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R6nyi (1967) proved that if a point process on a line is such that the number of 
points occurring in every set consisting of a finite number of half-open intervals 
has a poisson distribution with mean equal to the measure of the set, then the 
process is a Poisson process (and he extended this result to R"). He asked if the 
same result is true if the same condition is only known to hold for all sets consisting 
of a single interval. This was shown to be false by counter examples constructed 
by Shepp (1967), Moran (1967), and Lee (1968). Later Szfisz (1970) showed that 
for every integer k_-> 1, there exists a non-Poisson point process on the line such 
that for every set ofkdisjoint half-open intervals 11 . . . . .  I k, the numbers of points 
falling in the I i are such independent Poisson variates, and he also extended this 
result to R". In a previous note (Moran (1975))I have constructed a plane point 
process which is not a Poisson process, but which is such that the number of 
points falling in any convex Borel set has a Poisson distribution with mean equal 
to its area. In the present note I show that for any integer k >  1, there exists a 
non-Poisson point process in the plane which is such that the numbers of points 
falling inside any k disjoint convex Borel sets are independent Poisson variates 
with means equal to their areas. This extends the R 2 result of Szfisz to all convex 
Borel sets. To do this we first prove a lemma on such convex Borel sets. 

Lemma. Consider a circle C in the plane. Let C 1 . . . . .  C, be n disjoint circles 
whose centres lie on the circumference of  C, and which all have the radius S. Let S 
be so small, and the centres of  the C i so far apart, that no straight line meets three 
or more of the C i. I f  we now have k disjoint plane convex Borel sets K 1 . . . . .  Kk, 
with the property that every C i is met by at least two of the Kj,  then 

k___[~(n+ 1)]+ 1, (1) 

where Ix] is the integral part of x. 

Proof Let N be the total number of times a Kj meets a C i. Then N > 2n. 
We prove the lemma by induction, it being clearly true for n--2. 

Let the region Kj  meet mj of the circles. Then ~ m j = N > 2 n .  Then either 
J 

k > 2 n  in which case (1) is satisfied, or there is a K , K  x say, for which rex>2. 
Suppose the circles C i are numbered in cyclic order C 1 . . . . .  C, around the cir- 
cumference of C, and that K x meets the circles with suffices i x . . . . .  iml. For  
simplicity of statement we represent this by a cycle of symbols A, B where we 
write A in the i-th place if C i is met by K 1 , and B if it is not. Thus the A's and B's 
form a cycle with alternate runs of A's and B's, and we are concerned with "runs 
in a ring". 
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Consider a run of B's of length b so that, for example (identifying Ci+ . with Ci), 
Ci_ 1 and Ci+ b are met by K 1, but not C~, Ci+ t . . . . .  Ci+b_ 1. Then by convexity 
no circle in the sequence C~, C~+~ . . . . .  Ci+b_ ~ can be met by any K which meets 
a circle in the sequence C~+b+l, Ci+b+ 2 . . . . .  C~_ 2. By induction there must be at 
least [�89 + 1)] +1 K's which meet C i . . . . .  Ci+b_ 1 but none of the C~+b+ ~ . . . . .  C~_ 2 . 
Note that some of these K's may meet C~_~ or C~+ b. 

Now consider a run of a A's, for example C~, C~+ 1 . . . . .  Ci+a_ t , all of which 
are met by K 1. C~ and Ci+a_~ may also be met by K's  which meet C~_1, C~+ a 
respectively. Consider the K's which meet C~+ 1 . . . . .  Ci+,_ 2 (assuming a__>3). 
Then by convexity and the straight line condition any K which meets one of these 
cannot meet any of C~+,, C~+a+ ~ . . . . .  Ci_~. Moreover by convexity, none of 
these K's can meet more than two of C~+~ . . . . .  C,+a_ 2. Thus, in addition to K~ 
there are at least [ � 89  K's which meet these and do not meet Ci+ . . . . . .  Ci_ 1 . 

If there are r runs of A's of lengths al . . . . .  a,, and r runs of B's of length 
b 1 . . . . .  br, we must have 

2 a ~ + 2 b ~ = n ,  

and the total number of K's must be at least 

1 +~,  {1 + [�89 (bi + 1)]} + 2  [�89 1)] > 1 +r+�89 2 bi+~', (�89 a,-  1) 
i i i i 

= > 1 + �89 n. (2) 

Since k is an integer, (1) is satisfied and the lemma proved. 
We can now construct a non-Poisson process satisfying the required condi- 

tions for any given integer k. We do this by an elaboration of the method used 
in Moran (1975). Divide the whole plane into unit squares and suppose that there 
is a Poisson point process on the plane with the expectation of the number of 
points in any unit square equal to unity. We now modify the distribution inside 
each one of the squares in a manner independent of what happens in the others. 
In each square take a circle with radius �88 say, with its centre at the centre of the 
square. On the circumference choose n = 2 k + 1 points equally spaced apart and 
with centre at each of these points construct a smaller circle of radius a. Choose a 
small enough so that these circles lie inside the square, are disjoint, and are such 
that no straight line meets more than two of them. 

Within each of the small circles construct a rectangle of sides of length 6, �88 5, 
centered on the centre of the circle. Divide this rectangle into twelve equal squares 
which are numbered in a natural coordinatewise way as (11), (12), ... (14), ... (34) 
so that (11), (14), (31), and (34) are the corner squares. We now carry out a pro- 
cedure similar to that used in the previous paper. 

We now modify the distribution of the Poisson process defined on the whole 
plane and we do this independently for each unit square. We leave unaltered the 
distributions inside the squares numbered (12), (13), (21), (24), (32), and (33) 
inside each circle. Consider the joint distribution of the points inside the squares 
(!1), (14), (22), (23), (31), (34). We shall only make modifications to the 64 cases 
where the numbers of points in these squares take the value 0 and 1. The prob- 
abilities of each of these events are all greater than some positive constant e > 0. 
We leave unaltered the joint distribution of the numbers of points in the squares 
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(11), (14), (31), (34), but we make the distribution if the numbers of points in (22), 
(23) dependent on them. 

Let nij be the number of points in the square (i j). We leave the probabilities 

P(n22 = 1, n23 = l ln 1 l ,  n l4 ,  n3 i ,  n34), 

P(n22=O, n23 = 0 [ n 1 1 ,  n14, n31, n34) 

unaltered. We add to 

P(n22 = 1, n23 = 0 [ n i l  , n14, n31 , n34 ) 

the quantity 

e Z (2 n I l - 1)(2 n24 - 1)(2 n 31 -- 1)(2 n34 - 1) (3) 

where the nii in these expressions are all 0 or 1. Here Z is a mixing random variable 
taking the values _ 1 with probabilities �89 We also subtract the expression 
in (3) from 

p(nz2 = 0 ,  n23 = l ln 11, nl4, n31, n34)" 

Considered by itself for a particular rectangle this procedure does not alter 
the joint distribution of the numbers of points in the squares. However for each 
rectangle inside a circle Ci we use a different Z which we denote as Zi. We take 
Z 1 . . . . .  Z ,_  1 as independent random variables and put Z , = Z  1 ... Z , _  1. Then 
any set of n -  1 Z's are a set of independent random variables, but the whole 
set (Z 1 . . . .  , Z,) is not independent. Having determined the numbers of points 
inside each square we suppose that each of them is independently distributed 
uniformly over the square which contains it. 

Consider a single rectangle and suppose the corresponding Z is fixed. From 
the above construction we see that the n~j in any eleven of the twelve squares 
are independently distributed if the remaining square is a corner square, n l l ,  hi4, 
hal , or n34. Moreover the variables n i l ,  ni4, n22-f-ne3, n31,nz4 are jointly 
independent, and jointly independent of the remaining n~j. Suppose a convex 
Borel set, K, overlaps the rectangle. If there is at least one corner square which 
it does not meet, the contributions to the number of points inside K from the 
other squares are independent. If, however, it meets all four corner squares it 
must, by convexity, contain in its interior the whole of the squares (22) and (23). 
Thus the total number of points inside K must be a Poisson variate with the 
correct expectation. 

We now carry out the same construction in each unit square in the plane, 
the sets of n Z's in each unit square being completely independent of each other. 
Finally the whole coordinate system is given a uniform translation (X, Y) in the 
plane, where X and Y are independent random variables uniformly distributed 
on the interval (0, 1). The resulting point process is clearly not a Poisson point 
process and it is possible in principle to set up a sampling procedure which would 
confirm this from an infinite empirical realisation. 

Now consider any k disjoint convex Borel sets K i . . . . .  K~. The contributions 
to the numbers of points in the K~ from different unit squares are independent, 
so we need only consider the contributions from one of the latter. From the lemma 
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and the fact that n = 2 k +  1, there is at least one of the Ci, C a say, which is met 
by at most one of the Kj. If C 1 is not met by any of the Kj, the n -  1 Z's  cor- 
responding to the other circles are independently distributed, and the numbers 
of points in the K's contributed from the other C s (s+ 1) are independently 
distributed in Poisson distributions with the correct expectations. 

Now suppose C 1 is met by one only of the K's, K i say. Z 1 is dependent on 
the other Z's so that the distribution of the numbers of points in the squares 
(11), (14), (22), (23), (31), (34) in C1 are not independent of what happens in the 
other circles. However if K i does not meet all of the four corner squares (11), (14), 
(31), (34), the numbers of points in the ones it does meet are distributed inde- 
pendently. On the other hand if it does meet all the four corner squares then by 
convexity it must cover completely the squares (22) and (23), so that only the 
sum of the numbers of points in these squares matters. But we have already 
seen that, given Z, n i t ,  nl4, /122q-n23 , / '/31' n34 are jointly independent and 
independent of Z. Thus the numbers of points in KI . . . .  , K k contributed by their 
intersections with the unit square under consideration are independent Poisson 
variates with the correct expectations. Thus the result is proved. 

This construction is essentially dependent on the fact that k, although arbitrary, 
is fixed so that the counterexample constructed depends on the value of k. If a 
point process is such that for any finite set of disjoint convex Borel sets, the 
numbers of points they contain have independent Poisson distributions with 
means equal to the areas of the sets, then the process is certainly a Poisson process. 
This follows from the definition of a Poisson process as a point process for which 
the numbers of points falling in any set of disjoint Borel sets are independent 
Poisson variates with appropriate mean values, combined with the fact that any 
measurable set can be approximated arbitrarily closely in Lebesgue measure by 
a sum of a finite number of convex Borel sets. 

Finally it is possible to add one natural condition which ensures that patho- 
logical examples of the type described above can not occur. Lee (1968) has shown 
that if a point process on a line is infinitely divisible, i.e. for all N is representable 
as the superposition of N independent point processes of identical structure, and 
if the number of points occurring in any interval has a Poisson distribution, then 
the process is Poisson. His proof applies equally well in any Euclidean space 
and thus the process constructed above is not infinitely divisible. 
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