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1. Introduction 

Let { ~j, - oo < j  < oo } be a (not necessarily strictly stationary) sequence of random 
variables which are defined on a probability space (~2, d ,  P). For a <b, let d/g~ 
denote the e-algebra of events generated by ~ . . . . .  , ~b. As in [8, 14] and [15], we 
shall say that the sequence is absolutely regular if 

]3(n)=sup E { sup [P(AId//k_oo)--P(A)l} $ O (I.1) 
k A ~,A/n~+ k 

as n ~ co. Further, we shall say that {~i} satisfies the @mixing condition if 

~b(n) =sup sup IP(A~B)-P(A)P(B)I/P(B).[.O 
k B~M4k-~,A~M'In~+k 

(1.2) 

as n ~ oo. Since fl(n)< r so if {~i} is C-mixing, then it is absolutely regular (cf. 
[83). 

Recently, many authors studied limiting behavior of some function of sums of 
C-mixing sequence of random variables and obtained many fruitful results. But, so 
far, for C-mixing sequence, the general probability inequalities concerning the 
probability such as P(S, >z) and P( max ISfl >z) are few known. 

l<j<=n 

In this paper, we shall prove some probability inequalities for sums of 
absolutely regular processes which are powerful to extend a broad class of 
probability inequalities for sums of independent random variables such as 
probability inequalities of Nagaev-Fuk type [5]. We shall prove some fundamental 
theorems in Section 2, and show some applications of them in Sections 3-5. 

2. Fundamental Inequalities 

In this and following sections, we always assume that {~i} is a (not necessarily 
strictly stationary) absolutely regular sequence of d-dimensional random vectors 
with fi(n). 
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The following lemma is proved by the method used in the proof of L e m m a  1 in 

[143. 

Lemma.  Let 6 be some positive number. Let  g(x,,  x2, ..., Xk) be a Borel function such 
that 

~;25 ]g (x , ,  x z, ..., Xk) l* +~ dF(X)(x,, ' ' ' , x~) dF (2)(xa +j , . . . ,  Xk) <= M (2.1) 

where x ,, ..., x k are d-dimensional vectors and F (1) and F (2) are distribution functions 
of  random vectors (~,,  ..., {i~) and (~ii + , , ' " ,  r respectively, and i, < i 2 < " "  < i k. I f  

y ] ,+a  
EIg({**, {is," . . . .  i~,, ~ M 1  

then 

I E g ( ~ l ,  r ..., ~,~) 
- ~... ~ g(Xx,..., x j, x j+ 1 , . . . ,  xk) dF(X)(xx . . . .  , x~). d F ( 2 ) ( X j + l , . . . ,  xk)r (2.2) 

Rdk 

<4M~/1 +a {fi(ij+ * -i2)} ~/1 +~ 

As a special case, if  g(x , ,  x2, ..., Xk) is bounded, say, [g(x 1, x 2 . . . .  , Xk) I < M2,  then we 
can replace the right-hand side of  (2.2) by 2M2fl(ij+ a -  ij). 

Using Lemma, we shall prove some theorems which play fundamental  roles to 
obtain probabili ty inequalities for sums of absolutely regular sequence of random 
vectors. Put 

s,= ~ j ,  So=O (2.3) 
j= ,  

and denote the length of a vector x by Ilxtl, 
Theorem 1. The following inequalities hold for any positive number z and any 

positive integer m( < n); 

(i) for any integer d(>= 1) 

P(IIS, II ____z)_<_ ~ P([I Yj+ Y~+m + ' "  + ~+k, mll >=m- l z )+4nf l (m) ,  (2.4) 
j = l  

(ii) for d = 1 

p(s >__z)<__ ~ P(Yj+ Yj+m+ " + Yi+km>m-*z)+4nfl(m) �9 (2.5) 
j=i 

Here, for each j(1 < j < m) k j = k,,j is the largest integer for which j + k jm < n and { Yj} 
are independent random vectors defined on the probability space (D, d ,  P) such that 
each Yi has the same d f  as that of  ~i. 

Proof  Let 

S~ ~= ~j + C j+,, + " "  + ~i+kjm (j = 1, ..., m). (2.6) 
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We note that  

[n/m I <. kj <= kl ~ = 1,...,  m) 

where [s] denotes the largest integer m such that  m Ns. Then 

P(]mS, l l>z)<P S )]l> <= P(IIS )l l>m-lz).  (2.7) 
j =  j = l  

For each j(1 =<j =< m - 1), let A2 be the Borel subset of the kjd-dimensional Euclidean 
space R kid defined by 

Aj= {(x, . . . ,  xk,): Irx~ + ' -  + x k ,  H >m-lz} 

where xieRa(i= 1 .... , k~) and put 

gj(x>.. . ,  xk, ) = otherwise. 

Then, [gj(xl, ...,Xkfl < 1 and so it follows from Lemma (with M 2 = 1) that 

P(II~j + ~j+m + ''" + d..j+kj,,ll >=m- l z) 

= E & ( ~ j ,  ~j+, , ,  . . . ,  ~j+~,, ,)  

< j'-.. j" gj(x~ .... , Xk,) dFj(xO.., dFj +k,m(Xk, ) + 2kjfl(m) 
Rkjd  

=P(ll Yj+ "'" + Yj+k,mll > m -  lz)+2kjfi(m). (2.8) 

Therefore, (2.4) follows from (2.7) and (2.8). The proof of (2.5) is similar and so is 
omitted. Thus, we have the theorem. 

Theorem 2. Let D be the subset of R e defined by 

D = { ( x  1 . . . . .  xa):xi<c i ( i= 1, ... ,d)}. 

Further, for any s, let 

Ds= {(x 1 +s, . . . ,xa+s):(xl,  ..., xa)eD }. 

I f  Elt{fllr<Mo for some r > 0  and for all j, then 

( ~  ) n-1/~S. ~D P Z . ,~D  ~ -P(n-1/~l lS ' . l l>e)-2kf l (q)<P ( ) 
i = 1  

<P Z.~eD~ +P(n-~/~llX'.l]>=e)+2kfi(q) (2.9) 
z 1 

for any g > 0 and for all n sufficiently large. Here, Z.. i (i = 1 .... , k) are independent 
random vectors such that for each i (1 < i< k)Z..i has the same df  as that of tli defined 
by 

P 

r h =n-  1/~ ~ ~(i- 1)(p+q)+j (2.10) 
j=l  
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and 
k q 

s'.= Z 2 j 
i = l j = l  

and p, q, k are integers such that 1 < q < p < n/2, k = [n/(p + q)]. 

Proof We note that for any e > 0 

k 

k 

. Using the method in the proof of Theorem 1 we have 

P (~= lrliED_~) >=P (i~= Z.,i~D_~) - 2 k  fl(q) (2.13) 

and 

(2.11) 

(2.12) 

P 211i~De <=P ~ Z . , I ~ D  ~ +2kfi(q). (2.14) 
\ i =  1 / i _  

Thus, from (2.12)-(2.14), we have the theorem. 

For the distribution of the maximum of sums, the following theorem holds. 

Theorem 3. Let z be any positive number. Then, for any positive integer m( <= n), the 
following inequalities hold: 

(i) for any integer d(> 1) 

P( max I]Sill > z ) <  ~ P( max 1] ~,~)]] > m - l z ) + 4 n  fi(m), (2.15) 
l <-_i<--_ n j = l  l <-i<-n 

(ii) for d = 1 
m 

P( max S,>z)<= = ~ P( max 5~(/)>m,. = ~z)+4nfl(m). (2.16) 
l <=i <= n j = l  l <=i <= n 

Here, for each i(> 1) 

~,(/) = Yj + """ + Y~ + k, j,, ( j= 1,...,m) (2.17) 

and kl, j and { Y~} are the ones defined in Theorem 1. 

Proof We shall prove (2.15). Define S~ ) by (2.6). Then 

P(maxl lS i lk>z)=P max ~ S I  j) > z  < P(maxl[S~) l l>m-lz) .  
l < i < = n  \ 1  <-i<-n j = l  j = l  l < i < = n  

For each j(1 Nj <m), let B 2 be the Borel subset of the k,,jd-dimensional Euclidean 
space defined by 

Bj={(xl ,  ...,Xk,,j): max Ilxj + Xj+m + "" + Xj+k,,jml[ > m- l z} 
l < i < _ n  
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and put 
{ ;  if(x~ Xk.,)~Bj . . . . .  

h j (xp . . . ,  Xk~ = otherwise. 

Then, as in the proof of Theorem 1, we have 

P( max ][~j+ ~j+ . . . . .  , ~j+ki,jml[ >=m- l z) =Ehj(~j, ~j+m, " ' ,  ~j+k,,jm) 
1 <-i <-n 

S"" ~ hj(x1 . . . . .  Xk,,j) dFj(xO "" dF3+k,,m(Xk,,) + 2k.,j fl(m) 
Rkl,jd 

= n (  max II 7~,~ > m -  lz)+ 2k~dfl(m). 
1 <-i<--n 

From (2.18) and (2.19), we have (2.15). The proof of(2.16) is similar and so is omitted. 

3. Further Inequalities 

( I )  Bernstein's Inequalities 

For absolutely regular sequences of bounded random vectors with fl(n), the 
followings hold: 

Theorem4. Let {~i} be a strictly stationary, absolutely regular sequence of  d- 
dimensional random vectors such that I[ ~i H < M o and E ~i = 0. Then, for the normalized 
sum n-~S, ,  the following inequalities hold when n is sufficiently large: 

(i) I f  d= 1, then for O<r <(ag/Mo)n ~ 

P(n- [S . l>r)=2mexp 

and for r >_ (aZ/Mo)n~ 

P(n- ~ [S .I >r)=<2mexp{ 

where a o = Var(r 0 > O. 
(ii) I f  d > 1, then 

P(Hn- ~ S.[i >>_r) < 2m m 1 exp{ 

(m-~r)(1 M ot  ~ 1 
2aZo a~(mn)~ ] j  +4nfi(m) (3.1) 

rn+ ] 
2 M o~n~ J + 4 n fl (m) (3.2) 

8 e Z ~ 2 m }  + 4n fl(m) (3.3) 

where M 1 is a constant depending only on M o and EliZa pI 2 (cf Theorem in [11]). 
Corollary. Let {~i} be a strictly stationary, absolutely regular sequence of  zero-one- 
valued random variables such that 

P ( ~ i = O ) = l - P ( ~ i = l ) = l - z ,  O < z < l .  (3.4) 
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I f  fl(n)=O(e -~") for some 7>0, then 

P(IS.-nzl >=t)-<M(logn) e-h+4nfl(clog n) (3.5) 

for all t > O, where c is a positive number and 

h = t 2 (log n)- 2 [2 {n z(1 - z) + (t/3 log n) max(z, 1 - z)}]- 1. (3.6) 

The proofs of Theorem 4 and its corollary are easily obtained from Bernstein's 
inequalities and Theorem 1. 

Using this corollary, from Bahadur's result in [1] we can obtain analogous 
results to Sen's ones on Bahadur's representation in 1-12]. 

K. Yoshihara 

( I I )  An Estimate for Tail Probabilities of Sums 

Using Theorem17.11 in [3] and Theorem l, we have an estimate for tail 
probabilities of sums. 

T h e o r e m 5 .  Let {~,} be a strictly stationary, absolutely regular d-dimensional 
random vectors having zero means and E I1(1 II ~< oo for some integer s >= 3. Let 

V = cov(~ 1), 2. = smallest eigenvalue of V, 

2" = largest eigenvalue of V, p,. = EII ~l hi s (3.7) 

As= inf ~2, ~ ~ , lllxllSdF(x) +,~:~ IIxHSdF(x �9 

o-<e-<l {llx[I--<~-*~.~} {llx[I ~"~} 

I f  fl(n) = O(e- 7.) Jbr some 7 > O, then for any c5 > 0 

sup , {aS(log n)- 1 p(l[n-~S.ii > 2. ~ a(log n)�89 
a > ( ( s -  2 + 6) logn)  s 

< M n -  (s- 2)/2(A s _}_ o (1)). (3.8) 

( I I I )  Remark. Using Lemma and Theorems 1-2 we can easily obtain many other 
probability inequalities for partial sums of absolutely regular process such as 
Nagaev-Fuk type inequalities (see [5]). 

4. Central Limit  Problems 

Theorem6 .  Let {~} be a (not necessarily, strictly stationary) absolutely regular 
sequence of random variables with fl(n). Assume that E 4 2 < M o for all i. Assume that 
there are functions p = p(n), q = q(n) and k-= k(n) satisfying the following conditions 
for every e > 0: as n --* oo 

(i) p~oo,  k=[n/ (p+q)]~o% kfl(q)~O and p- lq2-*0,  (4.1) 

k 

(ii) ~ ~ dV, j(x)--*O, (4.2) 
j=i Ixl>_-~ 
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k 

(iii) ~ {  ~ xZdV, j(x)-( ~ xdF, j(x))2}--,a 2, (4.3) 
j=l  Ixl<~ Ixl<~ 

k 

(iv) ~ ~ xdV, j(x)~a (4.4) 
j=l  Ixl<~ 

where e > 0  is arbitrary and 

Vn~(x)=P (kp)-�89 ( j= 1, . . . ,k).  (4.5) 
\ i = 1  

Then the distribution of n-}S, will converge weakly to the normal distribution 
N(a, t7 2) (cf. Theorem l8.4.1 in [7]). 

Proof. Using the method in the proof  of Theorem 1, we have that  for any e > 0  

e(IS',l > 2en ~) 

=P ~ ~(j- 1)(p+q)+p+i ~- 2en ~ 
j i = 1  i = ( k - 1 ) ( p + q ) + p + l  

<P ~=1' en ~ +4kfl(q)+P ~ >en ~ (4.6) 
j i=(k - -  1 ) ( p + q ) + p + l  

where Yj are i.i.d, random variables such that  

P(Yj__<y) = P  i~=l~(j_i)(p+q)+p+,<y ( j= 1 , . . . , k -  1). 

Since EYj'2<Moq 2, so from (i) 

P Z 2' ==X ZEY;:- <  kq2 . . . .  - -  ~ O. ( 4 . 7 )  
\ ] j = l  I / ~ n j =  1 n 

It is obvious from (i) that k fl(p) ~ 0 as n--, oQ. On the other hand, if necessarily, 
repeating the above procedure, we can prove that  

P i=en --*0 as n ~ o o .  (4.8) 
~ l i = ( k - 1 ) ( p + q ) + p + l  I / 

Using the notat ion in Theorem 2, from (2.9) we have that  for every e > 0 

IP(S. <=xn �89 - r l 

<=max { P (i~__ lZ,,i <=x- 2e) -~a(x) , P (i~lZ.,i < x + 2e) -q~.(x) } 

+ P(]S'nI >= 2en ~) + 2k fl(q) (4.9) 
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where 

- i  1 ~ a ( X ) - - _ ~  e 

Since 

( t -  a) 2 

2,7 2 tit. 

K .  Y o s h i h a r a  

P ( Z . , j  <= z)  = v . , j ( z )  (j = 1 . . . .  , k) 

so from condit ion (ii)-(iv) and Theorem 15, Chapter  4 in [9] 

P Z , , i<z  ~ a ( z )  as n ~ o o .  (4.10) 
i _  

As ~a(z) is continuous,  e > 0 is arbi t rary and by assumption k f l(q)~ 0 as n ~ o% so 
from (4.7)-(4.9) we have the theorem. 

Corollary. Let {~} be a (not necessarily strictly stationary) absolutely regular 
sequence of  random variables with E ~i = 0 and E 4 2 <= M o < oo (i = O, + 1, +_ 2 .. . .  ). 
Suppose that there exists a positive number ~2 such that as n---, oo 

E ~j+i =n~2(  1 +o(1))  (4.11) 
i 

and 

lira lim S z2 dF(,J)(z) =0 (4.12) 
N ~  n~oo I z l > N  

hold uniformly for all j(j=O, 1, 2,.. .), where for each jF,~J)(z) denotes the d f  of the 
n 

random variable n -~ ~ ~j+i. Then 
i = 1  

1 
~ ~ N ( 0 , 1 )  (4.13) 

n�89 i = 1  

(cf. [103). 
Proof We use the same notat ions in the p roof  of Theorem 7. Let  p, q and k are some 
functions of n which satisfy (4.1). Firstly, we note  that  from (4.11) and (4.12) 

k k 

E f x2dVnj(x) = E k-1 I ,zZdFy-')(P+q))(z) -+0 
j = l  ]x]__>a j = l  ]z]>=ek ~ 

a s  n --~ ~ .  

Thus, (4.2) is satisfied obviously. Further ,  since E ~ = 0 (i = 1, 2 . . . .  ), so by (4.14) 

k k k 

Z I 5 xdV,~(x)]= Z [  ~ xdV.j(x)l <e-a Z ~ x2dV, j(x) --*0 (4.15) 
j = l  I x l < a  j=l  Ixl_->e j=l  Ix[->~ 

as n ~ oo, which implies (4.4) with a = O. 



Probability Inequalities 327 

Finally, from (4.11) and (4.14) 

k 
Y ~ x2dV.j(x) 

j = l  fxl<~ 
k 

= • {~x2dV~j(x) - S x2dV.j(x)} 
j= 1 Ixl =>~ 

k p 2 k 
~--1 x2 dVnj(X)----~ ff2 (4.16) = k - l  j=12 E p-�89 ~(j-1)(p+q)+i - j  ix[j'_>_ 

as n--+ oo. Hence, from Theorem 6, the desired conclusion follows. 

Remark. Let {{i} be a strictly stationary, absolutely regular sequence of random 
variables with E ~i = 0 and E I~I 4 +a < oo. Assume that fl(n) = O(e- ~") for some 7 > 0. 
Then, if we put p =  [n�89 q= [clogn] (c7> 1) and k=[n/(p+q)], we can easily 
cheque the conditions (4.11) and (4.12) and so (4.13) holds. (It is known that (4.13) 
holds under more less restrictive condition (see [6]).) In this case, we can easily 
show that 

Var(i~l~i)-na2 =0(1) (4.17) 

and 

E ( ~ ~i)4<_Kn 2. (4.18) 
\ i= 1 ! --  

So, using (4.17), (4.18), Theorems2 and 5, we can prove that 

" ~o(x)  sup P \ ~ a <  - =O(n-+(logn)~). (4.19) 

But, Stein (Corollary 3.2 in [13]) showed that the left-hand side of(4.19) is bounded 
by An-+-(logn) 2 under the slightly restrictive moment condition. It seems 
impossible that we can obtain the Stein's order n-~(logn) 2 using the above 
described method. 

5. Convergence Rates in the Law of Large Numbers 

In this section, we assume that {~} is a strictly stationary, absolutely regular 
sequence of random variables with df F and function fl(n)= O(e-~") for some 7 > 0. 

Theorem 7. Let t > O. If  

P(I ~1 [---- n) = o(n-'- 1) (5.1) 

and 

xclV(x)=o(1), (5.2) 
Jxl<, 
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then for every a > 0 

P ( ~ ~)=o(n-t(logn)t+ l). (5.3) 

I f  (5.1) with t>O and (5.2) hold, then for every e>O 

P / s u p  Sk > e ) = o (n- t(log n) t+ 1). (5.4) 
[ 

Proof (5.3) is obvious from Theorem 27, Chapter 9 in [9] and Theorem 1. 
To prove (5.4), let 2 I~ x _< n < 2 i~ Let c be a positive integer such that 

fl(c logn)=o(n  - t -  2). (5.5) 

From Theorem 3 and (5.5), we have that for every e > 0  

nt(logn)-t-lV(skuP ~ ~8) 

<nt(logn)-t-lp(sup max Sk>g)  
= \i>io 2'-1<=k<2'1 k I 

__<n'(logn) - ' - 1  ~ P( m a x  [Sk[~2 I-1 g) (5.6) 
i=io 1<-k<--2i 

m [-[clog2 i! 

~nt(logn)-t-li~=i ~ ~=1 P(max'[T~kl~2i-lg(el~ 
o j 1-<k-<2~ 

+ T  +2 fl(c log 2i)} 

oo [c logn] 

_<-nt(logn) -t-1 ~ ~ --vmlTq)2,,k~l>--21-1e(clog2i)-l)+o( 
i=io j = l  

oo ilog2i y+l  < M . 2  ~ !  Z-"i-i~ 
l:lO 

>= 2 i- 1 e(c log 2i) - 1) + o(1) 

=11 +o(1), (say). 

1 [cl~ ( 2' . i t .  P(IT~!k[ 
log2 i j~l  \log 2 i! 

Let 3 be a positive number. We choose i 0 so that 

n'V \l n I = 2] < 6 (5.7) 

for n>2 i~ 1(log21~ where S* is the sum of i.i.d, random variables, each of 
them having the same df as that of 41. (The existence of such i o is easily verified by 
Theorem 27, Chap. 9 in [-9].) Then, from (5.7) 

(log2i ~ 2 t' II <=M .~. ~ ] 2 - " i - i ~  2~,_1 (5.8) 
t=to 
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where 0 < t '< t. Thus, from (5.6) and (5.8) 

nt(logn) - ' - l P  (sup Sk > e]-~O 
xk__>.l k I --  ! 

which implies (5.4), and the proof is completed. 
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