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1. Introduction 

The connect ion between M a r k o v  processes and linear parabolic partial differential 
equat ions is well known.  To take the simplest example, the transit ion density 
for Brownian  mot ion  

1 p(t, x, y ) = - -  e - (x-y)2/2t  

is also the Green function (elementary solution) of the heat equat ion 

ap 1 t~2p 
~t 2 OX 2 "  

A second example comes f rom the F e y n m a n - K a c  formula:  

p(t, x, y)= Ex (e -s~k(x')a~ 6(Xt- y)} (1) 

is the elementary solution of  the heat equat ion with a "cool ing"  term 

ap 1 O2p 
a~- = T a T - -  k(x) p. 

Here E x stands for the expectat ion of Brownian mot ion  X~ beginning at time zero 
at posi t ion x. 
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Each of the equations above is linear. Since most "real" problems are non- 
linear, one would like to extend this relationship to nonlinear parabolic equations. 
For example, the evolution equations 

1 02p 
2 ~x 2 - p ( 1 - p )  

1 r 
2 ~x 2 P(1 -P)2 

the study of competing genotypes. They are of the form 

1 O2p 
2 ~3x 2 Pg(P) (2) 

where g(p) is defined for 0 < p  < 1, non-negative, and once (or more) differentiable. 
Instead of (2) with x ~IR we let x take only integer values, making things technically 
simpler. Thus (2) is replaced by 

~p 1 
Ot =-2 A p - p  g(p) (3) 

with initial data 

p(O, x) = po(X) (4) 

where xeL= { .... -2 ,  - 1, O, 1, 2, ...}, t >O, and here and henceforth A stands for 
the second symmetric difference in x: 

Ap(t, x)=p(t, x -  1)-2p( t ,  x)+ p(t, x+ 1). 

The question arises: What kind of a Markov process has transition density satisfying 
(3) and (4) and what is its interpretation? We propose to make such a process out 
of simple random walks. Instead of a single particle, as in the first two examples, 
we take many, interacting according to a rule determined by g. The solution of 
(3)-(4) is then obtained as the probability density of a "typical" particle. 

The Feynman-Kac formula (1) can be interpreted as the expectation of a 
function of the Brownian position X t (in (1) we chose a 6 function), with the added 
feature that the Brownian particle is "killed" at an exponentially distributed 
time T, 

P {T> tlX~, z < t} = e -s~k(x')a~. 

Notice that the killing time depends on the path. In the present Markov process, 
the killing time of the first particle, say, depends on the paths of all the particles 
via the concentration of other particles at the location of the first. This feature 
introduces a nonlinearity into the forward equation. In this sense what we do is an 
extension of the Feynman-Kac formula. 

With only minor modification one can change g(p) to g(p, x). One need only 

replace g ( ~i~(n~ ) by g ( ~(nt),xi(t)) where x~(t) is the location of the i-th particle 

at time t. 
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One can pass formally to a diffusion as follows. Let the times between jumps 
be exponentially distributed, ~ with mean 1/7, let the lattice width m go to zero 
and ?-~oe, keeping m 2 7 -  - 1. Then the lattice forward equation (3) becomes the 
diffusion forward equation (2). 

2. The N-particle Process 

We place a "particle" at a point of the lattice 

L = {  .... - 2 ,  - 1 ,  0, 1, 2, ...} 

and associate with it an exponential holding time T, at which moment it steps 
a unit distance to the left or right, the two possibilities being equally likely. The 
distribution of T is 

P{T>t}=e -~t, t>O (0) 

for some fixed y > 0. Henceforth we take ? = 1. Each time a jump occurs, we 
assign the particle a new exponential holding time having the same distribution, 
independent of all past events. The renewal property of exponential holding times 

P{T>t + s lT>t}=e-s=P{T> s} 

means that the random walk is Markovian. We call this a standard random walk. 
We now place n of these particles on L and let them move independently except 
that each particle is "killed" at a time determined by the others as follows. Let 
~ ( t )  be the number of other particles which at time t are at the same place as the 
i-th particle. Then the killing time ki for the i-th particle is defined as the first 
root  k = k i of 

Here, TI', ..., T,' are new independent exponential holding times with law 

P{Ti'>t}=e -t, 

one to each particle; they are independent of each other and of everything else. 
At the moment k~ the i-th particle jumps to a state oe where it remains forever 
after. Since the event 

k i >  t 

is equivalent to 

See Section 2, Eq. (0). 
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we have the law that, conditional upon the paths 2 up to time t, 

p {ki> t} = P { Ti' > ~ g ( ~ )  ) dst=e-I~g(e~(~))as. 

Moreover, by the renewal property, 

P{k,e(t,t+dt]lk,>t}=g ( ~--(n O) dr. 

with the same conditioning. Thus the killing Markovian: if a particle has not been 
killed by time t, it behaves as if it begins anew at time t, any past time spent in the 
company of other particles haaing no effect on its future. Stated more colloquially, 
a particle being killed "at a given moment" depends only on the number of other 
particles that are visiting it at that moment. 

Recall that the particles are indistinguishable, since the initial distribution 
and interaction rules are the same for each particle. It is then appropriate to look 
not at the paths of the individual particles but at the (time dependent) empirical 
distribution 3 

5F = {Sf'(j)} 

where 

number of particles at place j at time t ~ft(j) = 
n 

Clearly X is a Markov process. We look at X because, although the n-particle 
process is random, the empirical distribution process Xn=X for n particles 
converges (in probability) as n]'oo to a deterministic process X~. This may be 
regarded as the "law of large numbers" for the process. 

3. The Law of Large Numbers 

Consider the space ~ of (possibly) defective empirical probability distributions 
ofn particles on L, of total mass 0, 1/n, 2In,..., 1 - I/n, or 1. The defect will account 
for particles sent to oo. Let 2K be the space of all (possibly) defective probability 
distributions on L. Notice that ~I~ becomes dense in X (in the usual weak topo- 
logy). Also note that 2~ is compact. Let C(X) be the Banach space of continuous 
functions on 2K with the usual supremum norm. Let ~k be a C 1 function 4 on X.  

2 The paths are now on L u  {oo}. 
3 Note that we will use script typeface to denote processes (e.g. ~g, ay) while saving X, Y etc. for 
fixed functions. 

4 Let X e X  and let Y be a signed measure on L with total variation < 1, such that for small e, 
X+eYeX. Then ~ is a C 1 function on2K if for all such X and Y 

~(X+eY)=tp(X)+e~8-~.Y+o(e) as ~-~0 

where the linear map a~/3X of Y into R 1 is continuous and bounded as a function of X and e-1 o(e)~ 0 
uniformly in X and Y. 
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The empirical distribution process ~r described in Section 2 moves in X n. Its 
generator at X s X  n is easily computed: 

=O~k~X (~ ~" X(1)(6(l+ 1)-26(l)+6(I-1))) 

+5-2 
oO 

where o(1)~0 independently of X as n]'oe. Here 6(/) denotes the unit mass at the 
place leL. Note that all sums are finite. In the last line note that Xg(X-l/n) 
stands for the function with value X(l)g(X(l)-1/n) at the place I. We now let 
n ~ oo and require X,e~l~ to converge to X e X ,  obtaining 

G,~(X,)-*G~(X)=~x (~ AX-Xg(X)) (1) 

where the convergence is uniform in X. The limiting generator Goo is a first order 
operator and so regulates ~/deterministic process .~ro~ : the associated semigroup 
exp (tG~) acts on C(2N) by translation along solutions of 

=�89 AX- Xg(X). (2) 

If g is non-negative and once continuously differentiable it is easy to prove exis- 
tence and uniqueness of solutions to (2) in the space YI[. Clearly the semigroup 
exp (tG~) is strongly continuous and contractive. 

The purpose of this section is to prove 

The Law of Large Numbers for the Y(n Process: 
~ YE~ in probability. 

This will be done by proving the strong convergence of the semigroups 
exp (tG,)--* exp (tGJ. The main tool is the Trotter-Kato theorem: 

Let X be a topological space and C = C ( ~  the space of continuous functions 
on ]K with the supremum norm. Let ~ be a subset of X and (7, the restriction 
of C to ~K,. Let 

I1 11.= sup I (X)l 
XE'~n 
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and assume that 2K, becomes dense in 2K so that [[O[I,~][~0[I for 0 e C .  For 
n =  1, 2, ..., let exp (tG,) be a strongly continuous semigroup of contraction 
operators on C, with infinitesimal generator G, and similarly for exp ( tGJ  on C. 

The Trotter-Kato Theorem. I f  there is a subspace C' c C such that 

(a) C' is dense in the domain of Go~, 

(b) the closure of the restriction of G~ to C' is identical to G~, and 

(c) for OeC', I IG.O-G~r  

then exp (tG.) converges to exp (tG~), in the sense that 

II d~-tp-etGoo~ II ~ 0  

for every t~ in C. 
/ 

The following smoothness condition on the limiting semigroup is sufficient: 

I f  ~J is of class C 1 then so is exp (tG~) ~J, and 

~ e 'G~ ~(X) < Ae nt (3) 

with constants A and B independent of X and t. 
We will now prove the sufficiency. Assume for simplicity that B < 1. By the 

Hille-Yosida theorem, 

R 1 = ( 1  - Goo) -1 

is bounded and invertible on C('K), and so maps C 1, which is dense 5 in C('N), 
onto a set C' which is dense in the domain of G~. 

We now show that this set fulfills the conditions for C' in the Taotter-Kato 
theorem. We have just verified condition (a). Choose a 0 in the domain of G~o. 
Then approximate ( 1 -  G~)~b by ~b.e C t and define 

( 1 -  G~) -1 qS, = 0.E C'. 

By the continuity of R a , 

0 . - - - (1-  Go0) -a ~b.--*(1-G~o) -~ ( 1 - G ~ )  0 = 0 .  

Now this convergence combined with 

~b.--- (1 - G~o) 0.--* (i - G~) 0 

gives 

So the closure of the restriction of G~ to C' is an extension of G~, but since G~o 
is closed, they must be equal. With condition (b) verified, only (c) remains. Recall 

s The denseness is proved as follows. Any bounded function f on Ldefines a linear function on X via 

Z ~  X(1) f(1). 
Polynomials are then defined as finite linear combinations of finite products of such objects. The 
Stone-Weierstrass theorem implies that polynomials (which are a subset of C t) are dense in C(X) 
and so C 1 is dense. 
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that 

~(X)--(1 - Go~) -1 ~b(X)=5~ e-'(e ta= dp)(X) dt. 

We want to show that the generators G, converge on the function space C' in the 
sense that, for ~b e C 1 

G , 6 ( X ) -  G~b(X)  (4) 

is uniformly small on ~ , .  This, however, comes from the smoothness condition (3). 
First 

~ / ( X + e Y ) = ~  ~ e-'(e t6~ (a) (X) d t + ~  e- '  f~ Ce,~,h~ Yd6 dr. jO o ( x  +~y)  ~ wj" 

The last member  can be written 

S~ da 5g e - '  (e ' ~  O(X+bY) cb). Yd t  

~ ( e * G ~ b )  �9 Y+o(1) dt 

: 

as the reader may  easily check, and 

t ~3 etG~(adt 

is bounded and continuous with respect to X. Thus ~b is a C 1 function of X and 
this proves (4). 

We now show that the smoothness condition (3) is satisfied by our semigroup 
exp (tG| We will prove the following 

Lemma. The solution X = X t of 

=�89 A X -  Xg(X) (5) 

~X t ~t 
is of class C 1 in its initial data X ~ and ~ 6  ~ Ae with constants A, B independent 

of X ~ and t. 
For  ~b ~ C 1, we can then write 

0 ~G~ 0q5 0X'  
a ~  0 (e ~b) = e X "  OX ~ 

and the smoothness condition will be satisfied. 

Proof of Lemma. Let X ~ s X  and let yO be a signed measure on L with total 
mass <1,  and such that for small e, X ~ and X ~  ~ are both in Ys Let X, and 
X z be the solutions to (5) with initial data (respectively) X ~ and X ~ + eY ~ The 
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difference X 3 = X 2 - X  1 satisfies the equation 

2 3 = ~ / I X  3 -- I-X2 g(X2) - X 1 8(Xl)] 

- } A X3 - [ (X2 - X~) g (X2) + X~ (8 (X2) - g (Xl ) ) ]  

[o 8(X2) - 8(X1)] =I AX3 -(X2- Xl) U ~ (x2) "q- x l  ~ J (6) 

=~ AX 3 - X3 k(t,/). 

where k(t,/), defined by the square bracket in (6), is bounded since g6 C1[0, 1] 
and the values of X are all between 0 and 1. Let E~ be the expectation for the 
random walk W(t) beginning at place 1 at time t=0 .  Since X 3 has initial data 
eY ~ the Feynman-Kac formula gives 

Xt3(1) = eE t {e-Sga,-s, w(~)) as yo(w(t))}. (7) 

Therefore, as e ~ 0, X 2 tends to X~ uniformly in I and uniformly in the initial data 
X ~ (since [kl remains under a bound B depending only on g). We therefore have 
g(X2)~g(Xx) and so, as e ~ 0 ,  k(t, x) converges to 

k~(t, x) = g(Xl) + X 1 g'(Xtx) 

uniformly in the initial data X ~ Thus (7) gives 

lim X~(l)-  XI (l)_ OX~ . yO(1 ) 
~-o  e OX ~ 

= E t { e - ~ ( ' - "  w(,))a~ yO(w(t)) } (8) 

uniformly in the initial data. Clearly OX~/~X ~ is continuous in X ~ and 

~X o <= Aest 

with the constant A independent o fX ~ and t. This completes the proof of the lemma. 
We now conclude from the Trotter-Kato theorem that exp (tG.)O=E~,(X. t) 

converges (uniformly in the initial data) to exp (tG~o)O=~,(Xt~). The above is 
simply the statement that X. converges in probability to X~, where :g~ evolves by 

~ =~ AX~ - X~g(Xoo). 

This concludes the proof of the law of large numbers for X,. 

4. Propagation of Chaos 

The interaction between the particles in the n-particle process is determined by 
(2.1). The division by n suggests that the effect of any given particle on any other 
becomes very slight for large n. This suggests that if we start the particles inde- 
pendently at time zero, the independence will hold for later times in the limit 
n ~ o o .  Let 

p~, ,,=p~.,,(ll,..., l,,,), l, sL, re<n, 
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be the marginal distribution at time t of the first m of the n particles. Since the 
distributions are symmetric it does not matter which particles we choose. The 
particular being initially distributed independently, each according to some 
common distribution p0 means that pO,, factors: 

pO, ,(11 . . . .  , Im)=pO(ll)... pO(Im)" 

"Propagation of chaos" means that this same factoring of the marginals holds 
in the limit n~ oe at later times t > O. More precisely, for f ixed m and nT 0% 

Pk,(l  . . . .  , l , ) - - ,  p ' ( l O  . . .  p ' ( l , )  

where f f  is the solution of 

Op 1 
- Ap -pg (p )  (1) 

0t 2 

with initial data pO. 
The meaning of pt is clear from the statement for m = 1: pt is the distribution 

of a single "typical" particle at time t (having averaged over all possible positions 
of the other particles). Therefore the result is that in the limit nToe the individual 
particles become independent at any fixed time with distribution regulated by (1). 

Proof of Propagation of Chaos. Because of the symmetry of the distribution 
function we consider not the locations of the individual particles but events 
like 

M = {among the first m of the n particles, M(l) sit at place 1}. (2) 

Let X be a fixed empirical distribution of n particles. Then the probability of the 
event M is 

, 

,M(OI 

Now let P~, ,{MIX} be the probability that at time t event M occurs, given that 
the particles have initial empirical distribution X. Let P, , , , {Mlp~174174 ~ be 
the same except that the particles are originally distributed independently, each 
according to the common distribution p0. 

Step 1. We must prove the convergence 6 

Pm,,{MIX} ~ (m)  ~ [f~(1)]u(~ 

6 In the next line we use the notation 

[I, M(l)! 

M stands for both a sequence {M(/)} and an event. The meaning will be clear from the context. 

(3) 
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uniformly in X. To do this we take X ~ = X and observe that 

P,.,. {MIX} = e'~nn(S). 

This converges uniformly in X to 

completing step 1. 

Step 2. We choose fixed positions 11 .. . .  ,1 m ; these determine occupation 
numbers M = {M(/)}: 

M(1) = the number of th.ese position which are equal to l. 

Let M also stand for the event (2). Then 

p~, .( l l  . . . .  , lm)= ~. P~, . ( l l ,  . . . ,  l'~) 
(l ' ,  . . . ,  IJn)~M 

= Pm,~{M[p~174174 ~ 

: ( M ) - l x ~  [ (nX)~p~ (4) 

Now, by the classical weak law of large numbers, as nT ~ ,  the weights in the square 
bracket of (4) peak to unit mass at X -  pO. This, combined with the convergence (3) 
and the uniformity of the latter in X, proves that 

t M ( I )  t Pro, ,(la . . . . .  lm)--, 1- I Y'~ (l) = X~ (ll)... X~(I,,). 
l 

This proves the propagation of chaos, since we know p~= X~ solves (1). 

G. C. Berresford 

5. Examples 

If g(p)= p, then the i-th particle executes a random walk until the time k when 

~k o ~:i(t) dt (1) 
n 

reaches an exponential holding time T~'. But (1) says: add up the total time each 
other particle spends in coincidence with the i-th particle and divide by the number 
of particles. This can be interpreted as the average time that another "typical" 
particle on the lattice spends in coincidence with the i-th particle. The i-th particle 
is killed when this average coincidence time reaches the exponential holding 
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time T[. The density for this process is the solution to 

~3 1 2 ~ p = g A p - p  , 

p(0, .)=pO(.). 

In the case g(p)= 1 - p  we have a particle being killed not when its average 
coincidence time becomes too high but when it is not high enough (compared 
with elapsed time t). This is a sort of communal survival rather than communal 
killing. Here the probability density solves 

@ 1 ~  , 2 -~=~ zJp-p+ p . 

6. Fluctuations 

This section is purely formal in intent; however it can be made completely rigor- 
ous. In Section 3 we showed that the s process converged in probability to a 
process s  satisfying the equation 

0 1 
x a X -  Xg(X). (1) 

One can consider the fluctuations about this limiting "mean" behavior. The 
question is analogous to passing from the weak law of large numbers, governing 
the empirical mean of a family of independent observations, to the central limit 
theorem, governing the fluctuation about the mean. We define the fluctuation 
process 

(2) 
where each ~.  (i) can be any real number, as distinct from the bounded •, process, 
and we are suppressing the time variable t. We will show that 

5f, = ~ r  +~_~ ~r + lower order terms 

where ~4~, the formal limit of ~J,, behaves like an Ornstein-Uhlenbeck process. 
Let ~ be a C 2 function v on •,  where Y is the space of functions on the integers. 

Then the generator G, of ~r can be computed at a place Y = l /~  [ X , -  X~] as 

7 Let 7/be all functions on the integers which have compact support. We say ~Y is a C 2 function 
on Y if, for any Y~Y, Z~7/, one has 

O~ 1 2 O ~  gJ(Y +eZ)=tP(Y)+e~- Z + y e  ~-~-" Z| +o(s2), 

where c~ry/c3Y is a linear map from 7/into the real numbers, c~2tp/~y2 is a linear map from 7/@7/into 
the reals, and both are continuous in Y.. 
We will use the notation Z | for Z@Z. 
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follows: 
[~, /_  6(1) <5(1-1)\ 1 [_ <5(/) <5(l+l)\_+(y)] 

G.+( Y)= 2,oL nSn(l) 

_4_~tnX,,(l)g(X,,(1)_!) [+ [y_<5(l,~ _+(y)] 
t v~f 

~ (v~(~ AXe- X~g(X~))) 

=~.nX.(1)+__ .--[~/t-~+---~ ) < 5 ( I )  ~5(I-I)\ +2-i ~ d z + / t - ~ - + ~  ) < 5 ( / )  <5(I-i)\ | 

c~+ / <5(/) <5(/+i)\ 1 02+ 6(I), <5(/+i)\ | 
-) J 

(X.(1)-~) [~y[,-~]<5(l)'1"1+~- ~ (92+ \ - ~ ] {  c5(/)~ | + ~'~nXn(l) g 

- v ~  ~ y  (~ AX~ - x~ g(x~)) + o(1). 

It is easy to check that 

]/~(X. g(X.)- X~ g(XJ) = Y(g(X~) + X. g'(X~)) + o(I), 

with Y=]/~(X,,- X~). If we let VX stand for the first symmetric difference 

(VX)(I)=~X(I+ 1)-�89 1) 
we get 

a+ l ~ x  " G. + ( Y ) = l / ' n  ~-~ �9 

2 1 

+ 1/~ ~-f ( -  x~ g(X.)) + T ~ cr g(x.)) | 

a+ (~zx~-x~ g(XoD)+ o(1) - v ~  
= (9~. (�89 A Y- Y(g(Xo~) + X. g'(X~o)) ar  

1 a2+~,A,/~-__~| 2 i az+tvr174 2 

1 a 2 + ,  /~7-~ 
+ ~- ~ tVet,, g(X,,)) | 2 + o (i). 
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Therefore we have G.--+ Goo, at least formally, where 

~ q,(Y)=~ 8~' [(~A V x J  | + (v] /~)  | +(Vx~ g(X~i) | 

Sg, q , 

~-~ t~-a Y -  Y(g(Xoo) + X~ g'(X~))). 

(3) 

If we let qr be the formal limit 8 of q/,, we may write its generator (3) sym- 
bolically as 

1 82@ o.2 8~ 
Goo ~ / /=~-  8 y  2 +~-~ m (4) 

where o -2 is independent of Y, m = M.  Y is linear in Y, and both o -2 and m depend 
on t only via ~f~. 

A sample (phase) point for qr is a function on the integers. This function then 
evolves in time. We make several observations from (3): 

(a) o-z => O. 
1 821/r 2 1 ~ 021// . . . .  

By this we mean the matrix o-2 in ~-F-y~o- =-~2,i,j~--~u,j)o-2(i,j) is non- 

negative definite. This is so since o-2 is the sum of three matrices each of the form 
o-2 (i, j )=  a(i)a(j) and such matrices are non-negative definite. 

(b) At time zero qloo is Gaussian distributed (in its spatial variable). This is 
because the particles are placed independently at time zero, and go  is just the 
limit of 

~N [x.(/)- xoo(l)] 
= number of particles at place I at time zero - n  p~ 

As n 1"~ the classical central limit theorem proves the claim. 

We can compute the variance of 

2 dY= Y,, 2(0 r(o 

for any 2 = {2(l)}, where Y= go ,  as follows: 

Eq 2 dY)~ = E(T, 2(5 V~(x.(O- Xo~(l))) ~ (5) 

s Note that the generators G, and G~ are not homogeneous in time, but the dependence upon time 
is only via ~ .  We can rid ourselves of the time dependence by introducing the extra space variable ~r ,  
so we now look at the process of the pair (q/,,~o) converging to the pair (~,~o~). The generator 

(3) will be altered by the addition of a term f . ~  (~AXoo- X~ g(XJ). This extra variable makes the 
17~ m 

generator homogeneous in time and we may then use the Trotter-Kato theorem. The only substantial 
change is that you must now use not o n c e -  but twice differentiable functions for making C'. 
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Let x i be the actual location of the i-th particle. Since nX,(l) is the number of 
particles at l, (5) becomes 

E ( ~n  ~Z 2(1) nX , ( l ) -  V n  ~ 2dXoo) 2 

(~n 2 n n(n- 1) =E ~ 7 ) t ( x i ) - ] / ~ 2 d p  ~ = - - ~ 2 2  dp~ (52dp~ 2 
/ n n 

- 2 nq,  ap~ + nq,  ap~ ap ~  ap~ :. 

By polarization one easily finds 

E {~ 2 dY~ # d Y }  = S 2 # dp ~  ~ 2 dp ~ ~ # dp ~ 

or, if we let 2, # be indicator function of the sets A, B in Y we get the familiar 
correlation 

E { Y(A) Y(B)} = pO (A n B ) -  p~ p~ 

which is related to the "Brownian bridge." 

(c) Once the process is Gaussian at epoch t=O it remains Gaussian at any  
epoch t. This is because we may write 

dYY~=add + m d t  

with m = M.  Y, or in coordinates, 

(6) 

d~o~ (k) = ~t~L ak, l ddt + ~ Mk, t ~oo (I) d t, 

where a is a symmetric square root of a z, and the d's are independent standard 
Brownian motions. Since a and M are independent of Y,, we may solve (6) ex- 
plicitly, given go ,  showing that qr remains Gaussian. 

Note that the stochastic equation (6) is the "Boltzman" equation 

x=iaX-Xg(X) 

linearized around Y'oo and driven by a white noise 6d~. The parameters of this 
noise are actually determined by the requirement that the process has as its 
equilibrium distribution the one computed in (b) (at least when 5fo~ is stationary). 
This has been the heuristic for construction "fluctuating B-equations" used by 
physicists. See [1] and [5]. 

(d) In some cases m acts as a "restoring'force. Take a g such that g+xg'>=0 
on 0 < x < 1 ; for example g(x) = x. Then 

m= M . Y=(�89 A -(g(Xo~)+ Xo o g'(X~))) . Y 

and both operators A and - ( g  + X~o g') are negative, acting to "restore" Y to zero. 

Properties (a)-(d) permit us to call a2r an Ornstein-Uhlenbeck process. 
Although in our case 0 -2 and M are not constant, because they depend upon Y'~o, 
we may speak of qr as an Ornstein-Uhlenbeck process "guided" by 5Fo~. 
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