + l - k) - V(x), 

valid for any k > m i n ( O , x + l - a + )  and any ~SQ(1). The  second s ta tement  is 
proven similarly. 

Proposition 5.3. Let l~(O, oo). (1) A( l )~ (a_- l ,a+)={x~(a  - l ,a+):  8Q(1) 
=~?F(x)~3F(x +l)}. (2) l f  A ( l )~ (a_ - l ,  a + ) = 0 ,  then a_ = a +  and either (cQ A(k) 
= { a - k }  and ~?Q(k)=~F(b(k)) for any ke(O, 1], or ( f i )A(k)={a+} and 9Q(k) 
=~3F(b(k)+k) for any k~(O, l]. 

Proof (1). In virtue of the preceding two lemmas, it suffices to prove that 
c~OQ(1) whenever eeOF(x)c~c~F(x+l) and x~A( l )c~(a- I ,a+) .  This follows 
from the inequalities 

Q (l + k) - Q (l) = F (b (l + k) + 1 + k) - F (b (I + k)) - F (x + I) + F (x) 

< c~(b(l + k) + l + k - ( x  + l)-a(b(l  + k ) -  x)=~l,  

for k > - l .  (2c 0 By Lemma4 .1 ,  (1) and by Theorem4.2 ,  (2) we have a_=a+ 
and A ( k ) = { a _ - k }  for O<k<=l. Therefore,  Q ( k ) = F ( a _ ) - F ( a _ - k )  and OQ(k) 
= OF(b(k)). (2fi) Similar proof. 

We are now in a posi t ion to formulate  a criterion for po lymodal  distribu- 
tions: 

TheoremS.4. Let F ~ .  The following relations are equivalent: (1) F is poly- 
modal. (2) a < a +  and Q is affine on [0, a + - a _ ] ,  with the same slope as F on 
[a , a~] .  (3) Q is affine on some segment E0, lo], 10>0, and F is continuous. (4) Q 
is polymodal. 

Proof Only the p roof  of (3 )~(1)  needs attention. Let  ~ ] R  and 0Q(I)={~} 
for l~(0, lo), I o >0.  According to Proposi t ion  5.3 we have the following three possi- 
bilities. (i) A(l)={a - l }  for some lc(0, lo). In this case, a+=a =a and F is 
affine with slope ~ on [a - l ,  a]. For  x ~ ( a - l ,  a) and fl~c~F(x+l), we have 

Q (1) > F (x + l) - F (x) > fi (x + l - a) + c~ (a - x) > Q (1) + (fl - ~) (x + l - a), 

and hence f i<a .  F r o m  this it follows that  F(y)<_F(a)+c~(y-a) for y>a, and 
hence that  F is concave on (a - l ,  oo) in contradict ion to the s tatement  a = a + .  
(ii) The case A(l)={a+} for some l~(O, lo) is t reated similarly. (iii) A(1)c~(a 
-l,a+)4=~) for each l~(0, 10). Since A((0,  lo))=(b(lo),a+), {c~}=~F(x)c~gF(x+l) 
and F is affine with slope c~ on Eb(lo), t(lo)+lo]. 

It follows that  Q and F have the same modal length a + - a ,  whenever 
F~q/. 

6. A Representation Theorem 

Let  f :  E0, ~ ) -~]R be a cont inuous nonincreasing function and let ~ = f ( 0 )  and fl 
= f_(oo) .  For  each x~(fi, c0, f - l ( x )  is a nonempty  closed segment of 1R. With 
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the conventions f_(0)=c~, f+(oo)=fi ,  two generalized right inverses o f f  f s: 
( -  oo, c~] -+ [0, oo], and f i :  (_  oo, c~] ~ [0, ov], are defined by i f(x)  = i n f f -  l(x), 

f S ( x )=sup( f_ ) - l ( x )  for x>fl ,  f i = f S = o o  on ( - o o ,  fi), the sup and inf being 
taken in [0, oo]. 

The following statements are readily verified: 

Remark 6.1 (1) If f l < x < y < ~ ,  then fS (y)<f i (x )<f f (x ) ,  i f ( c0=0  , and f f ( f i )=  oo. 
(2) If fi<x<c~, then f+( f i (x ) )=f+( f f (x ) )=x .  (3) I f f i (x )<fS(x) ,  t h e n / i s  con- 
stant on (if(x), fS(x)). ( 4 ) f i = ( f i ) + = ( f s ) +  on ( -oo ,  c~) and f f = ( f s ) _  on 
( - o o ,  ct]. (5) For a continuous nondecreasing function g: (0, oo)--+IR, the 
generalized inverse functions, defined by gi(x) = ( - g)i( _ x), gS(x) = ( - g)S( _ x), 
have similar properties. 

Our second main result is a representation theorem for unimodal distribu- 
tion functions that reflects the following formal computation. Let F ~ a  and let 
f be a selection of the pointer of E We have 

Q (1) = F ( f  (1) + l) - F ( f  (l)) = max {F (x + l) - F (x): x e IR}, 

F' ( f  (1) + I) = F' ( f  (l)), Q' (1) = F' ( f  (l)) 

and 
fS(x) 

F(x)=  i F'(z)dz= ~ F'(f(1))df(1) 

= -  ~ Q'(1)df(l) for x<a .  
f~(x) 

Using notations like fg(x) in stead of (fo g)(x) or f(g(x)), we have: 

Theorem 6.2.,(1) Let F be a numerical function and a~lR. Then F ~  a if and only 
if F is of the form 

c o  

,(Odfil) for x<a, 
F ( x ) = / I ' (  ) (6.1) 

Qgi(x)+F fgi(x) for x > a ,  

where Q6~+ c>~, t 1 is the left derivative of Q and f :  [0, oo)~IR is a function such 
that ( i ) f  is continuous, nonincreasing, and f ( 0 ) = a ;  (ii) g = f +  I is nondecreasing; 
(iii) t/ is df-integrable. (2) In this case, f is necessarily a selection of Av, Q = QF, 
and 

'(z) dz F(x)=[1- ! for  x <a,  

for x ~ a .  

Proof The proof is given in a number of steps. 

(6.2) 

(c~) Let f satisfy the conditions (i)-(iii) and let F be defined by (6.1). Notice 
that the boundf f (x )  in (6.1) may be replaced by any 2c[fi(x) ,  if(x)]. Since the 
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measure dz on (f_ (~),  a) is the image of the measure - d f  on (0, ~ )  under the 
map ~ we have 

f i  (X) 

F ( x ) = - ~  rl(1)df(1)= J rl(1)df(l ) 
f S ( x  ) f i  f _  (co) 

f ~ (x) 
= ~ rlf'f(l)df(I)= i rlf~(z) dz 

f i f _ ( o o )  f - ( o o )  

= i rtfi(z)dz for x<a. 
--03 

Similarly, 

F(x)=Qg~(x) - lim j tl(1)df(1) 
y ~ fg t (x)  f s  (y) 

=Qgi(x)- ~ rl(1)df(l)=l- ~ rl(l)dg(1) 
f s  f g i ( x )  gi (x) 

oo 

=l- j t lg~(z)dz  for x>__a. 
x 

(fi) From the representation (6.2) and Remark 2.5, (7), we conclude that 
F~q/,. Moreover 

oO CO CO 

F(a)=  1 - j ~/g~(z)dz= 1 - j tl(t)dI- ]" ~l(t)df(I)=Q(O)+F(a) 
a 0 0 

implies Q(0) = QF(0). 
(J Q=QF a n d f ~ A .  Indeed, i f / > 0  and x=f(1), then 

F ( x + l ) - F  (x)=Qg'(x+I)- of rl(s)df(s)+ ~ rl(sldf(s) 
g~(x+l) f~(x) 

gi (x + l) 

=Q( / )+  j rt(s)dg(s)=Q(l). 
l 

S i n c e f f = f i d f -  a.e., we get jr/if(x), rtfi(x)]caF(x) for x<a and, similarly, 
[rlg'(x),rlgi(x)]~c~F(x) for x>a. Assume first that a - t < x < a .  We have 
rt(1)~OF(x)c~OF(x+l) and hence, by Lemma 5.1, xeA(1) and Q(l)=Qr(l ). Now 
assume that x=a and hencef(s)=a for 0 < s < / .  We have F(y+l)-F(y)<Q(1) 
for x =< y and 

fS(y)  

F(y+l)-F(y)=Qg~(y+l) - ~ ~l(l)df(l)~O(1) for y<x, 
g i ( y + / )  

since gi(y + l) N gi (x +/) -< l < f f  (x) < f f  (y). 
The case x+t-=a is treated similarly. 
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(5) Let now Feq/~. Choose Q=QF and f = 2 b + ( 1 - 2 ) t ,  where a=2a + 
(1-2) a§ (Lemma 4.1). Since dg is a positive measure, we have 

- ~ tl(1)df(1)< ~ tl(1)dl=l-Q(fS(x)), and hence f satisfies the conditions 
f s  ( x )  f s  ( x )  

(i)-(iii). By the preceding part of the proof, the formulae (6.1) or (6.2) define a 
function Geq/a, with Q~=QF and rlfi(x)ec~G(x). By Lemma 5.2, (1), we have 
c~F(x)~c~Q(fi(x)) for each xe(-o�9 From F ( - o o ) = G ( - o o )  and ?F(x)~ 
~?G(x)40 for each x e ( - c ~ ,  a), it follows that F=G on ( -0% a). Similarly, F=G 
on (a, oo). 

As a direct consequence of this result we have the following. 

Corrolary6.3. Feq[ o is symmetric if and only if -I/2~AF(1 ) for each I>0. 
Moreover, F(x)=�89 x < 0  and F(x)=�89 + Qf(2x)J for x >O. 

As another application of Theorem 6.2, let Feq/o and define 

I - i zdrlfi(z) for x < 0 ,  

~ ( x )  = 2o ~ 

l + ! z d ~ j ( z )  for x > 0 .  

It is easily shown that G(x)-F(x)=-Xtl ( f i (x))  for x<0 ,  G(x)-F(x)= 
-Xtl(g~(x)) for x>0 ,  and that G is a distribution function such that G(0)=F(0) 
and G (0)=F_(0). If x is the characteristic function of F and if ~ is the 
characteristic function of G, then, for each telR, 

0 

Z(t) = ~ dt~rlff(z)dz+Q(O)+~ eit~rlgi(z)dz 
-- oo 0 

- - 0  oO 

= -- ~ [(e itz -- 1)/i tz] zdrlfi(z)+ G(O)- G (0)- ~ [(e its- 1)/i tz] zdrlg'(z ) 
-- c~ 0 

T = [(eitZ-1)/itz]dG(z)=t-lSO(s)ds. 
- -o0  0 

This is the "only if" part of the well known characterization of A. Ja. HinSin 
(see, e.g., Lukfics [5], p. 92): Let Z be the characteristic function of F e ~  Then 

t 

f e~go if and only if Z(t)=t-l  S ~(s)ds, teN, where 0 is a characteristic function. 
0 

In its direct form, the theorem of Hin6in roughly amounts to the statement: 
Let F e f f  be absolutely continuous, except possibly at 0. Then FEq/0 if and 
only if F satisfies the differential equation G ( x ) = - x F ' ( x ) + F ( x )  a.e., where G 
is some arbitrary distribution function (for details, see Gnedenko and Kolmo- 
gorov [4]). Theorem 6.2 has the advantage of expressing F e ~  strictly in terms 
of its concentration function and its pointer, i.e., in quantities that may reflect 
some known or desired properties of F. Moreover, in the "if" part of the 
theorem, no initial conditions whatever are imposed on E 
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